Главная страница

Аэродинамика самолета 1основные свойства воздуха атмосфера земли


Скачать 4.36 Mb.
НазваниеАэродинамика самолета 1основные свойства воздуха атмосфера земли
Дата09.11.2022
Размер4.36 Mb.
Формат файлаpdf
Имя файлаAehrodinamika_samoljota.pdf
ТипДокументы
#779407
страница5 из 28
1   2   3   4   5   6   7   8   9   ...   28
ЦД при изменении угла атаки у симметричного профиля самолета Як-55 остается неизменным и находится примерно на 1/4 расстояния от носка хорды.
Таблица 2
нагрузка
Обозначение веса (груза)
Пустой самолет
Взлетный вес
Летчик в передней кабине
Летчик в задней кабине
Топливо в баках
Масло в баках
G
п
G
взл
G
1
G
2
G
T
G
M
При изменении угла атаки изменяется распределение давления по профилю крыла, и поэтому центр давления перемещается вдоль хорды (для несимметричного профиля самолета Як-52), как показано на Рис.
59. Например, при отрицательном угле атаки самолета Як 52, примерно равном -1°, силы давления в

АЭРОДИНАМИКА САМОЛЕТА
37
носовой и хвостовой частях профиля направлены в противоположные стороны и равны. Этот угол атаки называется углом атаки нулевой подъемной силы.
Рис. 59 Перемещение центра давления крыла самолета Як-52 при изменении угла атаки
При несколько большем угле атаки силы давления, направленные вверх, больше силы, направленной вниз, их равнодействующая Y будет лежать за большей силой (II), т. е. центр давления окажется расположенным в хвостовой части профиля. При дальнейшем увеличении угла атаки местонахождение максимальной разности давлений передвигается все ближе к носовой кромке крыла, что, естественно, вызывает перемещение ЦД по хорде к передней кромке крыла (III, IV).
Наиболее переднее положение ЦД при критическом угле атаки
α
кр= 18° (V).

АЭРОДИНАМИКА САМОЛЕТА
38
СИЛОВАЯ УСТАНОВКА САМОЛЕТА
НАЗНАЧЕНИЕ СИЛОВОЙ УСТАНОВКИ И ОБЩИЕ СВЕДЕНИЯ О ВОЗДУШНЫХ ВИНТАХ
Силовая установка предназначена
для создания силы тяги, необходимой для преодоления лобового сопротивления и обеспечения поступательного движения самолета.
Сила тяги создается установкой, состоящей из двигателя, движителя (винта, например) и систем, обеспечивающих работу двигательной установки (топливная система, система смазки, охлаждения и т.д.).
В настоящее время в транспортной и военной авиации широкое распространение получили турбореактивные и турбовинтовые двигатели. В спортивной, сельскохозяйственной и различного назначения вспомогательной авиации пока еще применяются силовые установки с поршневыми авиационными двигателями внутреннего сгорания.
На самолетах Як-52 и Як-55 силовая установка состоит из поршневого двигателя М-14П и воздушного винта изменяемого шага В530ТА-Д35. Двигатель М-14П преобразует тепловую энергию сгорающего топлива в энергию вращения воздушного винта.
Воздушный винт
- лопастный агрегат, вращаемый валом двигателя, создающий тягу в воздухе, необходимую для движения самолета.
Работа воздушного винта основана на тех же принципах, что и крыло самолета.
КЛАССИФИКАЦИЯ ВОЗДУШНЫХ ВИНТОВ
Винты классифицируются:
по числу лопастей - двух-, трех-, четырех- и многолопастные;
по материалу изготовления - деревянные, металлические;
по направлению вращения (смотреть из кабины самолета по направлению полета) - левого и
правого вращения;
по расположению относительно двигателя - тянущие, толкающие;
по форме лопастей - обычные, саблевидные, лопатообразные;
по типам - фиксированные, неизменяемого и изменяемого шага.
Воздушный винт состоит из ступицы, лопастей и укрепляется на валу двигателя с помощью специальной втулки (Рис. 60).
Винт неизменяемого шага
имеет лопасти, которые не могут вращаться вокруг своих осей. Лопасти со ступицей выполнены как единое целое.
Винт фиксированного шага
имеет лопасти, которые устанавливаются на земле перед полетом под любым углом к плоскости вращения и фиксируются. В полете угол установки не меняется.
Винт изменяемого шага
имеет лопасти, которые во время работы могут при помощи гидравлического или электрического управления или автоматически вращаться вокруг своих осей и устанавливаться под нужным углом к плоскости вращения.
Рис. 60 Воздушный двухлопастный винт неизменяемого шага
Рис. 61 Воздушный винт В530ТА Д35
По диапазону углов установки лопастей воздушные винты подразделяются:
на обычные, у которых угол установки изменяется от 13 до 50°, они устанавливаются на
легкомоторных самолетах;

АЭРОДИНАМИКА САМОЛЕТА
39
на флюгерные - угол установки меняется от 0 до 90°;
на тормозные или реверсные винты, имеют изменяемый угол установки от -15 до +90°, таким
винтом создают отрицательную тягу и сокращают длину пробега самолета.
К воздушным винтам предъявляются следующие требования:
винт должен быть прочным и мало весить;
должен обладать весовой, геометрической и аэродинамической симметрией;
должен развивать необходимую тягу при различных эволюциях в полете;
должен работать с наибольшим коэффициентом полезного действия.
На самолетах Як-52 и Як-55 установлен обычный веслообразный деревянный двухлопастный тянущий винт левого вращения, изменяемого шага с гидравлическим управлением В530ТА-Д35 (Рис. 61).
ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВИНТА
Лопасти при вращении создают такие же аэродинамические силы, что и крыло. Геометрические характеристики винта влияют на его аэродинамику.
Рассмотрим геометрические характеристики винта.
Форма лопасти в плане - наиболее распространенная симметричная и саблевидная.
Рис. 62. Формы воздушного винта: а - профиль лопасти, б - формы лопастей в плане
Рис. 63 Диаметр, радиус, геометрический шаг воздушного винта

АЭРОДИНАМИКА САМОЛЕТА
40
Рис. 64 Развертка винтовой линии
Сечения рабочей части лопасти имеют крыльевые профили. Профиль лопасти характеризуется хордой, относительной толщиной и относительной кривизной.
Для большей прочности применяют лопасти с переменной толщиной - постепенным утолщением к корню. Хорды сечений лежат не в одной плоскости, так как лопасть выполнена закрученной. Ребро лопасти, рассекающее воздух, называется передней кромкой, а заднее - задней кромкой. Плоскость, перпендикулярная оси вращения винта, называется плоскостью вращения винта (Рис. 62).
Диаметром винта
называется диаметр окружности, описываемой концами лопастей при вращении винта. Диаметр современных винтов колеблется от 2 до 5 м. Диаметр винта В530ТА-Д35 равен 2,4 м.
Геометрический шаг винта -
это расстояние, которое движущийся поступательно винт должен пройти за один свой полный оборот, если бы он двигался в воздухе как в твердой среде (Рис. 63).
Угол установки лопасти винта
ϕ
- это угол наклона сечения лопасти к плоскости вращения винта
(Рис. 64).
Для определения, чему равен шаг винта, представим, что винт движется в цилиндре, радиус г которого равен расстоянию от центра вращения винта до точки Б на лопасти винта. Тогда сечение винта в этой точке опишет на поверхности цилиндра винтовую линию. Развернем отрезок цилиндра, равный шагу винта Н по линии БВ. Получится прямоугольник, в котором винтовая линия превратилась в диагональ этого прямоугольника ЦБ. Эта диагональ наклонена к плоскости вращения винта БЦ под углом
ϕ
. Из прямоугольного треугольника ЦВБ находим, чему равен шаг винта:
2
ϕ
π
tg
H
=
(3.1)
Шаг винта будет тем больше, чем больше угол установки лопасти
ϕ
. Винты подразделяются на винты с постоянным шагом вдоль лопасти (все сечения имеют одинаковый шаг), переменным шагом
(сечения имеют разный шаг).
Воздушный винт В530ТА-Д35 имеет переменный шаг вдоль лопасти, так как это выгодно с аэродинамической точки зрения. Все сечения лопасти винта набегают на воздушный поток под одинаковым углом атаки.
Если все сечения лопасти винта имеют разный шаг, то за общий шаг винта считается шаг сечения, находящегося на расстоянии от центра вращения, равном 0,75R, где R-радиус винта. Этот шаг называется
номинальным,
а угол установки этого сечения - номинальным углом установки.
Геометрический шаг винта отличается от поступи винта на величину скольжения винта в воздушной среде (см. Рис. 63).
Поступь воздушного винта
- это действительное расстояние, на которое движущийся поступательно винт продвигается в воздухе вместе с самолетом за один свой полный оборот. Если скорость самолета выражена в км/ч, а число оборотов винта в секунду, то поступь винта Н
п
можно найти по формуле
n
V
H
П
=
(3.2)
Поступь винта несколько меньше геометрического шага винта. Это объясняется тем, что винт как бы проскальзывает в воздухе при вращении ввиду низкого значения плотности его относительно твердой среды.
Разность между значением геометрического шага и поступью воздушного винта называется
скольжением винта
и определяется по формуле
S=H-H
n
. (3.3)

АЭРОДИНАМИКА САМОЛЕТА
41
АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ВОЗДУШНЫХ ВИНТОВ
СКОРОСТЬ ДВИЖЕНИЯ И УГОЛ АТАКИ ЭЛЕМЕНТА ЛОПАСТИ ВИНТА
К аэродинамическим характеристикам воздушных винтов относятся угол атаки и тяга воздушного винта.
Углом атаки элементов лопасти винта
α
называется угол между хордой элемента и направлением его истинного результирующего движения W (Рис. 65).
Рис. 65 Угол установки и угол атаки лопастей: а - угол атаки элемента лопасти, б - скорости
элемента лопасти
Каждый элемент лопасти совершает сложное движение, состоящее из вращательного и поступательного. Вращательная скорость равна
,
2
C
rn
U
π
=
(3.4) где
n
с
- обороты двигателя.
Поступательная скорость
-это скорость самолета V. Чем дальше элемент лопасти находится от центра вращения воздушного винта, тем больше вращательная скорость U.
При вращении винта каждый элемент лопасти будет создавать аэродинамические силы, величина и направление которых зависят от скорости движения самолета (скорости набегающего потока) и угла атаки.
Рассматривая Рис. 65, а, нетрудно заметить, что: когда воздушный винт вращается, а поступательная скорость равна нулю (V=0), то каждый элемент лопасти винта имеет угол атаки, равный углу установки элемента лопасти
ϕ
; при поступательном движении воздушного винта угол атаки элемента лопасти винта отличается от угла наклона элемента лопасти винта (становится меньше его); угол атаки будет тем больше, чем больше угол установки элемента лопасти винта; результирующая скорость вращения элемента лопасти винта W равна геометрической сумме поступательной и вращательной скоростей и находится по правилу прямоугольного треугольника
,
2 2
U
V
W
+
=
(3.5)
чем больше вращательная скорость, тем больше угол атаки элемента лопасти воздушного винта. И наоборот, чем больше поступательная скорость воздушного винта, тем меньше угол атаки элемента лопасти воздушного винта.
В действительности картина получается сложнее. Так как винт засасывает и вращает воздух, отбрасывает его назад, сообщая ему дополнительную скорость v, которую называют скоростью подсасывания. В результате истинная скорость W' будет по величине и направлению отличаться от скорости подсасывания, если их сложить геометрически. Следовательно, и истинный угол атаки
α'
будет отличаться от угла
α
(Рис. 65, б).
Анализируя вышесказанное, можно сделать выводы:
при поступательной скорости V=0 угол атаки максимальный и равен углу установки лопасти
винта;
при увеличении поступательной скорости угол атаки уменьшается и становится меньше угла
установки;
при большой скорости полета угол атаки лопастей может стать отрицательным;
чем больше скорость вращения воздушного винта, тем больше угол атаки его лопасти;

АЭРОДИНАМИКА САМОЛЕТА
42
если скорость полета неизменна и обороты двигателя уменьшаются, то угол атаки уменьшается
и может стать отрицательным.
Сделанные выводы объясняют, как изменяется сила тяги винта неизменяемого шага при изменении скорости полета и числа оборотов.
Сила тяги винта
возникает в результате действия аэродинамической силы

R
на элемент лопасти винта при его вращении (Рис. 66).
Разложив эту силу на две составляющие, параллельную оси вращения и параллельную плоскости вращения, получим силу ЛР и силу сопротивления вращению

Х
элемента лопасти винта.
Суммируя силу тяги отдельных элементов лопасти винта и приложив ее к оси вращения, получим силу тяги винта Р.
Тяга винта зависит от диаметра винта Д, числа оборотов в секунду n, плотности воздуха
ρ
и подсчитывается по формуле (в кгс или Н)
,
4 2
Д
n
Р
с
αρ
=
(3.6) где
α
- коэффициент тяги винта, учитывающий форму лопасти в плане, форму профиля и угла атаки, определяется экспериментально. Коэффициент тяги воздушного винта самолетов Як-52 и Як-55
В530ТА-Д35 равен 1,3.
Таким образом, сила тяги винта прямо пропорциональна своему коэффициенту, плотности воздуха, квадрату числа оборотов винта в секунду и диаметру винта в четвертой степени.
Так как лопасти винта имеют геометрическую симметрию, то величины сил сопротивления и удаления их от оси вращения будут одинаковые.
Сила сопротивления вращению определяется по формуле
,
2 2
К
S
SW
С
X
Л
X
В
Л
=
(3.7)
где Сх
л
-
коэффициент сопротивления лопасти, учитывающий ее форму в плане, форму профиля, угол атаки и качество обработки поверхности;
W
- результирующая скорость, м/с;

- площадь лопасти;
К
- количество лопастей.
Рис. 66 Аэродинамические силы воздушного винта

АЭРОДИНАМИКА САМОЛЕТА
43
Рис. 67. Режимы работы воздушного винта
Сила сопротивления вращению винта относительно его вращения создает момент сопротивления вращению винта, который уравновешивается крутящим моментом двигателя:
М
тр

в
r
в
(3.8)
Крутящий момент, создаваемый двигателем, определяется (в кгс-м) по формуле
,
2
,
716
n
N
М
е
кр
=
(3.9) где N
e
-эффективная мощность двигателя.
Рассмотренный режим называется режимом положительной тяги винта, так как эта тяга тянет самолет вперед (Рис. 67, а). При уменьшении угла атаки лопастей уменьшаются силы Р и Х (уменьшается тяга винта и тормозящий момент). Можно достичь такого режима, когда Р=0 и X=R. Это режим нулевой тяги (Рис. 67, б).
При дальнейшем уменьшении угла атаки достигается режим, когда винт начнет вращаться не от двигателя, а от действия сил воздушного потока. Такой режим называется самовращением винта или
авторотацией
(Рис. 67, в).
При дальнейшем уменьшении угла атаки элементов лопасти винта получим режим, на котором сила сопротивления лопасти винта Х будет направлена в сторону вращения винта, и при этом винт будет иметь отрицательную тягу. На этом режиме винт вращается от набегающего воздушного потока и вращает двигатель. Происходит раскрутка двигателя, этот режим называется режимом ветряка (Рис. 67, г).
Режимы самовращения и ветряка возможны в горизонтальном полете и на пикировании.
На самолетах Як-52 и Як-55 эти режимы проявляются при выполнении вертикальных фигур вниз на малом шаге лопасти винта. Поэтому рекомендуется при выполнении вертикальных фигур вниз (при разгоне скорости более 250 км/ч) винт затяжелять на 1/3 хода рычага управлением шага винта.
ЗАВИСИМОСТЬ ТЯГИ ВИНТА ОТ СКОРОСТИ ПОЛЕТА. ВЛИЯНИЕ ВЫСОТЫ ПОЛЕТА НА
ТЯГУ ВИНТА
С увеличением скорости полета углы атаки лопасти винта, неизменяемого шага и фиксированного, быстро уменьшаются, тяга винта падает. Наибольший угол атаки лопасти винта будет на скорости полета, равной нулю, при полных оборотах двигателя.
Соответственно уменьшается тяга воздушного винта до нулевого значения и далее становится отрицательной. Раскручивается вал двигателя. Чтобы предупредить раскрутку винта, уменьшают обороты двигателя. Если двигатель не дросселировать, то может произойти его разрушение.
Зависимость тяги винта В530ТА-Д35 от скорости полета изображена на графике Рис. 68. Для его построения замеряют тягу воздушного винта при разных скоростях. Полученный график называется характеристикой силовой установки по тяге.
ВЛИЯНИЕ ВЫСОТЫ ПОЛЕТА НА ТЯГУ ВИНТА.
Выясняя зависимость тяги от скорости полета, рассматривалась работа винта на неизменной высоте при постоянной плотности воздуха. Но при полетах на разных высотах плотность воздуха влияет на тягу воздушного винта.
С увеличением высоты полета плотность воздуха падает, соответственно пропорционально будет падать и тяга винта
(при неизменных оборотах двигателя). Это видно при анализе формулы (3.6).

АЭРОДИНАМИКА САМОЛЕТА
44
Рис. 68 Характеристика силовой установки М-14П по тяге (для Н=500 м) самолетов Як-52 и Як-55 с
воздушным винтом В530ТА-Д35
Рис. 69 Тормозящий момент воздушного винта и крутящий момент двигателя
ТОРМОЗЯЩИЙ МОМЕНТ ВИНТА И КРУТЯЩИЙ МОМЕНТ ДВИГАТЕЛЯ.
Как ранее рассматривалось, тормозящий момент винта противодействует крутящему моменту двигателя.
Для того чтобы винт вращался с постоянными оборотами, необходимо, чтобы тормозящий момент
М
т
, равный произведению
е
Х

, был равен крутящему моменту двигателя М
кр
, равному произведению
F
d
,.т.е. М
т

кр или
е
Х

=F
d
(Рис. 69). Если это равенство будет нарушено, то двигатель будет уменьшать обороты или увеличивать.
Увеличение оборотов двигателя приводит к увеличению М
кр и наоборот. Новое равновесие устанавливается на новых оборотах двигателя.
1   2   3   4   5   6   7   8   9   ...   28


написать администратору сайта