САМОСТОЯТЕЛЬНАЯ РАБОТА 2

ТЕМА: РАСЧЁТ КРИТЕРИЕВ НАДЁЖНОСТИ ДЛЯ ПОСЛЕДОВАТЕЛЬНО СОЕДИНЁННЫХ ЭЛЕМЕНТОВ

Цель работы – решение задач по теме.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Соединение элементов называется последовательным, если отказ, хотя бы одного элемента приводит к отказу всей системы. Система последовательно соединённых элементов работоспособна тогда, когда работоспособны все её элементы.

Рис. 1 Последовательное соединение элементов в системе

Вероятность безотказной работы системы за время t равна произведению вероятностей безотказной работы за время t элементов системы:

$$p_N(t) = \prod_{i=1}^N p_i(t).$$

При последовательном соединении элементов их *интенсивность отказов* складывается, и интенсивность отказов системы есть сумма интенсивностей отказов элементов системы:

$$\lambda_c(t) = \lambda_1(t) + \lambda_2(t) + \dots \lambda_n(t) = \sum_{i=1}^n \lambda_i(t)$$

Среднее время безотказной работы системы. Имеем

$$T_{cp} = \frac{1}{\lambda_c} = \frac{1}{\sum_{i=1}^n \lambda_i};$$

Вероятность восстановления S(t) — вероятность того, что отказавшее изделие будет восстановлено в течении заданного времени t.

$$S(t) = \frac{N_B}{N_{OB}},$$

где N_B — число изделий, время восстановления которых было меньше заданного времени t;

 N_{OB} – число изделий, поставленных на восстановление.

Частома отказов a(t) — это отношение числа отказавших образцов системы в единицу времени к числу образцов, первоначально установленных на испытание при условии, что отказавшие образцы не восстанавливаются и не заменяются исправными.

$$a(t) = \frac{n(t)}{N \cdot \Delta t},$$

$$a(t) = \lambda(t) \cdot P(t).$$

Средняя наработка на отказ t_{cp} – среднее значение времени между соседними отказами, при условии восстановления каждого отказавшего элемента:

$$t_{cp} = \frac{\sum_{i=1}^{r} t_i}{r},$$

где t_i – время исправной работы системы между (i-1)-м и i –м отказами;

r – число отказов системы за время t.

Данная формула справедлива лишь по испытаниям одного образца системы.

В случае испытаний нескольких образцов:

$$t_{cp} = \frac{\sum_{i=1}^{N} t_{cpi}}{r},$$

где t_{cpi} – среднее время между соседними отказами i – го образца;

N – число образцов.

Задача 1. Имеется система из трёх последовательно соединённых элементов с вероятностями безотказной работы за период времени 1000 часов соответственно:

 $P_1(1000) = 0.7$; $P_2(1000) = 0.82$; $P_3(1000) = 0.8$. Определить вероятность безотказной работы системы за 1000 часов.

Задача 2. Имеется система из трёх последовательно соединённых элементов. Каждый элемент имеет экспоненциальное распределение времени безотказной работы с параметрами интенсивностей отказов соответственно: $\lambda_1 = 0.06 \, \, \mathrm{q}^{-1}; \; \lambda_2 = 0.03 \, \, \, \, \mathrm{q}^{-1}; \; \lambda_3 = 0.12 \, \, \, \, \, \, \, \, \mathrm{q}^{-1}; \; t = 0.6 \, \, \, \, \, \mathrm{q}$. Определить вероятность отказов системы.

Задача 3. Поставлено 150 систем на восстановление, из них только 60 систем восстановилось менее чем за 20 часов, а время восстановления остальных систем составило больше 20 часов. Определите вероятность того, что восстановление систем не произойдёт за 20 часов.

Задача 4. Вероятность безотказной работы системы за 200 часов составляет 0,94. Интенсивность отказа составляет $\lambda(200) = 0,29 \cdot 10^{-3} \text{ ч}^{-1}$. Определите частоту отказов системы за 200 часов.

Задача 5. Вероятность безотказной работы системы за 250 часов составляет 0,96. Интенсивность отказа составляет $\lambda(250) = 0,25 \cdot 10^{-3} \text{ ч}^{-1}$. Определите частоту отказа системы за 250 часов.

Задача 6. В результате эксплуатации 36 образцов системы было зафиксировано 231 неисправностей. При этом каждый из испытываемых образцов исправно проработал 19 часов. Необходимо определить время между соседними отказами.

Задача 7. Определите общую интенсивность отказов, если первая группа однотипных по надёжности элементов состоит из 5 элементов с интенсивностью отказов λ_1 (t) = $0.4\cdot10^{-3}$ ч⁻¹, вторая группа состоит из 3 элементов с интенсивностью отказов λ_2 (t) = $0.6\cdot10^{-3}$ ч⁻¹, а 3 группа состоит из 4 элементов с интенсивностью отказов λ_3 (t) = $0.2\cdot10^{-3}$ ч⁻¹.

Задача 8. Частота отказов системы $a(400) = 0.25 \cdot 10^{-4} \text{ ч}^{-1}$. Система состоит из 100 элементов. Определить сколько элементов откажет за 400 часов.