Главная страница

Анализ и оценка. ВКР. Анализ и оценка типовых топологий вычислительных комьютерн. Анализ и оценка типовых топологий вычислительных компьютерных сетей


Скачать 1.51 Mb.
НазваниеАнализ и оценка типовых топологий вычислительных компьютерных сетей
АнкорАнализ и оценка
Дата17.05.2023
Размер1.51 Mb.
Формат файлаdoc
Имя файлаВКР. Анализ и оценка типовых топологий вычислительных комьютерн.doc
ТипДиплом
#1139102
страница3 из 7
1   2   3   4   5   6   7

1.2 Типовые топологии вычислительных сетей


Под топологией (компоновкой, конфигурацией, структурой) компьютерной сети обычно понимается физическое расположение компьютеров сети друг относительно друга и способ соединения их линиями связи. Важно отметить, что понятие топологии относится, прежде всего, к локальным сетям, в которых структуру связей можно легко проследить. В глобальных сетях структура связей обычно скрыта, от пользователей не слишком важна, так как каждый сеанс связи может производиться по своему собственному пути. Топология определяет требования к оборудованию, тип используемого кабеля, возможные и наиболее удобные методы управления обменом, надежность работы, возможности расширения сети.

Существует три основных топологии сети:

- шина (bus), при которой все компьютеры параллельно подключаются к одной линии связи и информация от каждого компьютера одновременно передается всем остальным компьютерам;

- звезда (star), при которой к одному центральному компьютеру присоединяются остальные периферийные компьютеры, причем каждый из них использует свою отдельную линию связи;

- кольцо (ring), при которой каждый компьютер передает информацию всегда только одному компьютеру, следующему в цепочке, а получает информацию только от предыдущего в цепочке компьютера, и эта цепочка замкнута в «кольцо».

На практике нередко используют и комбинации базовых топологий, но большинство сетей ориентированы именно на эти три. Рассмотрим теперь кратко особенности перечисленных сетевых топологий.

Топология «шина» (или, как ее еще называют, «общая шина») самой своей структурой предполагает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов. При таком соединении компьютеры могут передавать только по очереди, так как линия связи единственная. В противном случае передаваемая информация будет искажаться в результате наложения (конфликта, коллизии). Таким образом, в шине реализуется режим полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно).[9]

В топологии шина отсутствует центральный абонент, через которого передается вся информация, что увеличивает ее надежность (ведь при отказе любого центра перестает функционировать вся управляемая этим центром система). Добавление новых абонентов в шину довольно просто и обычно возможно даже во время работы сети. В большинстве случаев при использовании шины требуется минимальное количество соединительного кабеля по сравнению с другими топологиями. Правда, надо учесть, что к каждому компьютеру (кроме двух крайних) подходит два кабеля, что не всегда удобно.

Звезда - это топология с явно выделенным центром, к которому подключаются все остальные абоненты. Весь обмен информацией идет исключительно через центральный компьютер, на который таким образом ложится очень большая нагрузка, поэтому ничем другим, кроме сети, он заниматься не может. Понятно, что сетевое оборудование центрального абонента должно быть существенно более сложным, чем оборудование периферийных абонентов. О равноправии абонентов в данном случае говорить не приходится. Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией «звезда» в принципе невозможны, так как управление полностью централизовано, конфликтовать нечему.

Существует также топология, называемая пассивной звездой, которая только внешне похожа на звезду. В настоящее время она распространена гораздо больше, чем активная звезда. Достаточно сказать, что она используется в самой популярной на сегодняшний день сети Ethernet [8].

В центре сети с данной топологией помещается не компьютер, а концентратор, или хаб, выполняющий ту же функцию, что и репитер. Он восстанавливает приходящие сигналы и пересылает их в другие линии связи. Хотя схема прокладки кабелей подобна истинной или активной звезде, фактически мы имеем дело с шинной топологией, так как информация от каждого компьютера одновременно передается ко всем остальным компьютерам, а центрального абонента не существует. Естественно, пассивная звезда получается дороже обычной шины, так как в этом случае обязательно требуется еще и концентратор. Однако она предоставляет целый ряд дополнительных возможностей, связанных с преимуществами звезды. Именно поэтому в последнее время пассивная звезда все больше вытесняет истинную шину, которая считается малоперспективной топологией.

Кольцо — это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов. Важная особенность кольца состоит в том, что каждый компьютер ретранслирует (восстанавливает) приходящий к нему сигнал, то есть выступает в роли репитера, поэтому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в данном случае нет, все компьютеры могут быть одинаковыми. Однако довольно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, так как выход его из строя сразу же парализует весь обмен.

Кроме трех рассмотренных основных, базовых топологий нередко применяется также сетевая топология «дерево», которую можно рассматривать как комбинацию нескольких звезд. Как и в случае звезды, дерево может быть активным, или истинным, и пассивным. При активном дереве в центрах объединения нескольких линий связи находятся центральные компьютеры, а при пассивном - концентраторы .

Аппаратные средства обеспечения сетей. Небольшая сеть обычно состоит из:

- ПК и периферийных устройств, таких как принтеры;

- сетевых адаптеров для ПК и сетевых кабелей;

- сетевого оборудования, такого как концентраторы и коммутаторы, которые соединяют между собой ПК и принтеры;

- сетевой операционной системы.

Кроме того, может потребоваться и другое оборудование [19].

В ПК для того, чтобы его можно было использовать в сети, необходимо установить сетевые адаптеры. Некоторые ПК имеют заранее установленный сетевой адаптер. Сетевой адаптер должен быть по скорости совместим с концентратором, к которому ПК подключается. Так, сетевой адаптер Ethernet соответствует концентратору Ethernet, а сетевой адаптер Fast Ethernet -концентратору Fast Ethernet.

Концентратор и коммутатор относятся к разным типам активного сетевого оборудования, которое используется для соединения устройств сети. Они различаются способом передачи в сеть поступающих данных (трафика).

Термин "концентратор" иногда используется для обозначения любого сетевого устройства, которое служит для объединения ПК сети, но на самом деле концентратор - это много портовый повторитель. Устройства подобного типа просто передают (повторяют) всю информацию, которую они получают - то есть все устройства, подключенные к портам концентратора, получают одну и ту же информацию.

Концентраторы используются для расширения сети. Однако чрезмерное увлечение концентраторами может привести к большому количеству ненужного трафика, который поступает на сетевые устройства. Ведь концентраторы передают трафик в сеть, не определяя реальный пункт назначения данных. ПК, которые получают пакеты данных, используют адреса назначения, имеющиеся в каждом пакете, для определения, предназначен ли пакет им или нет. В небольших сетях это не является проблемой, но даже в сетях среднего размера с интенсивным трафиком следует использовать коммутаторы, которые минимизируют количество необязательного трафика [23].

Коммутаторы контролируют сетевой трафик и управляют его движением, анализируя адреса назначения каждого пакета, Коммутатор знает, какие устройства соединены с его портами, и направляет пакеты только на необходимые порты. Это дает возможность одновременно работать с несколькими портами, расширяя тем самым полосу пропускания.

Таким образом, коммутация уменьшает количество лишнего трафика, что происходит в тех случаях, когда одна и та же информация передается всем портам.

Коммутаторы и концентраторы часто используются в одной и той же сети; концентраторы расширяют сеть, увеличивая число портов, а коммутаторы разбивают сеть на небольшие, менее перегруженные сегменты. Однако применение коммутатора оправдано лишь в крупных сетях, т. к, его стоимость на порядок выше стоимости концентратора.

В небольшой сети (до 20 рабочих мест) концентратор или группа концентраторов вполне могут справиться с сетевым трафиком, В этом случае концентратор просто служит для соединения всех пользователей сети.

В сети большего размера (около 50 пользователей) может появиться необходимость использовать коммутаторы для разделения сети на сегменты, чтобы уменьшить количество необязательного трафика.

При формировании сети из нескольких устройств необходимо соблюдать ряд правил, относящихся к:

- числу концентраторов, которые можно соединять друг с другом;

- длине используемого кабеля;

- типу используемого кабеля.

Эти правила аналогичны для Ethernet и Fast Ethernet. Если вы имеете дело с концентраторами, поддерживающими соединения двух типов - Ethernet и Fast

Ethernet, то вы должны использовать Ethernet - или Fast Ethernet-правила в зависимости от типа подключаемого к концентратору оборудования. Если же вы соединяете два концентратора вместе, то должно иметь место Fast Ethernet-соединение.

Когда необходимо подключить к сети больше пользователей, можно просто использовать еще один концентратор, подключив его к существующему оборудованию сети. Концентраторы работают не так, как другое оборудование сети. Они просто передают поступающую к ним информацию на все остальные порты. Существует ограничение на число концентраторов, которые можно соединять вместе, поскольку большое число концентраторов вызывает чувствительность сети к коллизиям.

В сетях Ethernet 10Ваsе-Т максимальное количество расположенных подряд концентраторов не должно превышать четырех.

Проблема может быть решена путем размещения между концентраторами одного коммутатора. Как известно, коммутаторы разделяют сеть на сегменты. В данном случае коммутатор следует расположить так, чтобы между ПК и коммутатором находилось не более двух концентраторов. Именно такая структура соответствует требованиям Ethernet и гарантирует корректную работу сети [10].

Правила для сети Ethernet на витой паре. Максимальное число концентраторов в одной ветви - четыре. Можно использовать кабель на витой паре категорий 3 или 5. Максимальная длина кабельного сегмента — 100 м.

Правила для сети Fast Ethernet на витой паре. Максимальное число концентраторов в одной ветви - два. Для стандарта 100Base-TX необходим кабель на витой паре категории 5, Максимальная длина сегмента кабеля — 100 м. Общая длина кабеля на витой паре, проходящего через непосредственно соединенные концентраторы, не должна превышать 205 м.

Правила для концентраторов Ethernet/Fast Ethernet. Если вы используете концентратор с портами как Ethernet, так и Fast Ethernet, то вам необходимо убедиться в том, что сеть удовлетворяет требованиям как для Ethernet, так и для Fast Ethernet. Любое взаимодействие между устройствами Ethernet и Fast Ethernet, присоединенными к такому концентратору, осуществляется через внутренний коммутатор, так что специальных правил для устройств Ethernet/ Fast Ethernet не существует.

Категории витой пары:

- подходит только для передачи голосовых сообщений на скорости до 4 Мбит/с;

- подходит для передачи голоса и данных на скорости до 4 Мбит/с;

- подходит для передачи голоса и данных на скорости до 16 Мбит/с;

Используется в сетях Ethernet, Token Ring:

- подходит для передачи данных на скорости до 20 Мбит/с;

- улучшенная 3-я категория. Подходит для передачи данных на скорости до 100 Мбит/с. Используется в сетях Fast Ethernet, Token Ring;

- подходит для передачи данных на скорости до 155 Мбит/с. Используется в сетях ATM.

Коаксиальный кабель по своей структуре и виду напоминает обычный телевизионный, но отличается от него волновым сопротивлением. Если телевизионный кабель имеет сопротивление 75 Ом, то кабель для ЛВС-50 Ом (RG-58A, RG-58C, но не RG-59 и не RG-58) [15].

При выборе сетевой карты, нужно обратить внимание на то, с какой шиной — PCI или ISA — она работает. Сейчас большинство сетевых карт предназначено для размещения в PCI-слоты. Поскольку шина PCI более быстродействующая, ее предпочтительно использовать в сетях Fast Ethernet.

Обычно на сетевой карте имеется несколько индикаторов, представляющих собой обычные светодиоды. Индикаторы показывают, в каком режиме работает сетевая карта и передает она в данный момент данные или нет. Чаще всего используется три-четыре индикатора. Перечислим информацию, передаваемую индикаторами:

- исправность сетевого соединения;

- режим работы: полу или полнодуплексный;

- скорость передачи данных 10 или 100 Мбит/с;

- идет передача данных или нет.

Для отображения режима работы и скорости передачи могут использоваться не два индикатора, а один. Например, компания 3Com для демонстрации скорости передачи использует два индикатора, a SMC — один, цвет которого меняется в зависимости от значения скорости — 10 или 100 Мбит/с. Естественно, чем больше у сетевого адаптера индикаторов, тем больше информации о роботе сети у вас имеется [12].

Существует еще ряд характеристик, которые в ряде случаев следует учитывать при выборе сетевых карт. К ним относятся: наличие Boot ROM, то есть возможность загрузки с сетевой карты (а не, например, с винчестера);

- наличие режима Bus master, то есть возможность независимой работы с шиной;

- поддержка удаленного управления и администрирования (например, SNMP). Кроме того, многие производители сетевого оборудования и ПО, разработали программные средства, позволяющие увеличить производительность работы сетевых адаптеров: Dynamic Access 3Com, Adaptive Technology Intel и т. д.

Программные средства обеспечения сетей. После подключения компьютеров к сети необходимо установить на них специальное сетевое программное обеспечение. Существует два подхода к организации сетевого программного обеспечения:

- сети с централизованным управлением;

- одноранговые сети.

При работе большого количества рабочих станций с одним файл-сервером производительность такой сети может оказаться невысокой. Это связано с тем, что на сервере стоит один- два диска и для удовлетворения большого количества запросов потребуются многочисленные перемещения блока головок. Увеличение размера расширенной памяти, установленной на файл-сервере, может в некоторой степени улучшить ситуацию, так как NetWare увеличит размер дискового буфера. Однако такое решение стоит дорого и не всегда может привести к желаемому результату.

Поэтому может возникнуть необходимость установить второй файл-сервер. Сеть с двумя файл-серверами будет работать быстрее, так как теперь будет не только большее количество дисков, но и два дисковых контроллера вместо одного, а также два процессора.

Иногда выгодно полностью разделить сети, снабдив каждую своим отдельным файл-сервером. Для связи отдельных сетей в единую сеть можно использовать так называемые мосты. С помощью моста можно объединить в единое целое даже сети, использующие разные методы доступа, например Ethernet, Arcnet, Token-Ring.

Мосты бывают двух типов:

- внутренние;

- внешние.

Внутренний мост организуется следующим образом. В один файл-сервер вставляется несколько (в версии Novell NetWare 386 до четырех) сетевых адаптеров. К каждому сетевому адаптеру подключается свой сегмент сети. (При объединении сетей с разными методами доступа необходимо для каждого метода установить свой адаптер и загрузить несколько драйверов - для каждого сетевого адаптера свой).

Внешний мост требует для себя отдельного компьютера. Этот компьютер должен иметь несколько сетевых адаптеров (по одному для каждой из объединяемых сетей) и запускаться специальным программным обеспечением моста, входящим в комплект ОS Novell NetWare 386.

Транзакцией называется совокупность трех действий:

- чтение данных;

- обработка данных;

- запись данных.

Применительно к файл-серверу транзакцией можно считать процесс изменения файла на сервере, когда рабочая станция сначала читает файл или его часть, а затем пишет в этот же файл.

В многопользовательской среде, к которой можно отнести локальную сеть, каждый пользователь может независимо от другого модифицировать одни и те же данные, хранящиеся на файл-сервере. Если во время такой модификации произойдет "зависание" сети или аварийное отключение электропитания, изменяемые на сервере файлы могут быть разрушены.

Для повышения надежности OS Novell NetWare 386 содержит специальную систему прослеживания транзакций TTS. Эта система следит за транзакциями и в случае аварии сервера при повторном его запуске ликвидирует все действия, выполненные незавершенной транзакцией. В этом случае произойдет так называемый откат транзакции.

Для исключения ущерба, связанного с возможным повреждением диска, в ответственных случаях используют резервирование дисков. Для резервирования дисков к одному дисковому контроллеру подключают два совершенно одинаковых винчестера и соответствующим образом настраивают OS NetWare 386. После этого вся информация, записываемая на основной диск, будет дублироваться на втором, называемом зеркальным.

В случае повреждения основного диска можно выполнить полное восстановление данных с зеркального при помощи специальной процедуры восстановления.

Дополнительно используется так называемое горячее резервирование дорожек диска (Hot Fix). На диске выделяется область горячего резервирования. Если в процессе работы на диске обнаруживается дефектная дорожка, она динамически заменяется дорожкой из области резервирования.

Резервирование дисков и каналов. При использовании зеркального диска есть вероятность повреждения единых для обоих дисков канала, контроллера и блока питания.

OS NetWare 386 может резервировать целиком каналы, при этом используются два контроллера, к которым соответственно подключены два диска. Для питания этих контроллеров и дисков используются два блока питания.

Восстановление данных с зеркального диска может потребовать, в зависимости от объема диска, времени порядка нескольких часов. Иногда такая задержка в работе сети является совершенно недопустимой.

Относительно недавно фирма Novell разработала сетевую OS NetWare System Fault Tolerance Level III (SFT III) версии 3.11. Эта OS обеспечивает горячее резервирование серверов.

Система NetWare SFT III состоит из двух серверов, соединенных между собой скоростной линией связи, с использованием специальных адаптеров MSL (Mirrored Server Link). Эти адаптеры могут соединяться коаксиальным кабелем длиной до тридцати трех метров или оптоволоконным кабелем длиной до четырех километров.

Выход из строя одного сервера не влечет за собой остановку работы сети - в дело автоматически включается резервный сервер. Благодаря высокоскоростному каналу связи диски резервного сервера содержат те же файлы, что и диски основного, поэтому никакого восстановления данных не требуется. Можно ремонтировать один из двух используемых серверов без остановки всей системы.
1   2   3   4   5   6   7


написать администратору сайта