Главная страница

Компьютерная графика. Компьютерная графика_Лекции. Лекция 1(2 часов)


Скачать 1.39 Mb.
НазваниеЛекция 1(2 часов)
АнкорКомпьютерная графика
Дата26.03.2022
Размер1.39 Mb.
Формат файлаdoc
Имя файлаКомпьютерная графика_Лекции.doc
ТипЛекция
#417625
страница2 из 4
1   2   3   4
Тема: Векторная графика

В отличие от растровой графики в векторной графике изображение строится с помощью математических описаний объектов, окружностей и линий. Хотя на первый взгляд это может показаться сложнее, чем использование растровых массивов, но для некоторых видов изображений использование математических описаний является более простым способом.

Ключевым моментом векторной графики является то, что она использует комбинацию компьютерных команд и математических формул для объекта. Это позволяет компьютерным устройствам вычислять и помещать в нужном месте реальные точки при рисовании этих объектов. Такая особенность векторной графики дает ей ряд преимуществ перед растровой графикой, но в тоже время является причиной ее недостатков. Векторную графику часто называют объектно-ориентированной графикой или чертежной графикой.

Простые объекты, такие как окружности, линии, сферы, кубы и тому подобное называется примитивами, и используются при создании более сложных объектов. В векторной графике объекты создаются путем комбинации различных объектов. Для создания объектов примитивов используются простые описания. Прямая линия, дуги, окружности, эллипсы и области однотонного или изменяющегося света - это двухмерные рисунки, используемые для создания детализированных изображений. В трехмерной компьютерной графике для создания сложных рисунков могут использоваться такие элементы как сферы, кубы. Команды, описывающие векторные объекты большинству пользователей возможно никогда не придется увидеть. Определять, как описывать объекты будет компьютерная программа, которая используется для подготовки векторных объектов. Для создания векторных рисунков необходимо использовать один из многочисленных иллюстрационных пакетов.

Достоинство векторной графики в том, что описание является простым и занимает мало памяти компьютера. Однако недостатком является то, что детальный векторный объект может оказаться слишком сложным, он может напечататься не в том виде, в каком ожидает пользователь или не напечатается вообще, если принтер неправильно интерпретирует или не понимает векторные команды.

Программы векторной графики способны создавать растровые изображения в качестве одного из типов объектов. Это возможно потому, что растровый рисунок просто набор инструкций для компьютера, и так как инструкции эти очень просты, то векторная графика способна воспринимать растровые изображения наравне с остальными объектами, хотя можно поместить растровые изображения в виде объекта векторном формате, но не удается отредактировать и изменить в нем отдельные пикселы.

Если в растровой графике базовым элементом изображения является точка, то в векторной графике – линия. Линия описывается математически как единый объект, и потому объем данных для отображения объекта средствами векторной графики существенно меньше, чем в растровой графике.

Линия – элементарный объект векторной графики. Как и любой объект, линия обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием (сплошная, пунктирная). Замкнутые линии приобретают свойство заполнения. Охватываемое ими пространство может быть заполнено другими объектами (текстуры, карты) или выбранным цветом. Простейшая незамкнутая линия ограничена двумя точками, именуемыми узлами. Узлы также имеют свойства, параметры которых влияют на форму конца линии и характер сопряжения с другими объектами. Все прочие объекты векторной графики составляются из линий. Например, куб можно составить из шести связанных прямоугольников, каждый из которых, в свою очередь, образован четырьмя связанными линиями. Возможно, представить куб и как двенадцать связанных линий, образующих ребра.

Математические основы векторной графики

Рассмотрим подробнее способы представления различных объектов в векторной графике.

Точка. Этот объект на плоскости представляется двумя числами (х, у), указывающими его положение относительно начала координат.


Рисунок 2 Объекты векторной графики

Прямая линия. Ей соответствует уравнение y=kx+b. Указав параметры k и b, всегда можно отобразить бесконечную прямую линию в известной системе координат, то есть для задания прямой достаточно двух параметров.

Отрезок прямой. Он отличается тем, что требует для описания еще двух параметров – например, координат x1 и х2 начала и конца отрезка.

Кривая второго порядка. К этому классу кривых относятся параболы, гиперболы, эллипсы, окружности, то есть все линии, уравнения которых содержат степени не выше второй. Кривая второго порядка не имеет точек перегиба. Прямые линии являются всего лишь частным случаем кривых второго порядка. Формула кривой второго порядка в общем виде может выглядеть, например, так:

x2+a1y2+a2xy+a3x+a4y+a5=0.

Таким образом, для описания бесконечной кривой второго порядка достаточно пяти параметров. Если требуется построить отрезок кривой, понадобятся еще два параметра.

Кривая третьего порядка. Отличие этих кривых от кривых второго порядка состоит в возможном наличии точки перегиба. Например, график функции у = x3 имеет точку перегиба в начале координат (рис. 15.5). Именно эта особенность позволяет сделать кривые третьего порядка основой отображения природных объектов в векторной графике. Например, линии изгиба человеческого тела весьма близки к кривым третьего порядка. Все кривые второго порядка, как и прямые, являются частными случаями кривых третьего порядка.

В общем случае уравнение кривой третьего порядка можно записать так:

x3+a1y3+a2x2y+a3xy2+a4x2+a5y2+a6xy+a7x+a8y+a9=0.

Таким образом, кривая третьего порядка описывается девятью параметрами. Описание ее отрезка потребует на два параметра больше.



Рисунок 3 Кривая третьего порядка (слева) и кривая Безье (справа)

Кривые Безье. Это особый, упрощенный вид кривых третьего порядка (см. рис. 6). Метод построения кривой Безье (Bezier) основан на использовании пары касательных, проведенных к отрезку линии в ее окончаниях. Отрезки кривых Безье описываются восемью параметрами, поэтому работать с ними удобнее. На форму линии влияет угол наклона касательной и длина ее отрезка. Таким образом, касательные играют роль виртуальных “рычагов”, с помощью которых управляют кривой.

Контрольные вопросы:

  1. Векторная графики: сущность и достоинства?

  2. Математические основы векторной графики?

  3. Значение изображений векторной графики(отличительные свойства)?


Лекция 5 (2 часа)

Тема: Сравнение Растровой и векторной графика

Т
Рисунок 5 пример растрового изображения

Рисунок 4 пример векторного изображения
аким образом, выбор растрового или векторного формата зависит от целей и задач работы с изображением. Если нужна фотографическая точность цветопередачи, то предпочтительнее растр. Логотипы, схемы, элементы оформления удобнее представлять в векторном формате. Понятно, что и в растровом и в векторном представлении графика (как и текст) выводятся на экран монитора или печатное устройство в виде совокупности точек. В Интернете графика представляется в одном из растровых форматов, понимаемых броузерами без установки дополнительных модулей – GIF, JPG, PNG.

Без дополнительных плагинов (дополнений) наиболее распространенные броузеры понимают только растровые форматы – .gif, .jpg и .png (последний пока мало распространен). На первый взгляд, использование векторных редакторов становится неактуальным. Однако большинство таких редакторов обеспечивают экспорт в .gif или .jpg с выбираемым Вами разрешением. А рисовать начинающим художникам проще именно в векторных средах – если рука дрогнула и линия пошла не туда, получившийся элемент легко редактируется. При рисование в растровом режиме Вы рискуете непоправимо испортить фон.

Из-за описанных выше особенностей представления изображения, для каждого типа приходится использовать отдельный графический редактор – растровый или векторный. Разумеется, у них есть общие черты – возможность открывать и сохранять файлы в различных форматах, использование инструментов с одинаковыми названиями (карандаш, перо и т.д.) или функциями (выделение, перемещение, масштабирование и т.д.), выбирать нужный цвет или оттенок... Однако принципы реализации процессов рисования и редактирования различны и обусловлены природой соответствующего формата. Так, если в растровых редакторах говорят о выделении объекта, то имеют в виду совокупность точек в виде области сложной формы. Процесс выделения очень часто является трудоемкой и кропотливой работой. При перемещении такого выделения появляется«дырка». В векторном же редакторе объект представляет совокупность графических примитивов и для его выделения достаточно выбрать мышкой каждый из них. А если эти примитивы были сгруппированы соответствующей командой, то достаточно «щелкнуть» один раз в любой из точек сгруппированного объекта. Перемещение выделенного объекта обнажает нижележащие элементы.

Тем не менее, существует тенденция к сближению. Большинство современных векторных редакторов способны использовать растровые картинки в качестве фона, а то и переводить в векторный формат части изображения встроенными средствами (трассировка). Причем обычно имеются средства редактирования загруженного фонового изображения хотя бы на уровне различных встроенных или устанавливаемых фильтров. 8-я версия Illustrator'a способна загружать .psd-файлы Photoshop'a и использовать каждый из полученных слоев. Кроме того, для использования тех же фильтров, может осуществляться непосредственный перевод сформированного векторного изображения в растровый формат и дальнейшее использование как нередактируемого растрового элемента. Причем, все это помимо обычно имеющихся конвертеров из векторного формата в растровый с получением соответствующего файла.

Контрольные вопросы:

  1. Сравнение векторной и растровой графики?

  2. Общие черты векторной и растровой графики?

  3. Редакторы векторной графики?

  4. Редакторы растровой графики?


Литература:

  1. Мизрохи С.В. TURBO PASCAL и объектно-ориентированное программирование. - М.: Финансы и статистика, 1992. - 192с.: ил.

  2. Павлидис Т. Алгоритмы машинной графики и обработка изображений. - М.: Радио и связь, 1988.

  3. Пономаренко С.И. Под редакцией д.т.н., проф. О.А. Заикина Adobe Photoshop 3.0 одним взглядом. - СПб.; BHV - Санкт-Петербург, 1996. - 160 с.: ил.

  4. Толковый словарь по вычислительным системам / Под ред. В. Иллингуота и др.: Пер. с англ. А.К. Белоцкого и др.; Под ред. Е.К. Масловского. - М.: Машиностроение, 1990. - 560 с.: ил.

  5. Шикин Е.В., Боресков А.В. Компьютерная графика. Динамика, реалистические изображения. - М.: Диалог-МИФИ, 1995.



Лекция 6 (2 часа)

Тема: Представление графических данных

Форматы графических данных

В компьютерной графике применяют по меньшей мере три десятка форматов файлов для хранения изображений. Но лишь часть из них стала стандартом “де-факто” и применяется в подавляющем большинстве программ. Как правило, несовместимые форматы имеют файлы растровых, векторных, трехмерных изображений, хотя существуют форматы, позволяющие хранить данные разных классов. Многие приложения ориентированы на собственные “специфические” форматы, перенос их файлов в другие программы вынуждает использовать специальные фильтры или экспортировать изображения в “стандартный” формат.

TIFF (Tagged Image File Format). Формат предназначен для хранения растровых изображений высокого качества (расширение имени файла .TIF). Относится к числу широко распространенных, отличается переносимостью между платформами (IBM PC и Apple Macintosh), обеспечен поддержкой со стороны большинства графических, верстальных и дизайнерских программ. Предусматривает широкий диапазон цветового охвата – от монохромного черно-белого до 32-разрядной модели цветоделения CMYK. Начиная с версии 6.0 в формате TIFF можно хранить сведения о масках (контурах обтравки) изображений. Для уменьшения размера файла применяется встроенный алгоритм сжатия LZW.

PSD (PhotoShop Document). Собственный формат программы Adobe Photoshop (расширение имени файла .PSD), один из наиболее мощных по возможностям хранения растровой графической информации. Позволяет запоминать параметры слоев, каналов, степени прозрачности, множества масок. Поддерживаются 48-разрядное кодирование цвета, цветоделение и различные цветовые модели. Основной недостаток выражен в том, что отсутствие эффективного алгоритма сжатия информации приводит к большому объему файлов.

PCX. Формат появился как формат хранения растровых данных программы PC PaintBrush фирмы Z-Soft и является одним из наиболее распространенных (расширение имени файла .PCX). Отсутствие возможности хранить цветоделенные изображения, недостаточность цветовых моделей и другие ограничения привели к утрате популярности формата. В настоящее время считается устаревшим.

JPEG (Joint Photographic Experts Group). Формат предназначен для хранения растровых изображений (расширение имени файла .JPG). Позволяет регулировать соотношение между степенью сжатия файла и качеством изображения. Применяемые методы сжатия основаны на удалении “избыточной” информации, поэтому формат рекомендуют использовать только для электронных публикаций.

GIF (Graphics Interchange Format). Стандартизирован в 1987 году как средство хранения сжатых изображений с фиксированным (256) количеством цветов (расширение имени файла .GIF). Получил популярность в Интернете благодаря высокой степени сжатия. Последняя версия формата GIF89a позволяет выполнять чересстрочную загрузку изображений и создавать рисунки с прозрачным фоном. Ограниченные возможности по количеству цветов обусловливают его применение исключительно в электронных публикациях.

PNG (Portable Network Graphics). Сравнительно новый (1995 год) формат хранения изображений для их публикации в Интернете (расширение имени файла .PNG). Поддерживаются три типа изображений – цветные с глубиной 8 или 24 бита и черно-белое с градацией 256 оттенков серого. Сжатие информации происходит практически без потерь, предусмотрены 254 уровня альфа-канала, чересстрочная развертка.

WMF (Windows MetaFile). Формат хранения векторных изображений операционной системы Windows (расширение имени файла .WMF). По определению поддерживается всеми приложениями этой системы. Однако отсутствие средств для работы со стандартизированными цветовыми палитрами, принятыми в полиграфии, и другие недостатки ограничивают его применение.

EPS (Encapsulated PostScript). Формат описания как векторных, так и растровых изображений на языке PostScript фирмы Adobe, фактическом стандарте в области допечатных процессов и полиграфии (расширение имени файла .EPS). Так как язык PostScript является универсальным, в файле могут одновременно храниться векторная и растровая графика, шрифты, контуры обтравки (маски), параметры калибровки оборудования, цветовые профили. Для отображения на экране векторного содержимого используется формат WMF, а растрового – TIFF. Но экранная копия лишь в общих чертах отображает реальное изображение, что является существенным недостатком EPS. Действительное изображение можно увидеть лишь на выходе выводного устройства, с помощью специальных программ просмотра или после преобразования файла в формат PDF в приложениях Acrobat Reader, Acrobat Exchange.

PDF (Portable Document Format). Формат описания документов, разработанный фирмой Adobe (расширение имени файла .PDF). Хотя этот формат в основном предназначен для хранения документа целиком, его впечатляющие возможности позволяют обеспечить эффективное представление изображений. Формат является аппаратно-независимьм, поэтому вывод изображений допустим на любых устройствах – от экрана монитора до фотоэкспонирующего устройства. Мощный алгоритм сжатия со средствами управления итоговым разрешением изображения обеспечивает компактность файлов при высоком качестве иллюстраций.

Контрольные вопросы:

  1. Форматы графических данных?

  2. Отличительные черты графических форматов ?

  3. Совместимость графических данных?

  4. Программы- просмотрщики графических изображений?



Лекция 7 (2 часа)

Тема: Цвет и цветовые модели

В компьютерной графике применяют понятие цветового разрешения (другое название – глубина цвета). Оно определяет метод кодирования цветовой информации для ее воспроизведения на экране монитора. Для отображения черно-белого изображения достаточно двух бит (белый и черный цвета). Восьмиразрядное кодирование позволяет отобразить 256 градаций цветового тона. Два байта (16 бит) определяют 65 536 оттенков (такой режим называют High Color). При 24-разрядном способе кодирования возможно определить более 16,5 миллионов цветов (режим называют

С практической точки зрения цветовому разрешению монитора близко понятие цветового охвата. Под ним подразумевается диапазон цветов, который можно воспроизвести с помощью того или иного устройства вывода (монитор, принтер, печатная машина и прочие). В соответствии с принципами формирования изображения аддитивным или субтрактивным методами разработаны способы разделения цветового оттенка на составляющие компоненты, называемые цветовыми моделями. В компьютерной графике в основном применяют модели RGB и HSB (для создания и обработки аддитивных изображений) и CMYK (для печати копии изображения на полиграфическом оборудовании). Цветовые модели расположены в трехмерной системе координат, образующей цветовое пространство, так как из законов Гроссмана следует, что цвет можно выразить точкой в трехмерном пространстве.

Первый закон Грассмана (закон трехмерности). Любой цвет однозначно выражается тремя составляющими, если они линейно независимы. Линейная независимость заключается в невозможности получить любой из этих трех цветов сложением двух остальных.

Второй закон Грассмана (закон непрерывности). При непрерывном изменении излучения цвет смеси также меняется непрерывно. Не существует такого цвета, к которому нельзя было бы подобрать бесконечно близкий.

Третий закон Грассмана (закон аддитивности). Цвет смеси излучений зависит только от их цвета, но не спектрального состава. То есть цвет (С) смеси выражается суммой цветовых уравнений излучений:

C1=R1R+G1G+B1B;
C2=R2R+G2G+B2B;
Cn=RnR+GnG+BnB;
Cсумм=(R1+R2+…+Rn)R+(G1+G2+…+Gn)G+ (B1+B2+…+Bn)B.

Цветовая модель CIE Lab

В 1920 году была разработана цветовая пространственная модель CIE Lab (Communication Internationale de I'Eclairage – международная комиссия по совещанию. L, a, b – обозначения осей координат в этой системе). Система является аппаратно независимой и потому часто применяется для переноса данных между устройствами. В модели CIE Lab любой цвет определяется светлотой (L) и хроматическими компонентами: параметром а, изменяющимся в диапазоне от зеленого до красного, и параметром b, изменяющимся в диапазоне от синего до желтого. Цветовой охват модели CIE Lab значительно превосходит возможности мониторов и печатных устройств, поэтому перед выводом изображения, представленного в этой модели, его приходится преобразовывать. Данная модель была разработана для согласования цветных фотохимических процессов с полиграфическими. Сегодня она является принятым по умолчанию стандартом для программы Adobe Photoshop.

Цветовая модель RGB

Цветовая модель RGB является аддитивной, то есть любой цвет представляет собой сочетание в различной пропорции трех основных цветов – красного (Red), зеленого (Green), синего (Blue). Она служит основой при создании и обработке компьютерной графики, предназначенной для электронного воспроизведения (на мониторе, телевизоре). При наложении одного компонента основного цвета на другой яркость суммарного излучения увеличивается. Совмещение трех компонентов дает ахроматический серый цвет, который при увеличении яркости приближается к белому цвету. При 256 градационных уровнях тона черному цвету соответствуют нулевые значения RGB, а белому – максимальные, с координатами (255,255,255).
Контрольные вопросы:

  1. Объясните понятие цветового разрешения?

  2. Цветовая модель CIE Lab?

  3. Цветовая модель RGB?

  4. Общие черты CIE Lab и RGB?


Литература:

  1. Мизрохи С.В. TURBO PASCAL и объектно-ориентированное программирование. - М.: Финансы и статистика, 1992. - 192с.: ил.

  2. Павлидис Т. Алгоритмы машинной графики и обработка изображений. - М.: Радио и связь, 1988.

  3. Пономаренко С.И. Под редакцией д.т.н., проф. О.А. Заикина Adobe Photoshop 3.0 одним взглядом. - СПб.; BHV - Санкт-Петербург, 1996. - 160 с.: ил.

  4. Толковый словарь по вычислительным системам / Под ред. В. Иллингуота и др.: Пер. с англ. А.К. Белоцкого и др.; Под ред. Е.К. Масловского. - М.: Машиностроение, 1990. - 560 с.: ил.

  5. Шикин Е.В., Боресков А.В. Компьютерная графика. Динамика, реалистические изображения. - М.: Диалог-МИФИ, 1995.


Лекция 8 (2 часа)

Тема: Цветовая модель HSB

Цветовая модель HSB разработана с максимальным учетом особенностей восприятия цвета человеком. Она построена на основе цветового круга Манселла. Цвет описывается тремя компонентами: оттенком (Hue), насыщенностью (Saturation) и яркостью (Brigfitness). Значение цвета выбирается как вектор, исходящий из центра окружности. Точка в центре соответствует белому цвету, а точки по периметру окружности – чистым спектральным цветам. Направление вектора задается в градусах и определяет цветовой оттенок. Длина вектора определяет насыщенность цвета. На отдельной оси, называемой ахроматической, задается яркость, при этом нулевая точка соответствует черному цвету. Цветовой охват модели HSB перекрывает все известные значения реальных цветов.

Модель HSB принято использовать при создании изображений на компьютере с имитацией приемов работы и инструментария художников. Существуют специальные программы, имитирующие кисти, перья, карандаши. Обеспечивается имитация работы с красками и различными полотнами. После создания изображения его рекомендуется преобразовать в другую цветовую модель, в зависимости от предполагаемого способа публикации.

Цветовая модель CMYK, цветоделение

Цветовая модель CMYK относится к субтрактивным, и ее используют при подготовке публикаций к печати. Цветовыми компонентами CMY служат цвета, полученные вычитанием основных из белого:

голубой (cyan) = белый - красный = зеленый + синий;

пурпурный (magenta) = белый - зеленый = красный + синий;

желтый (yellow) = белый - синий = красный + зеленый.

Такой метод соответствует физической сущности восприятия отраженных от печатных оригиналов лучей. Голубой, пурпурный и желтый цвета называются дополнительными, потому что они дополняют основные цвета до белого. Отсюда вытекает и главная проблема цветовой модели CMY – наложение друг на друга дополнительных цветов на практике не дает чистого черного цвета. Поэтому в цветовую модель был включен компонент чистого черного цвета. Так появилась четвертая буква в аббревиатуре цветовой модели CMYK (Cyan, Magenta, Yellow, blacK). Для печати на полиграфическом оборудовании цветное компьютерное изображение необходимо разделить на составляющие, соответствующие компонентам цветовой модели CMYK. Этот процесс называют цветоделением. В итоге получают четыре отдельных изображения, содержащих одноцветное содержимое каждого компонента в оригинале. Затем в типографии с форм, созданных на основе цветоделенных пленок, печатают многоцветное изображение, получаемое наложением цветов CMYK.
Контрольные вопросы:

  1. Цветовая модель HSB: понятие и сферы применения ?

  2. Цветовая модель CMYK?

  3. Цветоделение?


Литература:

  1. Мизрохи С.В. TURBO PASCAL и объектно-ориентированное программирование. - М.: Финансы и статистика, 1992. - 192с.: ил.

  2. Павлидис Т. Алгоритмы машинной графики и обработка изображений. - М.: Радио и связь, 1988.

  3. Пономаренко С.И. Под редакцией д.т.н., проф. О.А. Заикина Adobe Photoshop 3.0 одним взглядом. - СПб.; BHV - Санкт-Петербург, 1996. - 160 с.: ил.

  4. Толковый словарь по вычислительным системам / Под ред. В. Иллингуота и др.: Пер. с англ. А.К. Белоцкого и др.; Под ред. Е.К. Масловского. - М.: Машиностроение, 1990. - 560 с.: ил.

  5. Шикин Е.В., Боресков А.В. Компьютерная графика. Динамика, реалистические изображения. - М.: Диалог-МИФИ, 1995.


Лекция 9 (2 часа)

Тема: Основные понятия трехмерной графики

В большинстве приложений использующих трехмерную графику 3D-объекты состоят из множества многоугольников размещенных таким образом, что создается реалистичный образ. Сотни или тысячи многоугольников необходимых для единственного 3D- объекта, образуют огромный массив данных, которые надо создать и которыми необходимо управлять.

Компания AMD предложила новую технологию 3DNow!(TM), используемую в процессоре AMD-K6-2®. Преимущества новой технологии заключаются в более быстрой смене кадров в графике с высоким разрешением, значительно улучшенным моделированием физических сред, четкое и более детальное формирование трехмерных изображений, лишенным характерных скачков воспроизведением видео и звуком театрального качества. Среди наиболее важных из вышеназванных свойств - значительное улучшение в работе с трехмерной графикой.

API (Application Programming Interface)

Комплект программ, которые прикладная программа использует для обращения к задачам исполняемым на уровне операционной системы. Т.е. программы связи аппаратных средств (таких, как, например, видеопроцессор) с приложениями, например, играми. Разработчики игры пишут ее код согласуясь с API, что позволяет ей работать с любыми аппаратными средствами, на любых компьютерах. 3D API позволяет программисту создавать трехмерное программное обеспечение использующее все возможности 3D-ускорителей. 3D API делятся на стандартные (уни-версальные) и собственные (специализированные). Без стандартных API, поддерживающих широкий спектр 3D-ускорителей, разработчиками, пришлось бы портировать игры под множество плат. Наиболее известные стандартные 3D API - OpenGL и Direct3D.

Собственный (native) 3D API предназначен для одного конкретного семейства 3D-уcкopитeлeй и ограждает программиста от низкоуровневого программирования. Примеры специализированных 3D API - Glide (от 3Dfx), RRedline (от Rendition), PowerSGL (от Videologic). Ис-пользование 3D API предполагает применение драйверов для этого API. На сегодняшний день наличие драйверов Direct3D и OpenGL для Windows 95/ 98 является обязательным требованием ко всем 3D-уcкopитeлям.

DirectX
API для Microsoft® Windows® сфокусированный на разработке мультимедийных приложений. По словам Microsoft, DirectX обеспечивает разработчиков программного обеспечения гибкостью необходимой для работы в Internet и открывает путь к использованию мощнейших возможностей современных персональных компьютеров в работе с мультимедийными приложениями. DirectX 6.0 был оптимизирован для работы с технологией 3DNow! и стал доступен пользователям в июле 1998 года.

Direct3D
Часть DirectX ориентированная на исполнение трехмерной графики. Direct3D предлагается компанией Microsoft как важное дополнение к API для игр и других 3D-приложений. Direct3D, как часть DirectX 6.0, оптимизирован для технологии 3DNow! Direct3D существует только в Windows 95, в скором будущем появится и в Windows NT 5.0. Direct3D име-ет два режима: RM (retained mode), или абстрактный и IM (immediate mode), или непосредственный. IМ состоит из тонкого уровня, который общается с аппаратурой и обеспечивает самое высокое быстродействие. Абстрактный режим - высокоуровневый интерфейс, покрывающий множество операций для программиста, включая инициализацию и трансформацию. У обоих режимов есть достоинства и недостатки, большинство Direct3D-игр используют IM.

OpenGL
OpenGL - открытый 3D API, созданный компанией SGI и контролируемый ассоциацией OpenGL Architecture Review Board (ARB), в которую входят DEC, E&S, IBM, Intel, Intergraph, Microsoft и SGI. OpenGL реализует широкий диапазон функций от вывода точки, линии или полигона до рендеринга кривых поверхностей NURBS, покрытых текстурой. OpenGL долгое время использовался для работы с трехмерной графикой на компьютерах профессионального уровня. Сейчас многие разработчики игр используют этот API. OpenGL также оптимизируется для совместной работы с технологией 3DNow! OpenGL-драйвер может быть реализован в трех вариантах: ICD, MCD и мини-порт. ICD (Installable Client Driver) полностью включает все стадии конвейера OpenGL, что дает максимальное быстродействие, но разработка ICD-драйвера занимает большое количество времени. MCD (Mini Client Driver) разработан для внесения абстракции в конвейер OpenGL, и поэтому написание драйвера менее трудоемко. MCD уступает ICD в быстродействии, плюс к этому MCD работает только в Windows NT. Мини-порт - драйвер, предназначенный для одной конкретной игры (или движка), обычно для GLQuake и Quake 2. Мини-порт может работать по принципу ICD (Rage Pro), через собственный API (Voodoo 2) или через Direct3D (lntel740). В последнем случае он называется враппером.

VRML
VRML - язык описания трехмерных миров. Лидером среди разработчиков программного обеспечения для работы с VRML считается Cosmo Software (одно из подразделений SGI). Эта компания также активно разрабатывает новые стандарты VRML. Ее программа CosmoPlayer предназначена для просмотра сцен, созданных на VRML. CosmoPlayer поддерживает OpenGL, что при наличии OpenGL-ускорителя дает прирост скорости и повышает качество 3D.
AGP (Advanced Graphics Port)

Новая технология призванная повысить качество воспроизведения мультимедийных программ, скорость их воспроизведения и интерактивные возможности сохранив, однако, невысокую стоимость. Главное свойство AGP - возможность быстрого обращения к оперативной памяти компьютера. Это означает, что фрейм-буфер (более важна функция кэширования фрейм-буфера) может сохраняться в основной памяти, а не в памяти видеокарты, что, кстати, значительно уменьшает стоимость последней. Таким образом, описания трехмерного изображения, подобно картам текстур, могут быть большими, и находится в основной памяти, а не загружать фрейм-буфер. Это обстоятельство способствует уменьшению фрейм-буфера, что тоже немаловажно.

DiME

DiME (Direct Memory Execution) - главное преимущество AGP. AGP-платы без DiME недалеко ушли от РСI. DiME (или, как его еще называют, AGP-текстурирование) дает возможность 3D-ускорителю брать текстуры напрямую из системной памяти, а не из локальной видеопамяти. DiME - ключ к использованию большого количества больших текстур. DiME превращает системную память в своего рода расширение видеопамяти. 3D-ускоритель с поддержкой DiME уже сейчас без проблем справляются с 16 Мбайт текстур на один кадр.
16- 24- и 32-битные цвета

Каждый пиксел окрашен определенным цветом. В 16-битном режиме можно воспроизвести 65,536 цветов, в то время как в 24-битном - 16.7 миллионов цветов. 32-битный режим располагает тем же количеством цветов, что и 24-битовый режим, хотя манипулировать 32-битными изображениями значительно быстрее, чем 24-битными. Однако, 32-битная графика требует почти на 25% больше памяти. Поскольку человеческие глаза не могут увидеть более чем 10 миллионов различных цветов, то считается, что 24- и 32-битовая графика примерно равны по качеству.

Текстура (Texture) - побитовое отображение поверхностей, отсканированное или нарисованное, что придает поверхности реалистичный вид. Использование текстур гораздо удобнее моделирования поверхности объекта с помощью окрашенных многоугольников.

Пиксел
PI(X)cture ELement - минимальный графический элемент, генерируемый видео адаптером, обычно размером с точку. Пикселы могут быть почти любого цвета, в зависимости от способностей адаптера.

Тексел
TE(X)ture ELement - минимальный элемент текстуры, обычно относится к треугольнику.

Текстурирование
Текстурирование - основной метод моделирования поверхностей наложением на них изображений, называемых текстурой.

Скорость текстурирования (Fill rate)

Количественная оценка, показывающая, какое число пикселов графическая плата может обработать за секунду - прорисовать или назначить текстуру.
Throughput
Throughput - другая характеристика 3D-чипсета, показы-вающая скорость обработки треугольников 3D-ускоритель. Throughput 1 млн. треугольников/с означает, что 3D- ускоритель может обработать 1 млн. тре-угольников в секунду. Throughput 3D-чипа менее важен, чем fillrate, так как современные микропроцессоры не могут обеспечить такой темп.
Блиттинг (Blitting)

Копирование массива данных из основной памяти компьютера в память видеокарты. Скорость этого процесса (Blit Rate) - важная характеристика для оценки видеокарт.

Сетка (Mesh)

Термин, применяемый для описания структуры 3D-объекта или изображения. Назван так потому, что имеет сходство со скульптурой сделанной из проволочной сетки.

Призрак (Sprite)

Объект (часто буква или курсор) движущийся поверх фоновой картинки.

Ядро (Engine)

Часть программного обеспечения предназначенная для управления и обновления трехмерной графики в реальном масштабе времени.

Многоугольник (Polygon)

Плоская фигура, ограниченная со всех сторон ломаной линией. Треугольники, то есть простые трехсторонние многоугольники формируют основу, каркас объектов в трехмерной среде.

Контрольные вопросы:

  1. Основные понятия трехмерной графики?

  2. Комплект программ API: сущность и применение?

  3. Применения 16-,24-,32- битовых цветов в трехмерной графике?


Литература:

  1. Мизрохи С.В. TURBO PASCAL и объектно-ориентированное программирование. - М.: Финансы и статистика, 1992. - 192с.: ил.

  2. Павлидис Т. Алгоритмы машинной графики и обработка изображений. - М.: Радио и связь, 1988.

  3. Пономаренко С.И. Под редакцией д.т.н., проф. О.А. Заикина Adobe Photoshop 3.0 одним взглядом. - СПб.; BHV - Санкт-Петербург, 1996. - 160 с.: ил.

  4. Толковый словарь по вычислительным системам / Под ред. В. Иллингуота и др.: Пер. с англ. А.К. Белоцкого и др.; Под ред. Е.К. Масловского. - М.: Машиностроение, 1990. - 560 с.: ил.

  5. Шикин Е.В., Боресков А.В. Компьютерная графика. Динамика, реалистические изображения. - М.: Диалог-МИФИ, 1995.

Лекция 10 (2 часа)

1   2   3   4


написать администратору сайта