Главная страница

права человека. Евдокс. Евдокс Книдский


Скачать 71.55 Kb.
НазваниеЕвдокс Книдский
Анкорправа человека
Дата14.03.2020
Размер71.55 Kb.
Формат файлаdocx
Имя файлаЕвдокс.docx
ТипДокументы
#112016
страница2 из 2
1   2

Луна[править | править код]

Модель движения Луны примерно совпадает с моделью движения Солнца: оно также описывалось тремя сферами. Однако в данном случае вторая сфера (моделировавшая отклонение Луны к северу и югу от эклиптики) действительно необходима, поскольку траектория движения Луны наклонена на 5 градусов по отношению к эклиптике, причём линия пересечения эклиптики и плоскости лунной траектории Луны перемещается, делая полный оборот за 18 лет 7 месяцев. Если период оборота второй сферы в лунной теории Евдокса был равен этой величине, то путь Луны по небу получает удовлетворительное геометрическое описание. Однако неравномерность движения Луны среди звёзд при этом учесть невозможно.

Планеты[править | править код]

Движение пяти известных в древности планет Евдокс описал с помощью четырёх сфер: внешняя (период обращения одни сутки) описывает суточное движение планеты, вторая (период обращения равен сидерическому периоду планеты) описывает движение планеты по зодиаку, и в неё были последовательно вложены ещё две сферы, отвечавшие за попятные движения планеты (рис. 2). По Симпликию, третья и четвёртая сферы вращаются навстречу друг другу с одинаковыми периодами, равными синодическому периоду планеты; ось третьей сферы лежит на экваторе второй (то есть на эклиптике); ось четвёртой сферы наклонена по отношению к третьей; сочетание движений по этим сферам приводит к тому, что траектория планеты оказывается похожей на восьмёрку. Эту кривую Евдокс назвал гиппопедой, поскольку по форме она схожа с лошадиными путами. Симпликий приводит также некоторые численные параметры. По этим данным с определённостью восстановить планетную теорию Евдокса невозможно. Описание Аристотеля ещё менее подробно. Выдающейся заслугой Скиапарелли была реконструкция этой теории.



Рис. 3. Третья (наружная) и четвёртая (внутренняя) сферы в планетной теории Евдокса согласно реконструкции Скиапарелли (а) и Веселовского-Яветца (б). Угловые скорости приведены относительно второй сферы (для третьей сферы) и относительно третьей сферы (для четвёртой сферы). T — Земля

В реконструкции Скиапарелли предполагается, что планета находится на экваторе четвёртой сферы (о чем не говорится ни у Симпликия, ни у Аристотеля). Кроме того, слова Симпликия о равенстве периодов обращений этих двух сфер интерпретируется таким образом, что равны друг другу период (и, соответственно, угловая скорость) обращения третьей сферы относительно второй и четвёртой относительно третьей (рис. 3,а). Таким образом, если бы оси вращения этих сфер совпадали, то относительно внешнего наблюдателя планета была бы неподвижной. Скиапарелли показал, что сложение равномерных вращений, обладающих такими свойствами, действительно приводит к восьмеркообразной траектории, вид которой совпадает с описанием гиппопеды (рис. 4,а)[1].



Рис. 4. Гиппопеда согласно реконструкции Скиапарелли (а) и Веселовского-Яветца (б). Числа обозначают положение планеты в последовательные моменты времени

Поскольку ось третьей сферы располагается в плоскости эклиптики (на экваторе второй), то для получения траектории планеты среди звёзд необходимо представить себе, что гиппопеда перемещается вдоль своей длины (влево в горизонтальном направлении на рис. 4,а). При этом между точками 1 и 7 имеет место прямое движение планеты, в районе точки 7 планета поворачивает, совершает попятное движение вплоть до точки 12, затем вновь поворачивает и снова совершает прямое движение. При этом планета пересекает плоскость эклиптики трижды (когда она находится в точках гиппопеды 6, 9 и 12). В этом кроется существенный недостаток теории Евдокса (в реконструкции Скиапарелли), поскольку во время попятного движения планета либо не пересекает эклиптику вовсе (если планета описывает петлю), либо пересекает лишь один раз (если она описывает зигзаг). Но самая большая проблема этой теории — то, что она вообще не может воспроизвести попятные движения некоторых планет, а именно, Марса и Венеры[2].

Альтернативную реконструкцию планетной теории Евдокса предложили советский историк науки Иван Николаевич Веселовский и израильский учёный Идо Яветц[3]. В этой реконструкции предполагается, что угол между планетой и полюсом третьей сферы равен углу между полюсами третьей и четвёртой сфер, то есть планета не находится на экваторе четвёртой сферы, как в модели Скиапарелли (рис. 3,б). Второе отличие от традиционной интерпретации заключается в трактовке свидетельства Симпликия о равенстве периодов обращений сфер: предполагается, что имелись в виду периоды вращения и третьей, и четвёртой сфер относительно второй. Это возможно только в том случае, если угловая скорость вращения третьей сферы относительно четвёртой в два раза превышает угловую скорость четвёртой сферы относительно третьей (то есть при совпадении осей вращения этих сфер планета двигалась бы по кругу). В реконструкции Веселовского—Яветца комбинация движений по третьей и четвёртой сферам приводит к восьмеркообразной траектории, но её ветви не пересекаются в центре, а касаются (рис. 4,б). Существуют некоторые косвенные доводы в пользу версии Скиапарелли[4]. Возможно, только обнаружение новых документов поможет окончательно прояснить этот вопрос.

В любом случае, для моделирования небесных движений Евдоксу в общей сложности понадобилось 27 сфер: одна для неподвижных звёзд, по три для Солнца и Луны, по четыре для пяти планет.

Каллипп
1   2


написать администратору сайта