.
Определим силу действия струи на плоскую неподвижную стенку, расположенную под углом α к оси струи (рис. 3.10). Принимаем, что жидкость растекается по поверхности стенки только двумя потоками, массовые расходы которых равны Qm2 и Qm3. Для того, чтобы жидкость не могла растекаться в боковые стороны (перпендикулярно к плоскости чертежа), стенке придаем форму желоба. Принимаем, что силы трения по поверхности стенки пренебрежимо малы. При этом сила N действия струи на стенку направлена перпендикулярно стенке. Выделим сечениями 1-1, 2-2 и 3-3 участок потока. Так как избыточное давление, действующее в рассматриваемых сечениях равно нулю, а вес жидкости пренебрежимо мал, статическая реакция потока равна нулю.
рис. 3.10
| Сила действия потока на стенку:
или
Спроектируем на соответствующие оси:
;
.
Если пренебречь потерями на трение, то скорости во всех сечениях будут равны, т.е.
.
Согласно уравнению расходов:
.
| |