Главная страница

цвет зинченко. Зинченко В.П., Мунипов В.М. ''Основы эргономики%22. Литература 25 Краткая история развития эргономики 27


Скачать 4.07 Mb.
НазваниеЛитература 25 Краткая история развития эргономики 27
Анкорцвет зинченко
Дата21.04.2023
Размер4.07 Mb.
Формат файлаdoc
Имя файлаЗинченко В.П., Мунипов В.М. ''Основы эргономики%22.doc
ТипЛитература
#1079452
страница13 из 30
1   ...   9   10   11   12   13   14   15   16   ...   30

§2. Функциональная структура исполнительных (перцептивно-моторных) действий


В Предисловии к «Очерку рабочих движений человека», опуб­ликованному в 1901 г., И. М. Сеченов писал, что предмет его очер­ка «составляют вопросы о сложных мышечных движениях, при посредстве которых человек производит так называемые внешние работы, т. е. действует силами своих мышц на предметы внешнего мира» [54]. Хотя с тех пор существенно изменился характер «внешних работ» и появились совершенно новые типы трудовой деятельности, связанной с управлением сложными техническими устройствами, до настоящего времени справедливы слова Сеченова о том, что работа всегда была и всегда остается жизненной функ­цией мышечной системы человека, как бы ни вытесняла современ­ная техника из промышленной жизни мускульный труд человека. Для решения задач управления и оптимизации исполнительной деятельности и задач проектирования ее новых видов и форм необ­ходимо провести ее анализ и выявить общие принципы развития и становления ее функциональной структуры. Это необходимо для организации рационального обучения и тренировки, формирования совершенных навыков, организации режимов труда и отдыха, препятствующих утомлению.

Исполнительное или управляющее действие в эргономике — это приобретенное в результате обучения и повторения умение (навык) решать трудовую задачу, оперируя орудиями труда (ручной инструмент, органы управления и т. п.) с заданной точностью и скоростью. Обычно исполнительные действия входят в качестве компонента в более широкие структуры трудовой деятельности и обеспечивают ее эффективное выполнение наряду с такими компо­нентами, как познавательные (когнитивные), включая и принятие решения. В зависимости от вида трудовой деятельности удельный вес исполнительных действий может быть весьма различен. Эти действия могут совершаться либо эпизодически, либо занимать все рабочее время. Иными словами, в структуре деятельности в целом они могут занимать место основной цели либо выступать в качестве средства ее достижения, например передачи команды, реализации принятого решения и пр. В последнем случае исполни­тельные, моторные акты, как правило, просты и не требуют дли­тельного научения. В тех случаях, когда исполнительные действия составляют основное содержание деятельности (работа с ручным инструментом, работа станочника, водительские профессии, работа телеграфиста, оператора ЭВМ, работа в режиме слежения) тре­буется длительное формирование соответствующих умений и навы­ков, обеспечивающих своевременное и точное выполнение трудовой деятельности.

Для эргономического обеспечения этих видов исполнительных действий долгое время было достаточно традиционных представ­лений о моторном и сенсомоторном научении и представлений о двигательных навыках как об автоматизированных в значитель­ной степени стереотипных реакциях, возникающих при многократ­ном повторении сенсомоторных и кинестетических актов. Формиро­вание навыков описывалось обычно в терминах стимулов и реакций, рефлексов, проб и ошибок. При повторении этих элемен­тов, когда это повторение достигает успеха либо подкрепляется, прежде отдельные реакции заменяются комплексами, изолирован­ные движения объединяются в целостные кинетические структуры, своего рода «моторные формы», или «кинетические мелодии».

Подобный «атомарный» или в более позднее время стимульно-реактивный подход, ориентированный на результат, эффект отдель­ного, сравнительно простого действия, длительное время состав­лял научные основания концепции «инженерного проектирования» методов работы, которая связана с именами Ф. Тейлора и Ф. Гилбрета.

Методическую основу такого проектирования составил моторно-временной анализ элементарных действий и операций. Ф. Гилб­рет выдвинул идею универсальных микродвижений (терблигов), из комбинаций которых, отличающихся по составу и последова­тельности терблигов, должна состоять любая операция. Выделение терблигов положило начало симплификации и стандартизации трудовых функций работающих. Эта идея была использована на заводах Г. Форда, где путем тщательного проектирования весь трудовой процесс сборки был разбит на столь большое число мель­чайших операций, что автомобиль собирался, находясь в безоста­новочном движении. Форд стремился к тому, чтобы рабочий вы­полнял единственную работу единственным движением. Ф. Гилбрет изучал движения с помощью хронометража, фото- и киносъемки, циклографии. Сформулированные им принципы экономии движе­ний позволяли отсеивать лишние и выбирать из всех возможных наиболее быстро осуществляемые и требующие минимальных уси­лий, а также добиваться сокращения перерывов между последо­вательными движениями. Практические задачи проектирования работы положили начало изучению кинематических и динамичес­ких характеристик трудовых движений человека. Результаты и методы этих исследований, а также сформулированный Гилбретом принцип экономии рабочих движений применялись при решении задач организации рабочих мест, конструировании ручного инстру­мента, размещения органов управления и т. д.

Системы Ф. Тейлора и Ф. Гилбрета, несомненно, внесли суще­ственный вклад в изучение элементарных действий и операций. Однако с помощью моторно-временного анализа движений в том виде, в котором он был предложен, нельзя выявить структуру и механизмы целостной исполнительной деятельности человека. «На­до подчеркнуть...— писал в 1930 г. Н. А. Бернштейн,— что не только методы, но и самое понятие рационализации движений, да­леко не так просты, как мыслилось раньше. Нехитрая борьба Тейлора, а позднее Гилбрета с лишними движениями и понимание биомеханической операции как простой суммы последовательных движений, которую можно просеивать как зерно на сортировке, начинает уступать свое место пониманию двигательного комплек­са как органически нераздельного целого, всегда отзывающегося на изменения какой-нибудь одной детали перестройкой всех остальных» [5, с. 7].

Подобный инженерный подход к проектированию работы (при всей его первоначальной полезности) подвергается справедливой критике по ряду оснований. Очевидными следствиями предельной симплификации труда, сведения его к отдельным элементарным двигательным актам являются монотония и слабая удовлетворен­ность работой. И то и другое отрицательно сказывается на произ­водительности труда.

Что касается более сложных видов трудовой деятельности, то по отношению к ним этот подход уже исчерпал свои «оптимиза­ционные» возможности. А сложность исполнительных действий настолько возрастает, что стандартные моторные «формы» или даже кинетические «мелодии» не могут обеспечить ее эффективное выполнение. Речь идет о том, что в условиях современного произ­водства стереотипия трудовых движений постепенно уступает мес­то выполнению целесообразных, разумных, произвольных исполни­тельных действий. Во многих видах трудовой деятельности все чаще требуется защита от автоматизмов, от импульсивных, реф­лекторных реакций. Ошибочные действия, иногда приводящие к аварийным ситуациям, нередко происходят не потому, что чело­век не успел, а потому, что он поторопился.

Это справедливо и по отношению к станочнику, и по отношению к летчику. Современное механизированное и автоматизированное производство требует от человека выполнения не только заучен­ных, усвоенных действий, но и действий, так сказать, беспреце­дентных, которые необходимо не вспоминать, а построить в новой, неожиданно возникшей ситуации. Все более распространенными являются случаи, когда при профессиональном обучении невоз­можно воспроизвести все существенные условия реального трудо­вого процесса и доучивание происходит при выполнении не учебного, а трудового, исполнительного действия. Адаптация к реальным условиям особенно трудна, если выполнение действии требует совершенной сенсомоторной координации. Ярким приме­ром подобных ситуаций может быть деятельность космонавтов, которым в условиях невесомости необходимо осуществлять стыков­ку, расстыковку, переходить из одного объекта в другой, выходить в открытый космос, оперировать ручным инструментом, совершать ручную посадку, т. е. оперировать органами управления в пере­менных условиях гравитации, трансформирующих привычные сен­сомоторные координации, силовой рисунок хорошо освоенных прежде движений. В частности, невесомость влияет не только на двигательную сферу, но может вызвать разнообразные неприятные ощущения, нестойкие пространственные иллюзии или даже явле­ния деперсонализации и дереализации восприятий субъекта.

Не меньшую психическую нагрузку вызывает необходимость осуществления исполнительных действий в условиях задержанной обратной связи о результативности выполненного действия. К чис­лу таких действий относится управление луноходом, где задержка не превышает нескольких секунд, и управление супертанкером, где задержка соответствующих эволюций корабля после осущест­вления управляющего действия исчисляется несколькими минута­ми. Появление целого ряда сравнительно новых видов деятель­ности, связанных с управлением космическими кораблями и станциями, дистанционным исследованием планет, манипуляциями радиоактивными элементами, управлением разнообразными дви­жущимися объектами, в том числе и роботами, привело к тому, что в эргономике в качестве специального объекта исследования выделилась деятельность оператора-манипулятора. В этом виде деятельности главенствующую роль играют перцептивно-моторные координации и взаимодействия, хотя, разумеется, значительную роль играет также аппарат образного и понятийного мышления. Исполнительные действия оператора-манипулятора реализуются посредством так называемых «регламентированных движений», требующих высокой не только пространственной, но и временной точности. Это означает, что с точки зрения эффективности их вы­полнения информативным показателем является не только конеч­ный результат действия (как в случае нажатия на кнопку, клави­шу, тумблер), но и текущие характеристики движений, определяю­щие динамику объекта управления.

Совершенные перцептивно-моторные координации необходимы и для выполнения многих технологических процессов. Ярким при­мером является деятельность по изготовлению и эксплуатации микроустройств. Размеры микрообъектов и необходимая плотность их компоновки предъявляют такие высокие требования к техноло­гии их изготовления, что производство приборов на их основе стало ювелирной работой. Трудовая деятельность человека, заня­того в сфере сборки, например интегральных схем, осуществляется в условиях постоянного зрительного контроля, повышенной напря­женности, обусловленной необходимостью выполнять высокоточные и тонкокоординированные, прецизионные двигательные акты. Влияние этих факторов усугубляется еще и тем, что размеры микроустройств находятся на грани видимости невооруженным глазом и визуальный контроль технологических операций возмо­жен лишь при использовании увеличивающих оптических прибо­ров. Хорошо известно, что их использование имеет в качестве следствий закрепощенность позы, гипокинезию, суженное поле зрения и т. п.

Обслуживание многих станков требует высококоординированной работы обеих рук при непрерывном зрительном контроле. Временной интервал, в котором должны быть осуществлены коор­динированные движения, в некоторых случаях не должен превы­шать 60—80 мс. Необходимость оптимизации подобных видов деятельности привела к выделению в качестве специального объекта эргономического исследования деятельности оператора-технолога.

Приведенные примеры свидетельствуют о том, что «атомар­ный», стимульно-реактивный подход к исследованию и оптимиза­ции деятельности оператора-манипулятора и оператора-технолога не может удовлетворить современную эргономику. Двигательные акты, исполнительные действия вплетаются в ткань более широких структур деятельности, и успешность исполнительных действий должна оцениваться не сама по себе, а в контексте этих структур. Она зависит от того, насколько верно человек сориентировался в ситуации, т. е. построил ли человек правильный образ этой ситуации и нашел ли он, порой, единственно возможный способ действия.

Формирование образа ситуации, создание программы разум­ных действий, их точная и своевременная реализация, контроль за их эффективностью — вот проблемы, которые возникли перед современной эргономикой, как и перед комплексом смежных с ней наук: биомеханикой, физиологией и психологией, которые издавна изучали организацию, построение, управление движениями и дей­ствиями человека.

Как практические задачи, возникшие перед этими науками, так и логика их собственного развития требуют формулирования но­вых подходов к изучению исполнительных действий. В противовес атомарно-рефлекторным подходам, ориентированным на задание, результат, эффект и т. п., исследователи разрабатывают струк­турный, целостный, деятельностный подход, ориентированный не только на усвоение, но и на построение движений, действий, мо­торных программ и схем.

Тщательный анализ рисунка даже многократно повторяющихся в одной и той же ситуации движений свидетельствует об их уни­кальности и своеобразии. Детальный анализ моторного акта показывает, что его биодинамическая ткань неповторима как отпе­чаток пальца. Это означает, что строится не только образ ситуации и адекватная ей моторная схема, но что на основе этой схемы строится (а не просто повторяется) каждый живой моторный акт. Результаты и сам ход этой работы не вытекают однозначно из структуры внешнего стимульного подкрепления. В этом смысле объяснение происходящего движения по схеме «стимул-реакция» не соответствует существу дела. Исследователям предстоит еще разработать понятия, относящиеся к указанной выше работе по построению пространственного моторного действия.

Двигательное действие, рассматриваемое как необходимый компонент деятельности, должно обязательно соотноситься с ее когнитивными и личностными компонентами, такими, например, как образ и цель. При этом, как указывалось выше, и сама дея­тельность в целом и все ее компоненты обязательно характери­зуются предметно-смысловыми чертами и пространственно-времен­ной определенностью. Истоки этого подхода восходят к именам И. М. Сеченова и Ч. Шеррингтона.

И. М. Сеченов неоднократно подчеркивал, что «чувствование повсюду имеет значение регулятора движения, другими словами, первое вызывает последнее и видоизменяет его по силе и направ­лению» [55, с. 236—237]. Интересно и то, что Сеченов не ограни­чивал задачу физиологии и психологии изучением отдельных дви­жений, а говорил о необходимости изучения той области явлений, в которой «чувствование превращается в повод и цель, а движение — в действие». На современном этапе изучения рабочих движе­ний, трудовых операций и действий, сложнейших форм исполни­тельной деятельности человека особенно важно отметить указанное Сеченовым направление поисков решения и поныне кардинальной для физиологии и психологии проблемы: каков механизм регу­ляции движений чувствованиями? Возможность такой регуляции обеспечена уже тем, что мышца, представляющая собой «двойст­венный орган, наш рабочий орган и вместе с тем исконный, перво­начальный орган чувств, воспитавший в порядке своих свойств все другие органы чувств, окрашивает все наши представления об окружающем мире в образах движения» [53, с. 936]. Более того, Сеченов писал, что мышца дала нам наши представления о пространстве, времени, о числе, о счете и т. д. Все это может быть возможным только при условии, что 'сами движения и дей­ствия не являются лишь элементарными и утилитарными актами исполнения, а осуществляют также познавательные, когнитивные функции и функции экспрессивные. Последние отчетливо реализу­ются не только в движениях, но в позно-тонических компонентах действия, являющихся носителями его личностно-смыслового со­держания.

Многие трудовые движения и действия настолько совершенны, координированы, выразительны и красивы, что они нередко вклю­чаются в театрализованные представления. Не лишена смысла высказываемая время от времени идея создания специальной хоре­ографии трудовых процессов.

Функциональная двойственность мышцы, функциональная гете­рогенность движений и действий обеспечивают не только потен­циальную, но и актуальную целостность деятельности, возмож­ности ее развития и совершенствования. Примечательно в этом смысле предположение Ч. Шеррингтона о том, «... что в осущест­влении действий, направленных на окончательный, завершающий акт в процессе отбора открывается возможность элементам памяти (хотя и рудиментарной) и элементам предварения (хотя и незна­чительным) развиться в психическую способность к «развертыва­нию» настоящего назад, в прошлое, и вперед, в будущее, которая у высших животных является непременным признаком более вы­сокого умственного развития» [60, с. 314]. Именно эта «психиче­ская способность» и является регулятором исполнительных актов. И. М. Сеченов очень тонко понимал это, говоря, что чувствования, даваемые сознанию органами чувств, служат источниками дви­жений не прямо, а через психику,— поскольку с сигналом связан определенный смысл.

Различие атомарно-рефлекторного и целостного подходов за­фиксировано и в языке описания двигательного поведения. Для первого преимущественно использовались такие термины, как ре­актология, рефлексология, для второго — психомоторика, психо­нервная деятельность, психическая деятельность и т. п. Разумеет­ся, само по себе использование терминов «рефлекс» или «реакция»не означает еще, что тот или иной автор является сторонником «атомарного» подхода. Именно в этих терминах первоначально закладывались основы структурного подхода к изучению движений и действий. Так, Ч. Шеррингтон, анализируя предваряющие и завершающие реакции, писал: «Нетрудно видеть, какие широкие возможности для приспособительных реакций представляет такое устройство, состоящее из целой цепи последовательных актов, каждый из которых изменяет влияние акта, ему предшествовав­шего» [60, с. 312]. В этом отрывке отчетливо просматривается идея целостности приспособительной деятельности. Аналогичным образом И. П. Павлов, анализируя цепи двигательных рефлексов, пришел к идее динамического стереотипа как целостного образо­вания.

С тех пор как IT. М. Сеченов и Ч. Шеррингтон психологизи­ровали трактовку двигательного поведения, накоплены многочис­ленные данные о решающей роли сенсорных процессов в управле­нии человеческими движениями. Анализируя строение анатоми­ческого аппарата, обеспечивающего движения высших животных и человека, А. А. Ухтомский отмечает его своеобразие по сравне­нию с искусственными механическими устройствами, характери­зующееся значительно большим количеством степеней свободы. Ни костно-мышечный аппарат в целом, ни какая-либо его часть не составляет готового механизма для выполнения какого-либо определенного целесообразного акта, а представляет собой лишь совокупность известных анатомических компонентов, необходимых для создания такового. Особенности строения опорно-двигатель­ного аппарата обусловливают пластичность поведения высших животных и человека и вместе с тем делают задачу управления этим поведением необычайно сложной и трудной. Поскольку управление предполагает ограничение степеней свободы, а в са­мом устройстве исполнительных механизмов у живых организмов такого рода ограничения практически отсутствуют, функции регу­ляции выполняемых действий должны взять на себя центральные механизмы. Рассмотрим кратко эволюцию представлений и совре­менные взгляды на механизмы управления движениями.

Первоначально предполагалось, что центральные механизмы могут выполнить эту функцию, используя жесткие шаблоны, кото­рые заранее предопределяют характер и последовательность тре­буемых движений. Р. Вудвортс [80] для такого способа построе­ния движений ввел термин «центральное», или «моторное», программирование. Он доказывал наличие моторных программ, изучая быстрые произвольные движения человека.

Анализ кинематических характеристик точных движений руки привел его к заключению, что существует фаза движения, незави­симая от зрительной обратной связи, фаза, определяемая перво­начальной программой. Наряду с этой фазой существует и вторая фаза, совершаемая с учетом зрительной обратной связи и обеспе­чивающая точностные характеристики движения. Таким образом,

Вудвортс описал способы управления движением, получившие позже наименование управления по открытому и закрытому кон­турам регулирования. В настоящее время каждый из этих спосо­бов в значительной степени абсолютизирован и имеет своих сторонников. В пользу каждого из них накоплено значительное число экспериментальных данных, ведутся дискуссии между пред­ставителями теории открытого и закрытого контуров.

К. Лешли был, видимо, одним из первых, кто отчетливо сфор­мулировал концепцию центральных моторных программ и экспе­риментально доказал, что выработка навыка представляет собой центрально-организованный процесс, в реализации которого про-приоцептивные механизмы могут не играть существенной роли. Доводы Лешли, относящиеся к тому, что заученный навык может быть выполнен различными моторными структурами, действитель­но подтверждают идею моторного программирования, но сейчас практически не используются для доказательства слабой роли кинестетического контроля. Поиски доказательств в пользу откры­того контура шли по пути изучения быстрых баллистических дви­жений и блокирования каналов обратной связи, функционирующих при выполнении двигательных актов. Сторонники концепции мо­торного программирования и открытого контура оставляют за афферентацией лишь пусковые функции и модулирующие влияния. Однако до настоящего времени не получено решающих доказа­тельств того, что произвольное движение человека может осуще­ствляться только как результат центрально-организованных нервных команд, которые структурируются перед началом движе­ния и позволяют осуществлять движение при отсутствии перифе­рической обратной связи.

Главные недостатки систем открытого контура состоят в том, что они не обладают механизмами обратной связи для исправле­ния ошибок, возникающих как вследствие свойств их входов, так и вследствие трансформации сигналов внутри системы. Этот тип систем обладает слабыми компенсаторными возможностями.

В рамках концепции открытого контура были детально разра­ботаны представления о моторных программах. Понятие моторного программирования означает, что наборы моторных команд, как врожденных, так и заученных, хранятся в центральной нервной системе и могут вызываться и синтезироваться в желаемое движе­ние. Моторная программа — это тщательно скоординированный по­рядок синергии (иногда их называют субрутинами, или субрежи­мами) , которые вместе охватывают требуемое движение и которые не зависят от обратной связи.

Независимо от отношения представителей концепции открытого контура к участию в регуляции движений обратной связи ими развиваются интересные представления об иерархии моторных программ, о существовании обобщенных программ, программ-схем, нижние звенья которых освобождают основную программу от обременительных вычислений. Важное значение имеют также предположения о связи программ с мотивами и целями, которые трансформируются в некоторое внутреннее представление субъекта о желаемом, требуемом движении или действии. Другими слова­ми, моторные программы более тесно связываются с образом ситуации, с образом действия, не только с набором команд, хра­нящихся в нервной системе. Концепция открытого контура регу­лирования с минимальными оговорками и ограничениями приме­няется для объяснения механизмов движений глаз человека. В многочисленных исследованиях установлена почти однозначная зависимость между скоростью скачка на начальном этапе движе­ния и конечной амплитудой скачка. Это означает, что уже до на­чала движения запрограммирована скорость саккады. На основа­нии электрофизиологических исследований сделан вывод о том, что управление саккадическими движениями в одном фиксированном направлении сводится к определению временного отрезка, в тече­ние которого прилагается постоянная сила, сокращающая прямые мышцы глаза.

Зачатки противоположных идей относительно кольцевого или замкнутого (закрытого) контура регуляции движений мы находим у В. Джемса [70], Ч. Шеррингтона [60] и др.

Джемс предположил, что периферическая обратная связь от одной части движения вызывает к действию следующую, и выдви­нул гипотезу «цепных рефлексов», против которой позже выступил Лешли. В соответствии с теорией закрытого контура предпола­гается, что ответ не просто запускается рецепторикой, но и управ­ляется ею.

Управление движением по «закрытому» контуру предполагает передачу с помощью обратных связей информации о соответствии движения требуемой цели и выработку на основе этого новых управляющих команд. Обратная связь выполняет две функции: с ее помощью определяются пространственные характеристики цели, необходимые для составления программы баллистического движения, а также осуществляется соотнесение результатов вы­полнения этих программ с истинным положением цели, служащее для уточнения программ последующих движений. Наиболее пол­ная аргументация того, что жесткое программирование не может обеспечить целесообразный эффект движения, дана Н. А. Берн штейном.

Теория Н. А. Бернштейна охватывает широкий класс функцио­нально-различных движений и представляет собой общую теорию поуровневого управления и построения движений человека. Эта теория включает в себя три фундаментальных принципа: централь­ного программирования, сенсорных коррекций и уровневой орга­низации движений. Принцип координирования движений изложен им в безупречной с точки зрения современной теории автомати­ческого регулирования форме: «... как только орган, находящийся под действием внешних и реактивных сил, плюс еще какая-то до­бавка внутренних, мышечных сил, отклонится в своем результирующем движении от того, что входит в намерения центральной нервной системы, эта последняя получит исчерпывающую сигнали­зацию об этом отклонении, достаточную для того, чтобы внести в эффекторный процесс собственные адекватные поправки. Весь изложенный принцип координирования заслуживает поэтому наз­вания принципа сенсорных коррекций» [6, с. 28].

Н. А. Бернштейн долгое время решительно отвергал всякую возможность управления движением по разомкнутой схеме. Одна­ко позже он отошел от такой крайней точки зрения и допустил возможность того, что в некоторых элементарных процессах дуга не замыкается в рефлекторное кольцо либо из-за кратковремен­ности акта, либо вследствие его крайней элементарности.

Сенсорные коррекции осуществляются в общем случае всеми имеющимися в распоряжении организма рецепторными аппарата­ми. В частных случаях некоторые из обратных связей могут не участвовать в управлении движением. Первичные сигналы рецеп­торов предварительно подвергаются сложной обработке и «пере­шифровке», необходимой, например, для того, чтобы их можно было сличить с проектом движения, построенным на языке прост­ранственно-кинематических представлений. Полученные в результа­те обработки «синтезы», составленные из сигналов всех видов обратных связей, участвующих в управлении данным движением, служат для сенсорных коррекций.

Понятие о сенсорном синтезе играет в модели Бернштейна фундаментальную роль. Состав образующих его афферентаций, т. е. обратных связей, и принцип их объединения служат главным критерием, отличающим один уровень построения движения от другого.

Каждая двигательная задача находит себе в зависимости от своего содержания и смысловой структуры тот или иной ведущий уровень. Уровни различаются между собой не только видом сен­сорного синтеза, но и анатомическим субстратом, т. е. совокуп­ностью органов нервной системы, без которых осуществление функции этого уровня невозможно.

В зависимости от цели и смыслового содержания двигательного акта один из уровней берет на себя роль ведущего, координирую­щего действия нижележащих фоновых уровней. Во всяком движе­нии осознается только ведущий уровень. Выработка двигательного навыка — это процесс формирования в ходе обучения и тренировки уровневого состава движения, выделения ведущего уровня и сра­батывания между собой всех вовлеченных в управление уровней. Необходимым условием успешного изучения двигательных ак­тов является создание адекватного метода, позволяющего регист­рировать и анализировать пространственно-временную развертку движения, весь ход двигательного акта «по всему моторному аппа­рату тела». В исследованиях исполнительной деятельности, на­правленных на выявление объективных индикаторов процесса формирования сенсомоторного образа пространства и структурыдействия, использовался микроструктурный метод анализа, суть которого состоит в выделении быстротекущих компонентов цело­стных психических актов и в анализе их взаимоотношения. Исполь­зование этого метода при исследовании произвольных простран­ственных действий позволило вскрыть структуру пространственно­го действия; проследить динамику ее становления и развития в различных условиях протекания действий; выделить ряд ком­понентов-стадий: формирования программы, реализации, контроля и коррекций, составляющих структуру действия, проследить ди­намику их развития, соотношения их на разных этапах освоения действия, а также изменения, происходящие внутри выделенных компонентов целостного действия. (Описание методики исследо­вания см. в главе 3).

Экспериментальная ситуация предусматривала исследование формирования инструментального пространственного действия в различных условиях. В стабильных условиях маршруты требуе­мого движения были одинаковой величины и сложности. В дина­мических условиях маршруты отличались числом опорных элемен­тов и числом пространственных составляющих движения. В условиях инверсии вводилось рассогласование (полное или частичное) между перцептивным и моторным полями. Инверсия вводилась после выработки навыка в условиях нормы.

В результате исследования было обнаружено, что в процессе формирования навыка (стабильные условия, норма) наблюдается сложная динамика во взаимоотношениях между отдельными ста­диями целостного действия. Во-первых, в процессе освоения пpo­странственного действия наблюдается уменьшение времени каждой выделенной стадии; во-вторых, сокращение времени в каждой ста­дии происходит неравномерно, в-третьих, по мере тренировки проис­ходит перераспределение времени между выделенными стадиями. Неравномерность темпа сокращения времени в выделенных ста­диях свидетельствует о том, что все компоненты целостного дей­ствия совершенствуются неодинаково. В исследовании обнаружена последовательность формирования компонентов пространственного действия. Быстрее всего складывается стадия формирования мо­торных программ, за ней следует стадия контроля и коррекций, обе они формируются на фоне постепенного уменьшения времени, которое занимает стадия реализации моторных программ. Лишь после того как оба когнитивных компонента сформировались, видимо, возможно, последнее сокращение времени выполнения действия в целом. И это сокращение происходит за счет его испол­нительной части. Перераспределение времени между стадиями внутри целостного действия на разных этапах формирования сви­детельствует о том, что каждое новое упражнение — это новый процесс решения задачи, процесс изменения и совершенствования средств и способов ее решения.

При введении инверсии как средства разрушения сформирован­ного пространственного действия было показано, что субъективно процесс формирования навыка в условиях инверсии переживается как значительно более трудный в сравнении с нормой. Формиро­вание навыка в любом виде инверсии (полной или частичной) облегчает усвоение любого другого вида инверсии. Переход oт нормы к любому виду инверсии происходит с большими трудностя­ми и требует большего времени, чем обратный переход. Сопостав­ление хода формирования совместимого и инвертированного инструментального пространственного действия показывает, что при переходе к работе в условиях инверсии наблюдаются эффекты переноса и интерференции (рис. 10).

1   ...   9   10   11   12   13   14   15   16   ...   30


написать администратору сайта