Главная страница

Выбор устьевого оборудования при эксплуатации скважин механическим способом. Курсовая работа Торопов. Курсовой проект по мдк. 01. 01 Технология бурения нефтяных и газовых скважин


Скачать 433.27 Kb.
НазваниеКурсовой проект по мдк. 01. 01 Технология бурения нефтяных и газовых скважин
АнкорВыбор устьевого оборудования при эксплуатации скважин механическим способом
Дата21.01.2023
Размер433.27 Kb.
Формат файлаdocx
Имя файлаКурсовая работа Торопов.docx
ТипКурсовой проект
#897746
страница3 из 3
1   2   3


где а - коэффициент подачи насоса, находится в пределах 0,7-0,8, принимаем а = 0,75;

Fпл - площадь сечения плунжера, определяется по формуле:
Fпл =п*d2/4(3.5)Fпл = 3.14*0,0322/4 = 0,000804 м2

n = 13
. Определяем максимальную нагрузку на головку балансира:
Рмак = Рж + Рш*(в + м)(3.6)
где Рж - вес столба жидкости в НКТ,
рж = Fпл*L*Рсм*g(3.7)

Рж = 0,000804*1080*937*9,81 = 7982 Н
Рш - вес колонны насосных штанг,
Рш = q19*L (3.8)

Рш = 23,0535*1080 = 24900 Н
в - коэффициент потери веса штанг в жидкости,
в = Рш - Рсм Рш (3.9)
где рш - вес материала штанг, рш = 7850 кг/м,


в = 0,88
м - коэффициент динамичности,
S* n2

м = --- = (3.10)

1440

м = 0,25

Рмак = 7982 + 24900*(0,88 + 0,25) = 36119 Н
Сравниваем полученное значение с допустимым для данного СК, так как 40 > 36,2, то данный СК нас устраивает.

. Определяем максимальный крутящий момент:
Мкр.мак = 300*S + 0,236*S*(Рмак - Рмин)(3.11)
Где рмин - минимальная нагрузка на головку балансира, определяем ее по формуле Милса:
Рмин= Pш* 1-(3.12)

Р =24900 * 1- = 19963Н

Мкр.мак = 300*2,1 + 0,236*2,1*(36119- 19963) = 8640 Н*м
. Сравниваем полученное значение с допустимым значением для данного СК, так как 16 > 8,64, то данный СК нас устраивает. Ю.

Определяем необходимую мощность электродвигателя СК:
N =0,401*10-4*p*d2*S*n*pсм*L*Kу* +а (3.13)
где Ку - коэффициент уравновешенности, для балансирных СК

Ку=1,2;
N = 0,401*10-4*3.14*0,0322*2,1*13*937*1080*1,2*{ +0.75}= 4,9кВт
По таблице выбираем стандартный электродвигатель АОП-52-4 мощностью 7 кВт, число оборотов в минуту 1440, к.п.д. 86%.

. Рассчитываем напряжения в штангах. Обоснование конструкции штанговой колонны - наиболее ответственный этап проектирования установки, так как штанговая колонна - это тот элемент системы, который, в первую очередь, определяет длительность и безотказность работы установки в целом.

При нормальной работе насосной установки наибольшие напряжения действуют в точке подвеса штанг. Поэтому расчет ведем для штанг диаметром 19 мм.

.1 Определяем максимальное напряжение цикла:
мак

Рмак/fшт (3.14)
где fшт - площадь поперечного сечения штанг в точке подвеса, м2. Так как наибольшие нагрузки приходятся в верхней части колонны, берем диаметр верхней секции штанг.
fшт = 3,14*0,0192/4 = 2,83*10-4 м2 мак = 36119/2,83* Ю-4 = 127,6* 106 Па

= 127,6 МПа
.2 Определяем минимальное напряжение цикла:
мин = Рмин/fшт (3.15)

мин = 19963/2,83* 10-4 = 70,6*106Па = 70,6 МПа
.3 Определяем амплитудное напряжение цикла:
а = (мак - мин)/2 (3.16)

аа = (127,6 - 70,6)72 = 28,5 МПа
.4 Определяем приведенное напряжение цикла: пр = (3.17)
пр = 60,ЗМПа
Так как допускаемое приведенное напряжение для принятой колонны штанг [омак] = 70 МПа, а расчетное пр = 60,3 МПа, то данная колонна штанг выбрана правильно.

.6 Характеристика работы насосных штанг
Насосные штанги служат соединительным звеном между наземным индивидуальным приводом станка-качалки и скважинным насосом. К штангам предъявляют повышенные требования, так как в процессе работы они испытывают значительные нагрузки, изменяющиеся в широких пределах в течение каждого хода станка-качалки.

Насосные штанги изготовляют из сталей разных марок, которые для придания равнопрочности подвергают термической обработке (нормализации) и обработке токами высокой частоты (ТВЧ).

Насосные штанги (табл. 3.1) применяют в виде колонн, составленных из отдельных, соединенных посредством муфт, штанг.

Таблица 3.1

Штанга

Номинальный диаметр

Размеры квадратной части




штанги

Резьбы штанги

головки

Штанги




(по телу)

(наружный)







ШН 16

16

23,824

35

22

ШН 19

19

26,999

35

27

ШН 22

22

30,17

35

27

ШН 25

25

34,936

42

32


Штанговые муфты выпускают следующих типов:

соединительные МШ - для соединения штанг одинаковых размеров;

переводные МТТТП - для соединения штанг разных размеров.

Муфты каждого типа изготовляют в исполнении 1-е "лысками" под ключ и в исполнении II - без "лысок".

Муфты в основном изготовляют из углеродистой стали марок 40 и 45. Предусматривается также изготовление муфт из легированной стали марки 20Н2М для эксплуатации в тяжелых условиях. Муфты, как правило, подвергают поверхностной термообработке ТВЧ.

Штанги поставляют с плотно навинченными на один конец муфтами. Открытая резьба штанги и муфты предохраняется колпачками или пробками.

Каждую штангу маркируют на двух противоположных сторонах каждого квадрата. На одну сторону квадрата наносят товарный знак или условное обозначение предприятия-изготовителя и условный номер плавки. На другой стороне квадрата проставляют марку стали, год выпуска, квартал и технологическую маркировку предприятия изготовителя. Штангу, подвергнутую обработке ТВЧ, маркируют на третьей стороне каждого квадрата буквой "Т".

Основные параметры, используемые при выборе колонны насосных штанг для обычных условий, - это максимальная нагрузка на штанги и ее возможные колебания. Для быстрого и правильного подбора штанговых колонн следует пользоваться таблицами и специальными номограммами.

Для обеспечения наибольшего срока службы насосных штанг требуются тщательное наблюдение за каждым комплектом штанг, спускаемых в скважину, и своевременная отбраковка негодных.

Насосные штанги и муфты к ним выпускают:

для легких условий работы - из стали марки 40, нормализованные;

для средних и среднетяжелых условий работы - из стали марки 20Н2М, нормализованные;

для тяжелых условий работы - из стали марки 40, нормализованные с последующим поверхностным упрочнением тела штанги по всей длине ТВЧ и из стали ЗОХМА, нормализованные с последующим высоким отпуском и упрочнением тела штанги по всей длине ТВЧ;

для особо тяжелых условий работы - из стали марки 20Н2М, нормализованные с последующим упрочнением тела штанги ТВЧ. Данные о механических свойствах материалов штанг приведены в таблице 2.9

ГОСТ предусматривает изготовление штанг диаметром 12; 16; 19; 22 и 25 мм длиной 8 м. Допускается выпуск штанг длиной 7,5 м в количестве не более 8 % от числа штанг длиной 8 м. Кроме штанг нормальной длины, для подбора необходимой длины подвески изготовляют штанги укороченные длиной 1; 1,2; 1,5; 2 и Зм
Таблица 3.2

Марки стали

Вид термической обработки

Временное сопротивление разрыву, МПа


Предел текучести, МПа

Относительное удлинение, %

40

Нормализация или нормализация

570

320

16

20Н2М

с последующим поверхностным упрочнением нагревом ТВЧ

600

390

21




Объемная закалка и высокий

630

520

18

ЗОХМА

отпуск Нормализация и высокий отпуск

610

400

20

15НЗМА

с последующим поверхностным упрочнением нагревом ТВЧ Нормализация с последующим

650

500

22

15Х2НМФ

поверхностным упрочнением нагревом ТВЧ Закалка и высокий отпуск или нормализация и высокий отпуск

700

630

16

Основные виды износа и разрушения насосных штанг

Переменная нагрузка на штанги вызывает усталость, приводящую к внезапному обрыву. При расчете штанг принимается, что напряжения растяжения (сжатия) по поперечному сечению штанг одинаковы в любых точках сечения. В действительности в некоторых точках сечения оно меньше, чем расчетное. В этих точках штанги с течением времени происходит микроскопический сдвиг частиц металла и постепенно образуется трещина, являющаяся концентратором напряжения. Концентрация напряжений развивает трещину, вследствие чего через некоторый момент времени происходит обрыв.

Усталостные трещины образуются также по следующим причинам.

. Наличие на поверхности штанг механических повреждений от ударов металлическими предметами. На дне риски создается концентрация напряжения и развивается трещина.

. Появление перенапряжений в поверхностном слое металла, возникших вследствие изгиба штанги при ее транспортировке или спуско-подъемных операциях.

Из-за усталости металла происходит почти 100% всех обрывов. Промысловые наблюдения показали, что более 50% обрывов штанг происходит по резьбе. На обрывы в резьбе также влияет крутящий момент, прилагаемый при затяжке резьбы во время спуска штанг в скважину. Оптимальный крутящий момент для штанг диаметрами 16, 19, 22 и 25 мм равен соответственно 0,3; 0,5; 0,7 и 1,05 кН*м. На усталостную прочность большое влияние оказывает также рабочая среда, то есть свойства откачиваемых жидкости и газа. Особенно сильное (коррозионное) воздействие оказывает водный раствор сероводорода. Исследуя усталостную прочность материалов штанг в условиях агрессивной среды, установлена причина снижения предела усталости. Причина этого явления в том, что находящиеся в жидкости поверхностно-активные вещества адсорбируются на поверхности металла, в том числе и в мельчайших трещинах, и при переменной нагрузке на штанги не дают возможности силам сцепления между частицами металла сомкнуть цепь. В результате концентрация напряжений в трещинах увеличивается, и трещины быстро развиваются. Поэтому при расчете штанг необходимо учитывать коррозионный предел усталости.

Причина преждевременного выхода штанг из строя - износ муфт. В искривленных скважинах штанговые муфты истираются о насосные трубы, бывают случаи истирания насосных труб. В таких случаях следует применять закаленные шлифованные штанговые муфты, имеющие меньший коэффициент трения, или устанавливать скребки-завихрители, закаленные ТВЧ. Скребки соприкасаются с насосной трубой большей поверхностью, уменьшается удельное давление на трубу и скребок изнашивается медленнее, чем штанговая муфта. В местах резкого искривления скважин на насосных штангах ставят роликовые фонари.

Заключение
Механизированный спо­соб эксплуатации может осуществляться в двух вариантах:

1. Искусственная энергия вводится в добываемую продукцию цент­рализованно, а распределение ее между добывающими скважи­нами происходит непосредственно в залежи. Такой способ ввода энергии в залежь и ее распределение осуществляются при ис­пользовании методов поддержания пластового давления.

Если при этом каждая конкретная добывающая скважина оборудована только колонной насосно-компрессорных труб (отсутствуют механичес­кие приспособления для подъема продукции скважины), указан­ный способ будем называть искусственно-фонтанным. Искусст­венно-фонтанный способ эксплуатации добывающих скважин получил довольно широкое распространение, особенно в России.

2. Искусственная энергия вводится непосредственно в каждую конк­ретную добывающую скважину с помощью какого-либо механи­ческого, электрического или гидравлического устройства. Ввод искусственной энергии в скважину осуществляется различными способами: компримированным газом (воздухом) или специальными глубинными насосами. При первом способе ввода энергии в сква­жину мы имеем дело с компрессорным (газлифтным) способом эксплуатации, при втором — с глубиннонасосным способом.

Особое место занимают некоторые способы эксплуатации добываю­щих скважин, осуществляемые за счет использования природной энергии жидкости и газа с применением специального подземного (внутрискважинного) оборудования, не являющегося источником энер­гии. К ним относятся:

а) эксплуатация скважин бескомпрессорным (внутрискважинным) газлифтом, теоретические основы подъема продукции при ко­торой аналогичны таковым при фонтанно-компрессорной экс­плуатации. Разница заключается в том, что для подъема про­дукции используется газ высокого давления, отбираемый из газоносных пропластков в данной скважине либо из отдельной газовой залежи. В этом случае отпадает необходимость использо­вания компрессоров;

б) эксплуатация скважин плунжерным лифтом, при которой подъем продукции, происходит за счет природной энергии выделяюще­гося из нефти газа с применением специальных плунжеров.

Способ эксплуатации скважин, при котором подъем жидкости на поверхность происходит под действием пластовой энергии, называется фонтанным.

Фонтанирование скважин происходит в том случае, если пе­репад давления между пластовым и забойным будет достаточ­ным для преодоления противодавления столба жидкости и по­терь давления на трение, т. е. фонтанирование происходит под действием гидростатического давления жидкости или энергии расширяющегося газаБольшинство скважин фонтанирует за счет энергии газа и гидростатического напора одновременно. 

Газ, находящийся в нефти, обладает подъемной силой, которая проявляется в форме давления на нефть. Чем больше газа раство­рено в нефти, тем меньше будет плотность смеси и тем выше под­нимается уровень жидкости. Достигнув устья, жидкость пере­ливается, и скважина начинает фонтанировать.


Список используемой литературы

  1. Ибрагимов Л.Х., Мищенко И.Т., Челоянц Д.К. Интенсификация добычи нефти. - М: Наука,2015.

  2. Ивановский В.Н., Дарищев В.И., Сабиров А.А., Каштанов В.С., Пекин С.С. Скваженные насосные установки для добычи нефти и газа. - М: Нефть и газ, 2017.

  3. Каплан Л.С., Каплан А.Л.. Справочное пособие нефтяника. Ч.1, II.-Уфа- Октябрьский: ОФ УГНТУ, 2015.

  4. Юрчук А.М., Истомин А.З., Расчеты в добыче нефти, М., Недра, 2019.

  5. Техника и технология добычи нефти: Учебник для вузов / А.Х. Мирзаджанзаде, И.М. Ахметов, А.М. Хасаев, В.И. Гусев. Под ред. проф. А.Х. Мирзаджанзаде - М.: Недра, 2020.

  6. Булатов А.И., Аветисов А.Г. "Справочник инженера по бурению - т. 1,2" (М.: Недра, 2015).

  7. Махмудов С.А., Абузерли М.С., Монтаж, обслуживание и ремонт скважинных электронасосов, М., Недра, 2018.

  8. Бойко В.С., Разработка и эксплуатация нефтяных месторождений, М., Недра, 2016.

  9. Бухаленко Е.И., Абдуллаев Ю.Г., Монтаж, обслуживание и ремонт нефтепромыслового оборудования, М., Недра, 2017.

  10. Интернет-ресурс https://studbooks.net

  11. Интернет-ресурс https://studwood.net

  12. Интернет-ресурс https://studfile.net
1   2   3


написать администратору сайта