
Ген и генетический код

Ген - участок молекулы ДНК, кодирующий последовательность аминокислот для синтеза одного белка. Генетическая информация в ДНК реализуется с помощью процессов транскрипции и трансляции, изученных нами ранее.

В одной молекуле ДНК зашифрованы сотни тысяч различных белков. Все наши соматические клетки имеют одну и ту же молекулу ДНК. Задумайтесь: почему же в таком случае клетки кожи отличаются от клеток печени, миоцитов, клеток эпителия рта - ведь ДНК везде одинакова!

Это происходит потому, что в разных клетках одни гены "выключены", а другие "активны": транскрипция идет только с активных генов. Именно из-за этого наши клетки отличаются по строению, функции и форме.

Транскрипция – это переписывание информации с ДНК на иРНК (информационную РНК). иРНК переносит информацию из ядра в цитоплазму, к месту синтеза белка (к рибосоме).

Трансляция – это процесс биосинтеза белка. Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома пептидной связью соединяет между собой аминокислоты, принесенные тРНК, получается белок.

Реакции транскрипции, трансляции, а так же репликации (удвоения ДНК) являются реакциями **матричного синтеза**. ДНК служит матрицей для синтеза иРНК, иРНК служит матрицей для синтеза белка.

Способ кодирования последовательности аминокислот в белке с помощью геновуниверсальный способ для всех живых организмов, доказывающий единство их происхождения. Выделяют следующие свойства генетического кода:

I. Триплетность

Каждой аминокислоте соответствует 3 нуклеотида (триплет ДНК, кодон иРНК). Существует 64 кодона, из которых 3 являются нонсенс кодонами (стоп-кодонами)

II. Непрерывность (компактность)

Информация считывается непрерывно - внутри гена нет знаков препинания: так как ген кодирует один белок, то было бы нецелесообразно разделять его на части. Стоп-кодоны - "знаки препинания" - есть между генами, которые кодируют разные белки.

Ш. Неперекрываемость

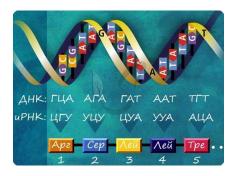
Один и тот же нуклеотид не может принадлежать 2,3 и более триплетам ДНК/кодонам иРНК. Он входит в состав только одного триплета.

IV. Специфичность (однозначность)

Один кодон соответствует строго одной аминокислоте и никакой другой более соответствовать не может.

У. Избыточность (вырожденность)

Одна аминокислота может кодироваться несколькими кодонами (при этом одну а/к кодируют 3 нуклеотида.)


Генетический код (иРНК)									
Первое основание		Третье основание							
	У	Ц	A	Γ					
У	Фен	Cep	Тир	Цис	У				
	Фен	Cep	Тир	Цис	Ц				
	Лей	Cep	_	_	A				
	Лей	Сер	4-11	Три	Γ				
ц	Лей	Про	Гис	Арг	У				
	Лей	Про	Гис	Арг	Ц				
	Лей	Про	Глн	Арг	A				
	Лей	Про	Глн	Арг	Γ				
A	Иле	Tpe	Асн	Cep	У				
	Иле	Tpe	Асн	Cep	Ц				
	Иле	Tpe	Лиз	Арг	A				
	Мет	Tpe	Лиз	Арг	Γ				
Г	Вал	Ала	Асп	Гли	У				
	Вал	Ала	Асп	Гли	Ц				
	Вал	Ала	Глу	Гли	A				
	Вал	Ала	Глу	Гли	Г				

УІ. Коллинеарность (лат. **CON** — вместе и **LINEA** — линия)

Соответствие линейной последовательности кодонов иРНК последовательности аминокислот в молекуле белка.

УП. Однонаправленность

Кодоны считываются строго в одном направлении от первого к последующим. Считывание происходит в процессе трансляции.



УШ. Универсальность

Генетический код един для всех живых организмов, что свидетельствует о единстве происхождения всего живого.

ПРИНЦИП КОМПЛЕМЕНТАРНОСТИ

2 цепи ДНК комплементарны друг другу, ДНК комплементарна иРНК, иРНК комплементарна тРНК по следующему принципу:

Свойства генетического кода

- 1) Триплетность 1 аминокислоту кодируют 3 нуклеотида
- 2) Универсальность един для всех живых существ на Земле
- 3) Специфичность (однозначность) 1 триплет кодирует только 1 аминокислоту
- 4) Вырожденность (избыточность) 1 аминокислота может быть кодирована несколькими триплетами
- 5) Неперекрываемость один и тот же нуклеотид не может входить одновременно в 2 триплета
- 6) Непрерывность между триплетами нет «пробелов»
 - А, Г, Ц или любая другая одна буква это нуклеотид.
 - ◆ АТТ, ГЦЦ или другие три буквы вместе это триплет.
 - Если триплет находится на иРНК, то он называется кодон.
 - ◆ Если триплет находится на тРНК, то он называется антикодон.

ФОРМУЛЛ ПОДСЧЁТЛ

×3 нуклеотида=1триплету(кодону)=1 аминокислоте=1 тРНК

Например: 60 нуклеотидов — это 20 триплетов, которые кодирует 20 аминокислот, которых транспортируют 20 тРНК.

ПРАВИЛО ЧАРГАФФА

 Количество нуклеотидов с Т(У) равно количеству нуклеотидов с А, а количество нуклеотидов с Ц равно количеству нуклеотидов с Г.

Например: нужно найти Γ , если T=15%. По правилу, A тоже 15, а в сумме их 30. Сумма всех 4х нуклеотидов всегда 100%, следовательно, сумма $\Gamma+U=100-30=70\%$, а так как они равны друг другу, то каждого из них 70/2=35%.

СХЕМА РЕШЕНИЯ 50% 27 ЗАДАНИЙ.

Пример классической задачи: Решение:

По принципу комплементарности А=Т(У), Г=Ц.

ДНК: ТАЦ.ТТТ.ГЦЦ.ЦАА **иРНК:** <u>АУГ.ААА.ЦГГ.ГУУ</u> **тРНК:** УАЦ.УУУ.ГЦЦ.ЦАА

Аминокислоты: Мет-Лиз-Арг-Вал

• Записываем всегда ДНК, иРНК, тРНК, аминокислоты ТОЛЬКО в такой последовательности!!!! Друг под другог Записываем напротив нужной нуклеиновой кислоты, приведённой в задаче!!!!(например, в этой задаче это тРНК) последовательность нуклеотидов. А все остальные нуклеиновые кислоты ищем по принципу комплементарности. иРНК всегда подчёркиваем, чтобы не забыть о том, что аминокислоты ищутся именно по ней!!! ВСЕГДА!!!!

В биосинтеле полипентида участвуют молекулы тРНК с антиколонами УАЦ, УУУ, ГЦЦ, ЦАА в данной последовательносты. Определите соответствующую последовательность иуклеотидов на иРНК, ДНК и последовательность аминокислот во фрагменте молекулы белка, используя таблину генстического кода.

Первое основащие		Третье основание			
	У.	ц	A	E	
	Фен	Cep	Тир	Hue	У
У	Фен	Cep	Тир	Unc	Ц
,	Лей	Cep	-		Λ
	Jieli	Cep	-	Tpu	Г
	Лей	Про	Гио	Арг	У
	Jieli	Hpo	Гис	Apr	ц
. u	Лей	Про	Глн	Арг	A
	Лей	Про	Глн	Apr	г
	Иле	Tpe	Лен	Сер	У
A	Иле	Tpe	Асн	Cep	11
,A.	Иле	Tpe	Лиа	Apr	A
	Мет	Tpc	Лиз	Арг	г
	Ban	Ала	Acn	Can	У
r	Bau	Ала	Асп	Гли	Ц
	Ban	Ала	Гау	Гли	A
	Вал	Ала	Гау	Ган	Г

Правила пользования таблицей

Первый нуклютид в тришлете берется из левого вертикального ряда, в торой — из верхнего горизонтального ряда, и третий — из правого вертикального. Там, гле пересекутся линии, илушие от всех трёх нуклютидов, и находится искомая аминовислота.

- Не забываем, что в любых РНК НЕТ! тимина.
- Вторую цепь ДНК нужно искать ТОЛЬКО, если об этом просят в задаче. Пример:

В биосинтезе фрагмента молекулы белка участвовали последовательно молекулы тРНК с антикодонами ААГ, ААУ, ГГА, УАА, ЦАА. Определите аминокислотную последовательность синтезируемого фрагмента молекулы белка и нуклеотидную последовательность участка двухцепочечной молекулы ДНК, в которой закодирована информация о первичной структуре фрагмента белка. Объясните последовательность ваших действий. Для решения задачи используйте таблицу генетического кода.

Генетический кол (пРНК)

Тогда последовательность такая (просто добавляем ещё одну ДНК):

ДНК1: ДНК2: иРНК: тРНК:

аминокислоты:

ИСКЛЮЧЕНИЕ ИЗ ПРАВИЛА!!

Если задача начинается со слов: известно, что все виды РНК, синтезируются на ДНК матрице..., то мы

просто меняем иРНК и тРНК местами!!!

Пример задачи:

Решение.

ДНК: АЦГ.ГТА.АТТ.ГЦТ.АТЦ тРНК:УГЦ.ЦАУ<u>.УАА</u>.ЦГА.УАГ

иРНК: АУУ аминокислота: -Иле-

- В задании не сказано, что нужно искать иРНК. Мы находим только кодон на иРНК, так как без него мы не сможем узнать, какую аминокислоту переносит тРНК.
- Я не знаю, будут ли снижать балл, если найти иРНК полностью и все аминокислоты вместо одной. Но я бы снижала, так как такое решение показывает, что ученик не понимает в чём суть вопроса, а решает по шаблону.

Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: АЦГТТААТТГЦТАТЦ. Установите пуклеотишую последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодому тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

Генетический код (иРНК) Первое Третье Второе основание основание основание Ц Фен Cep Тир Пис H Феп Cep Tup Пис У Лей Cep A Три Лей Cep Лей Про Гис Apr Лей Про Гис Арг Ц ш Лей Про Гли Apr Лей Глн Про Арг Иле Асн Tpe Cep Иле Tpe Acu Сер ш Иле Tpe Лиз Арг A Мет Tpe Лиз Apr Bas Али Acri Гли Ц Вал Гли Ала Acn Γ Ала Глу Гли Ала Глу Гли

Правила пользования таблицей

Первый нуклеотид в триплете берётся из левого вертикального ряда, второй — из верхнего горизонтального ряда и третий — из правого вертикального. Там, где пересекутся линии, идущие от всех трёх нуклеотидов, и находится искомая аминокислота.

Фотосинтез –