1) Алгоритм решения задач на построение точек пересечения линии с поверхностью

- 1. Заключаем данную линию во вспомогательную поверхность
- 2. Определяем линию пересечения вспомогательной поверхности с заланной поверхностью
- 3. Отмечаем точки пересечения полученной линии пересечения с заданной 2) Использование вспомогательных сфер с переменным центром при построении линии пересечения поверхностей. (способ экспентрических
- Эксцентрическая сфера –плоскость-посредник.

Область применения:

-общая плоскость симметрии, параллельная одной из плоскостей проекций; -одна из поверхностей является поверхностью вращения, а вторая имеет в сечении окружности, которые можно рассматривать как результат пересечения поверхности со сферой:

(-перпендикуляры, восстановленные из центров круговых сечений должны пересекать ось вращения второй фигуры)

Алгоритм решения задачи:

- Определяется граница линии пересечения поверхностей.
- Между этими двумя границами необходимо построить круговое 2 сечение одной из поверхностей (которая хотя б имеет круговые сечения), которое будет одновременно являться сечением сферы-посредника.
- Необходимо найти центр сферы. Из центра кругового сечения проволиться перпенликуляр к плоскости сечения. Так как центр сферы должен лежать на оси вращения второй поверхности (которая обязательно является поверхностью вращения), то им является точка пересечения перпендикуляра и оси вращения второй поверхности.
- Необходимо построить данную сферу и ее линию пересечения со второй поверхностью которое является окружностью
- Так как две линии пересечения лежат на вспомогательной поверхности сферы, то они пересекаются, так как обе эти линии принадлежат каждой поверхности, то точки пересечения этих линий являются точками пересечения поверхностей.
- Построить множество точек пересечения поверхностей. 3) Алгоритм решения задач на построение линии пересечения

поверхностей, одна из которых является проецирующей. Так как одна из поверхностей является проецирующей, то линия

пересечения поверхностей будет совпадать с линией, в которую проецируется данная поверхность. В этом случае задача сводиться к построению второй проекции этой линии, как линии принадлежащей не проецирующей поверхности: Определить границы линии пересечения.

- Построить вторую проекцию этой линии, как линии принадлежащей не проецирующей поверхности.

4) Честные случаи пересечения поверхностей 2-го порядка. Теорема Монжа

с. 38 тетради с лекциями

Теорема Монжа:

Если две поверхности 2-го порядка описаны (вписаны) около (в) третей поверхности 2-го порядка, то линия их пересечения разбивается на две плоские кривые, плоскости которых проходят через прямую, соединяющую точки касания этих поверхностей.

5) Использование вспомогательных плоскостей при построении линии пересечения поверхностей. Область применения.

Вспомогательные секущие плоскости чаще всего являются плоскостями частного положения

Область применения:

-сечение поверхностей в секущей плоскости должно быть окружностью или прямой.

Алгоритм решения:

- Определить границы линии пересечения. 1.
- Определить положение секущей плоскости, в которой сечение поверхностей будет либо окружностью, либо прямой.
- Пересечение линий, получившихся в сечении будет являться точкой пересечения поверхностей.
- Построить множество точек пересечения

6) Использование вспомогательных сфер с постоянным центром при построении линии пересечения поверхностей. Область применения.

Область применения: -обе поверхности являются поверхностями вращения;

-оси поверхностей пересекаются.

Алгоритм решения:

- Определить границы линии пересечения.
- 2 В пределах этих границ построить сферу.
- Построить точки пересечения вспомогательной сферы с поверхностями. Так как это поверхности вращения и центр сферы лежит на оси вращения, то линия пересечение окружность.
- Построить множество точек пересечения поверхностей.

7) Касательная плоскость и нормаль к поверхности. Определения. Алгоритм построения.

Плоскость, касательная к поверхности в заданной на поверхности точке, есть множество всех прямых — касательных, проведенных к поверхности чепез заланную точку

Нормаль к поверхности – это перпендикуляр к касательной плоскости в точке касания.

Алгоритм построения касательной плоскости:

- Выбираются две линии, проходящие через заданную точку касания и принадлежащих поверхности
- К найденным линиям в точке касания строятся касательные.
- Две построенные касательные задают плоскость касания. 3 Нормаль строится как перпендикуляр к касательной плоскости в точке касания.

8) Алгоритм решения задач на построение линии пересечения поверхностей.

Алгоритм решения:

- 1 Задать вспомогательную поверхность.
- 2 Найти линии пересечения этой поверхности с данными поверхностями
- Точки пересечения линий пересечения поверхностей со вспомогательной поверхностью есть точки пересечения поверхностей
- Построить множество точек пересечения поверхностей.