Теплоёмкость газов

Теплоемкость - количество тепла, которое необходимо сообщить телу (газу), чтобы повысить температуру какой-либо количественной единицы его на 1 °C.

Удельная массовая теплоемкость:

$$c = \frac{c_{\mu}}{\mu}$$
 , $\left[\frac{\kappa \Delta \pi}{\kappa \Gamma \cdot \kappa}\right]$

$$\left[rac{\kappa \mathcal{L} \pi}{\kappa \Gamma \cdot K}
ight]$$

$$c' = c \cdot \rho$$

Удельная объемная теплоемкость:

$$c' = \frac{c_{\mu}}{22,4}$$
, $\left[\frac{\mathrm{K} \mathrm{/\!/} \mathrm{K}}{\mathrm{H} \mathrm{M}^3 \cdot \mathrm{K}}\right]$ repa: $c_p - c_v = R$

$$\left[\frac{\kappa Д ж}{_{HM}^3 \cdot K}\right]$$

Уравнение Майера:

$$c_{v}-c_{v}=R$$

Показатель адиабаты: $k = \frac{c_p}{c_n}$

$$\boldsymbol{k} = \frac{c_p}{c_v}$$

Теплоемкость смеси газов:
$$c_{p_{\text{CM}}} = g_1 \cdot c_{p1} + g_2 \cdot c_{p2} + \cdots$$

$$c_{v_{\text{CM}}} = g_1 \cdot c_{v1} + g_2 \cdot c_{v2} + \cdots$$

Среднее значения теплоемкости

в диапазоне температур от
$$t_1$$
 до t_2

$$c_{cp}\Big|_{t_1}^{t_2} = \frac{c_{cp}\Big|_0^{t_2}}{t_2 - c_{cp}\Big|_0^{t_1}} \frac{t_1}{t_1}$$

- **1.** Определить удельные массовые, мольные, объемные (на нормальный м³) изохорные и изобарные теплоемкости кислорода O_2 (32 кг/кмоль), считая его идеальным газом **с "жесткими" молекулами**.
- **2.** Найти среднюю теплоемкость $c_{p(cp)}$ и $c'_{p(cp)}$ углекислого газа в пределах от 400 до 1000 °C, считая зависимость теплоемкости от температуры криволинейной.

t, ⁰ C	O ₂	N_2	H_2	СО	CO ₂	H ₂ O	Воздух
0	0,915	1,039	14,195	1,040	0,815	1,859	1,004
100	0,934	1,043	14,564	1,045	0,913	1.892	1,012
200	0,963	1,053	14,620	1,058	0,993	1,942	1,026
300	0,994	1,069	14,649	1.080	1,057	2,002	1,046
400	1,024	1,092	14,684	1,106	1,110	2,066	1,070
500	1,048	1,116	14,779	1,132	1,155	2,134	1,094
600	1,069	1,140	14,896	1,157	1,192	2,203	1,116
700	1,088	1,162	15,049	1,179	1,223	2,275	1,137
800	1,100	1,182	15,236	1,199	1,249	2, 347	1,157
900	1,112	1,199	15,434	1,216	1,272	2,417	1,172
1000	1,122	1,216	15,642	1,231	1,290	2,485	1,186
1100	1,132	1,229	15,861	1,244	1.306	2,548	1,199
1200	1,140	1,242	16,077	1,255	1,320	2,606	1,210

- **3.** Найти количество тепла, необходимое для нагрева 1 нм³ воздуха от 300 до 1100 °C при p = const, считая зависимость теплоемкости от температуры криволинейной.
- **4.** Найти количество тепла, необходимое для нагрева 1 нм³ смеси газов от 100 до 1200 °C при p= const, если состав смеси по объему следующий: $CO_2=13,5$ %; $O_2=7,5$ %; $N_2=79,0$ %.

t, ⁰ C	O ₂	N ₂	H ₂	со	CO ₂	H ₂ O	Воздух
0	0,915	1,039	14,195	1,040	0,815	1,859	1,004
100	0,934	1,043	14,564	1,045	0,913	1.892	1,012
200	0,963	1,053	14,620	1,058	0,993	1,942	1,026
300	0,994	1,069	14,649	1.080	1,057	2,002	1,046
400	1,024	1,092	14,684	1,106	1,110	2,066	1,070
500	1,048	1,116	14,779	1,132	1,155	2,134	1,094
600	1,069	1,140	14,896	1,157	1,192	2,203	1,116
700	1,088	1,162	15,049	1,179	1,223	2,275	1,137
800	1,100	1,182	15,236	1,199	1,249	2, 347	1,157
900	1,112	1,199	15,434	1,216	1,272	2,417	1,172
1000	1,122	1,216	15,642	1,231	1,290	2,485	1,186
1100	1,132	1,229	15,861	1,244	1.306	2,548	1,199
1200	1,140	1,242	16,077	1,255	1,320	2,606	1,210

Формулы для расчёта термодинамических процессов

Процесс	Соотношение между параметрами	Работа, Дж/кг	Теплота, Дж/кг; теп- лоёмкость, Дж/кг	Изменение энтропии, Дж/(кг·К)
V = const	$P_1T_2 = P_2T_1$	<i>l</i> = 0	$q = C_{\nu}(T_2 - T_1); C = C_{\nu}$	$\Delta S = C_{\nu} \ln \frac{T_2}{T_1}$
Изобарический $P = const$	$V_1 T_2 = V_2 T_1$	$l = P(V_2 - V_1)$	$q = C_p(T_2 - T_1) = h_2 - h_1;$ $C = C_p$	$\Delta S = C_p \ln \frac{T_2}{T_1}$
Изотермический PV = const	$P_1V_1 = P_2V_2$	$l = RT \ln \frac{P_1}{P_2}$	$q = l \cdot C = \pm \infty$	$\Delta S = R \ln \frac{P_1}{P_2} = R \ln \frac{V_2}{V_1}$
Адиабатический $PV^K = const$	$P_1V_1^K = P_2V_2^K$ $T_1V_1^{K-1} = T_2V_2^{K-1}$	$l = \frac{R}{K-1}(T_1 - T_2)$	q = 0; C = 0	$\Delta S = 0$
Политропический $PV'' = const$	$P_{1}V_{1}^{n} = P_{2}V_{2}^{n}$ $T_{1}V_{1}^{n-1} = T_{2}V_{2}^{n-1}$ $T_{1}P_{2}^{\frac{n-1}{n}} = T_{2}P_{1}^{\frac{n-1}{n}}$	$l = \frac{R}{n-1}(T_1 - T_2)$	$q = C_{\nu} \frac{n - \kappa}{n - 1} (T_2 - T_1)$ $C_n = C_{\nu} \frac{n - \kappa}{n - 1}$	$\Delta S = C_v \frac{n - \kappa}{n - 1} ln \frac{T_2}{T_1}$