Главная страница
Навигация по странице:

  • 42) Мейоз, стадии мейоза. Конъюгация хромосом, кроссинговер, редукция числа хромосом.

  • 43) Особенности профазы I мейоза.

  • 44) Основные различия между митозом (непрямым делением) и мейозом (редукционным делением)

  • 45) Котрансляционный транспорт растворимых белков на мембранах гранулярного ЭПР.

  • 1 Цитология ее цели и задачи. Этапы развития цитологии


    Скачать 167.31 Kb.
    Название1 Цитология ее цели и задачи. Этапы развития цитологии
    АнкорOtvety (2).docx
    Дата01.01.2018
    Размер167.31 Kb.
    Формат файлаdocx
    Имя файлаOtvety (2).docx
    ТипДокументы
    #13580
    страница9 из 10
    1   2   3   4   5   6   7   8   9   10

    41) Общая организация митоза эукариотических клеток.

    Волокна веретена деления это одиночные микротрубочки, либо их пучки.

    Отрастают микротрубочки от полюсов веретена. Часть из них направляется к центромерам хромосом, где располагаются кинетохоры. Астральные микротрубочки (радиально отходят от хромосом). У клеток, фаза самого митоза состовляет 1\10 часть клеточного цикла. Митоз занимает 2.5-3 часа. Но при дроблении яйцеклеток клеточный период сокращается, становится меньше 1 часа.

    Процесс митоза принято делить на несколько основных фаз: профаза, метафаза (прометафаза), анафаза, телофаза.

    Границы между стадиями митоза установить проблематично. Смена фаз происходит постепенно. 1 незаметно переходит в другую. Кроме анафазы (самая короткая, четко фиксированная).

    Профаза.

    Повышение активность фосфорилаз, модифицируют гистоны (Н1). В профазе сестринские хроматиды конденсированных хромосом, связаны плотно друг с другом, с помощью белков фогизинов. Конденсация хромосом совпадает с резким уменьшением их транскрипционной активности и инактивацией ядрышковых генов. Ядрышковые белки диссоциируют, в свободном виде располагаются в миксоплазме клетки, обволакивают в виде матрикса поверхность хромосом. Одновременно с этим происходит фосфорилирование белков ламины, которая распадается. Это является причиной потери связи ядерной оболочки хромосом. Ядерная оболочка фрагментируется на мелкие вакуоли, поровые комплексы разрушаются. Происходит активация клеточного центра. Происходит развитие микротрубочек (в конце G2 периода). Микротрубочки живут дольше, по сравнению с обычным временем (динамическая нестабильность). Растут вперед положительным концом. Центросомы расходятся друг от друга на некоторое расстояние. Механизм расхождения: идущие навстречу друг другу антипараллельные микротрубочки взаимодействуют между собой, что приводит к расталкиванию полюсов. Микротрубочки взаимодействуют с белками моторными (динеиноподобными), и за счет этих взаимодействий в центральной части веретена выстраиваются межполюсные микротрубочки, параллельно друг другу. Продолжается их рост, полимеризация, что еще дальше отдаляет веретено деления и позволяет сформировать в центральном пространстве клетки организованные микротрубочки в составе веретена деления. В этот момент еще не формируются кинетохорные микротрубочки. С кинетохорами хромосом микротрубочки не взаимодействуют еще. ЭПР, КГ теряют свою локализацию, распадаются на мелкие вакуоли и оттесняются к периферии клетки.

    Прометафаза.

    Наблюдается постоянно перемещение хромосом, хаотичное – метакинез. Конгрессия хромосом – сам процесс. Хромосомы перемещаются только с помощью микротрубочек. Отдельные микротрубочки случайно достигают одного из кинетохоров хромосомы и взаимодействуют. Кинетохоры «захватывают» микротрубочку. После этого происходит быстрое (25мкм в мин) скольжение хромосом вдоль микротрубочки по направлению ее отрицательного полюса. Это приводит к тому, что хромосома приближается к полюсу. Отвечает за это движение моторный белок (похожий на динеин). В результате такого прометафазного движения хромосомы оказываются случайный образом приближены к полюсам веретена, где продолжают происходить образования новые микротрубочек. Чем ближе к центросоме будет находится хромосомный кинетохор, тем больше вероятность его взаимодействия с другими микротрубочками. В этом случае новые микротрубочки «захватываются» зоной короны кинетохоры. Ко второй (сестринской) хроматине подрастают свои микротрубочки, и пучек начинает тянуть их к своему полюсу. Хромосомы смещаются то к одному, то к другому полюсу, пока они не займут своего положения. Почему хромосомы замирают в доле экватора? Физические силы веретена деления (тянущая сила ахроматического веретена деления).

    Метафаза.

    Во время метафазы хромосомы располагаются так, что их кинетохоры обращены к центру клетки, а плечи к периферии. Фигура материнской звезды. Микротрубочки постоянно обновляются (каждые 15 секунд). К концу метафазы начинают обособляться друг от друга, везде кроме центромер.

    Анафаза.

    Разъединение всех хромосом в центромерной области. За счет распада центромерных белков когезинов. Растягивают хромасомы к полюсам, со скоростью 0,5-2.0 мкм\минуту. Расхождение хромосом по пучкам – анафаза А. Вместе с полюсами – анафаза Б. Во время Анафазы А, кинетохорные микротрубочки разрушаются или укорачиваются. Разборка происходит с положительного конца. Хромосома перемещается к отрицательному концу микротрубочки. Движение хромосом зависит от 2 компонентов: АТФ, концентрация кальция.

    Телофаза.

    Момент остановки хромосом. Заканчивается реконструкцией нового интерфазного ядра, ранний G1 период и разделением исходной клетки на 2 дочерних. В ранней телофаза хромосомы начинают деконденскироваться, в местах их контактов с ядерными белками начинает строиться ядерная оболочка. Сначала она возникает на латеральных поверхностях хромосом, позже в теломерных участках. После замыкания ядерной оболочки начинается сборка новых ядрышек. Одновременно происходит процесс разрушения веретена деления и разборка микротрубочек.

    Цитокинез (цитотомия).

    Разделение клеточного тела. У растений деление клетки происходит путем внутриклеточного образования клеточной перегородки (срединной пластинки), у клеток животных – путем перетяжки (впячивание плазмолеммы внутрь клетки). Закладка перетяжки при делении клеток животных происходит строго в экваториальной плоскости веретена. Здесь накопились актиновые микрофибрилы, которые формируют по всему диаметру экватора сократимое кольцо (актин и миозин, взаимное скольжение приводит к тому, что диаметр этого кольца сужается). При цитотомии растительных клеток в конце телофазы так же происходит разборка микротрубочек веретена. Микротрубочки между новыми ядрами остаются. Формируется пучок микротрубочек, в котором ассоциированы мелкие вакуоли, ЭПР, КГ. Мелкие вакуоли КГ содержащие пектиновые вещества сливаются, перемещаются ближе к экватору, формируют плоскую вакуоль – фрагмопласт. Фрагмопласт разрастается к периферии из центра, достигает стенок материнской стенки и формируется первичную клеточную оболочку. Мембраны фрагмопласта сливаются, происходит обособление новых клеток. Пучки формируют трубчатую структуру, после разделения клетки первичной стенки микротрубочки разбираются. После цитотомии обе дочерние клетки переходят в стадию G1 клеточного цикла, возобновляются цитоплазматические синтезы, происходит реставрация вакуолярной системы, диктиосом КГ, формируются структуру клеточного центра.

    Значение митоза:

    Генетическая стабильность. В результате митоза образуется 2 ядра. Которые имеют ген.материал как родительское ядро. Гены содержат одинаковую информацию, дочерние клетки идентичны друг другу и материнской клетки.

    Митоз не вносит изменений в генетическую информацию.

    В результате митоза число клеток в организме увеличивается. Это представляет собой главный механизм роста ткани и органов.

    Это обеспечение бесполого размножения. Многие виды животных и растений размножаются только так.

    Митоз – способ регенерации и замещения клеток.
    42) Мейоз, стадии мейоза. Конъюгация хромосом, кроссинговер, редукция числа хромосом.

    Мейоз – способ созревания гамет. В нем происходит редукция (уменьшение числа) хромосом, и переход клеток из диплоидного состояния в гаплоидное.

    Мейоз – универсальный способ созревания гамет. Выделяют зиготный мейоз (аскомицеты, базидиомицеты, водоросли, споровики). У них в жизненном цикле преобладает гаплоидная фаза, гаметы сливаются, образуют зиготу с двойным набором хромосом; и споровый мейоз. В органах размножения формируются гаплоидные клетки, которые затем делятся митозом, формируя споры; гаметный тип. Происходит во время созревания гамет.

    После G2 периода, наступает профаза I. В клетки наблюдается рост объема половых клеток, которые накапливают запасные питательные вещества (обеспеч. Ранние стадии развития будущего зародыша). Отличается от профазы митоза следующими позициями:

    Занимает много времени (от суток до годов).

    Состоит из нескольких структурных функциональных фаз (лептотена, зиготена, пахитена, диплотена, диакинез).

    Происходят коньюгация (объединение гомологичных хромосом, с образованием бивалента = тетрады). Тетрада – хромосомный комплекс из 4 хроматид, которые соединяются вместе за счет структуры – синаптонемный комплекс.

    В профазе I происходит обмен участками между хроматидами гомологичных хромосом (НО, не между сестринскими хроматидами одной хромосомы). Кроссинговер.

    Происходит синтез 1.5% хромосомной ДНК, хромосомы сохраняют ряд функциональных нагрузок, они участвуют в процессе транскрипции, репликации и упаковки. Профаза I это еще активная стадия при созревании.

    Лептотена – стадия тонких нитей. Зиготена – стадия объединяющихся нитей. Пахитена – стадия толстых нитей (самая длинная, 50% времени). Диплотена – стадия двойных нитей. Диакинез - стадия расходящихся нитей.

    Напоминает профазу митоза, но хромосомы очень тонкие и длинные. Степень компактизации крайне низка (в 30 раз менее компактны). Расположение хромосом в лептотене напоминает телофазную полиризацию ядра в животных клетках. Хромосомы имеют фигуру «букета», дугообразные изогнутые, сближенные хромосомы, которые связаны своими теломерами с ядерной оболочкой. А у растений другая ситуация, у них хромосомы собираются в клубок (синезис). Характерным для лептотены является расположение на тонких хромосомах сгустков хроматинов (хромомеров). Число их характерно для каждой хромосомы. По ним составляют карты хромосом. В конце лептотемы хромосомы начинают сближаться.
    Зиготена. Стадия коньюгации гомологичных хромосом. Синапсис. Гомологичные хромосомы узнают друг друга по участкам хроматины, сближаются и образуют новый хромосомный ансамбль или бивалент (парные соединенные, удвоенные хромосомы). Каждый бивалент состоит из 4 хроматид. Число бивалентов равно гаплоидному числу хромосом. На этой стадии синтезируется примерно 0,3% от всей ДНК. (zДНК), специфические по своему строению участки этой ДНК на гомологичных хромосомах еще на G2 стадии интерфазы делящихся клеток приближаются друг к другу, узнают друг друга и на некоторое время образуют стабильные связи, необходимые для закрепления хромосом одна вдоль другой. Позднее эта связь осуществляется с помощью синаптонемального комплекса. Имеется этот комплекс почти у всех эукариот, обладающих половыми процессами. Он имеет вид трехслойной ленты, состоящей из 2 боковых компанентов – тяжей. Они имеют толщину 30-60нм, а центральный осевой элемент 10-40 нм. Это комплекс белков. Полное сближение бивалентов происходит на следующей стадии.

    Пахитена.

    За счет полной коньюгации профазные хромосомы увеличиваются по толщине и хроматиды вступают во взаимный обмен идентичными участками (кроссинговер). Итог кроссинговера- рекомбинация генов. Морфологически этот процесс почти не улавливается, но в следующей стадии (диплотеме), биваленты расходятся, но остаются связанными в точках перехода (хиазма), это и есть места обмена генами. Синтезируется около 1% ДНК. Происходит амплификация рибосомных генов (повышенная выработка дополнительных ядрышек). Активация хрономерных участков, изменяется структура хромосом.

    Диплотема.

    Отталкивание гомологов друг от друга, в зоне центромеры. Пары сестренских хроматид остаются соединенными между собой. Укорачивание и конденсация хромосом. Вид ламповых щеток. Синтез РНК: преимущественно иРНК (для обеспечения биосинтеза запасных питательных белков, для ранней стадии развития зародыша). Продолжается активная амплификация.

    Диокинез.

    Уменьшение числа хиазм, укорочение бивалентов, распад ядрышек на составные, хромасомы теряют связь с ядерной оболочкой. Диакинез – переходная стадия к делению.

    Метафаза I

    Биваленты выстраиваются в экваториальной области, формируется метафазная пластинка. Процессы аналогичные митозу.

    Анафаза I

    Начинается расхождение хромосом. Расходятся гомологичные хромосомы, состоящие из 2 сестренских хроматид. Выстраиваются независимо друг от друга, и расходятся независимо друг от друга. Результат – образование двух новых ядер, содержащих уменьшенное число хромосом, каждое из которых состоит из 2 сестренских хроматид.

    Клетки переходят к делению, который, по морфологии, не отличается от митоза. Сестренские хроматиды связанные в районе центромеры, проходят метафазу, и профазу, а анафазе отделяются и расходятся по одной к дочернему ядру.

    В результате двух последовательных делений мейоза из одной диплоидной клетки образуется 4 гаплоидных, причем каждая клетка неизбежно отличается по своей генетической конституции.

    Случайное распределение хромосом по дочерним клеткам создает генетическое разнообразие. И число вариантов определяется по формуле 2n, где n – число пар хромосом.

    Для мужских и женских гамет мейоз различен. При мейозе сперматогониев возникает 4 одинаковых по размеру сперматоцита, которые затем дифференциируются в подвижные сперматозоиды. При мейозе ооцитов, отделяется первое направительное тело (потом оно делится еще один раз). При следующем делении возникает второе направительное тело. В результате всего деления возникает одна целая яйцеклетка и 3 направительных клетки.
    43) Особенности профазы I мейоза.

    Мейоз I начинается с профазы I. Это наиболее продолжительная фаза мейоза, которая, в свою очередь, подразделяется на стадии лептотена, зиготена, пахитена, диплотена и диакинез.

    На стадии лептотены в ядре появляются слабо спирализованные хромосомы. Постепенно они приобретают нитевидную форму.

    Зиготена начинается с постепенного попарного соединения (конъюгации, синапсиса) по длине параллельно уложенных гомологичных хромосом. Соединенные попарно хромосомы образуют биваленты. В связи с тем что перед началом мейоза произошла редупликация хромосом, каждый бивалент состоит из четырех хроматид. Функцию синапсиса выполняет синаптонемный комплекс (СК) — белковое образование, входящее в состав бивалента и имеющее вид трехслойной ленты, располагающейся между конъюгирующими хромосомами. СК формируется постепенно по принципу застежки-молнии на протяжении всей стадии зиготены. Образование бивалентов создает предпосылки для возможности обмена гомологичными участками между гомологичными хромосомами (кроссинговера), что представляет важное генетическое событие. В то же время продолжается процесс конденсации хромосом.

    Пахитена — это стадия, на которой СК сформирован по всей длине хромосом (стадия стабильного синапсиса). Она характеризуется продолжающимся утолщением хромосом в результате непрерывной конденсации хроматина. На этой стадии происходит обмен гомологичными участками хроматид (кроссинговер) и, как следствие, рекомбинация сцепленных генов.

    На следующей за пахитеной стадии, получившей название диплотены, продолжается конденсация хромосом, но при ном начинается процесс расхождения гомологичных хромосом, которые удерживаются в точках обмена участками, возникшими при кроссинговере. Они получили название хиазм.

    Диакинез — последняя стадия профазы I. Она характеризуется максимальной конденсацией хромосом. Исчезает ядрышко, а биваленты располагаются по периферии ядра. При этом гомологичные хромосомы удерживаются в составе бивалентов благодаря хиазмам.

    44) Основные различия между митозом (непрямым делением) и мейозом (редукционным делением)

    Мейоз — это деление в зоне созревания половых клеток, сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

    Эти отличия в основном состоят в следующем.

    В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение гомологичных хромосом) и обмен генетической информацией. В анафазе I центроме­ры, скрепляющие хроматиды, не делятся, а к полюсам отходит одна из гомологичных хромосом. Интерфаза перед вторым делением очень короткая, в ней ДНК не синтезируется. Клетки (галиты) , образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток — материнской и отцовской. Опло­дотворенную яйцеклетку называют зиготой.

    Митоз, или непрямое деление, наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.) . Митоз состоит из четырех последователь­ных фаз (см. далее таблицу) . Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой. Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков, удваивается каждая хромосома, образуя две сестринские хроматиды, скрепленные общей центромерой, увеличивается число основных органоидов цитоплазмы.

    45) Котрансляционный транспорт растворимых белков на мембранах гранулярного ЭПР.

    - В гиалоплазме происходит связывание иРНК, кодирующей секреторный белок, с рибосомой и начинается синтез белковой цепи.

    - Сначала синтезируется «сигнальная последовательность», богатая гидрофобными аминокислотами. Эта «сигнальная последовательность» в цитозоле узнается и происходит ее связь с «узнающей сигнал частицей», частица связывается после узнавания сигнального конца синтезирующейся молекулы белка с рибосомой, что приводит к полной остановке синтеза белка.

    - На поверхности же мембраны ЭПР, обращенной к гиалоплазме, расположены интегральные рецепторные белки, соединяющиеся с SRP-частицами. В результате SRP-частица связывается со своим рецептором, одновременно она осуществляет связь данной рибосомы с мембраной ЭПР. Такая рибосома с SRP-частицей, блокирующей дальнейший рост полипептидной цепи, взаимодействует с большим белковым канальным комплексом - транслаконом. После связывания рибосомы с транслаконом происходит отделение SRP-частицы и синтезированный первичный пептид входит в канал, который образует транслакон. После этого возобновляется синтез полипептида, он удлиняется и его сигнальная последовательность вместе с растущей цепочкой оказываются внутри полости цистерны ЭПР.

    - Таким образом, синтезируемый белок проходит сквозь мембрану ЭПР во время его синтеза, т.е. котрансляционно, одновременно с его трансляцией. Внутри полости ЭПР с помощью фермента (сигнальная петидаза) сигнальная последовательность отщепляется. После окончания синтеза вся белковая молекула оказывается в полости ЭПР, и в это время рибосома отделяется от транслакона и диссоциирует. После этого в транслаконе канал закрывается. Во время трансмембранного переноса растущей белковой цепи происходит ее связь с олигосахаридами (гликозилирование). В полости цистерн ЭПР белки претерпевают ряд дополнительных изменений: образуются дисульфидные связи, происходит их правильное сворачивание, а также сборка четвертичной структуры белков. Только белки с правильной конформацией в дальнейшем будут переноситься в зону аппарата Гольджи.
    1   2   3   4   5   6   7   8   9   10


    написать администратору сайта