МУ ПЗ МДК02.01. Методические указания по выполнению практических работ по междисциплинарному курсу мдк 02. 01 Организация и технология проверки электрооборудования
Скачать 3.48 Mb.
|
Тема занятия: «Снятие зависимости мощности от изменения питающей сети бытовых приборов» Формируемые компетенции:
Цель занятия: Научиться снимать зависимости мощности от изменения питающей сети бытовых приборов. В результате освоения темы студент будет: Иметь практический опыт: -заполнения технологической документации; -работы с измерительными электрическими приборами; -средствами измерений, стендами; Уметь: - выполнять испытания и наладку осветительных электроустановок; - проводить электрические измерения; - снимать показания приборов; -проверять электрооборудование на соответствие чертежам, электрическим схемам, техническим условиям; Знать: - общую классификацию измерительных приборов; -схемы включения приборов в электрическую цепь; -документацию на техническое обслуживание приборов; -систему эксплуатации и поверки приборов; -общие правила технического обслуживания измерительных приборов. Оснащение (ресурсы, учебные материалы): Методические указания к работе, опорные конспекты, паспорта приборов. Задания к практическому занятию Произвести снятие зависимости мощности от изменения питающей сети бытовых приборов. Заполнить протокол. Инструктаж: Описание каждого практического задания содержит: тему, цель задания, порядок выполнения работы, а так же перечень контрольных вопросов. Для получения дополнительной, более подробной информации по изучаемым вопросам, приведено учебно-методическое и информационное обеспечение. Вариант задания назначается преподавателем. Прежде чем приступить к выполнению практического задания необходимо самостоятельно изучить учебный материал темы, ознакомиться с методическими указаниями к выполнению соответствующего практического задания. Необходимо пользоваться учебниками, рекомендованными данным пособием, так как в расчете на них составлены методические указания к выполнению практических заданий. Рекомендуется следующий порядок выполнения практического задания: 1. Прочитать краткие теоретические сведения 2. Изучить инструкции по работе с приборами 3. Снятие зависимости мощности от изменения питающей сети бытовых приборов Требования к результату: в отчете необходимо отразить следующее: 1. Дата и тема практической работы. 2. Цель практической работы. 3. Заполненный протокол. 4. Ответы на контрольные вопросы. Теоретические сведения Как снимать зависимости мощности от изменения питающей сети бытовых приборов Отклонения ПКЭ от нормируемых значений ухудшают условия эксплуатации электрооборудования энергоснабжающих организаций и потребителей электроэнергии, могут привести к значительным убыткам как в промышленности, так и в бытовом секторе, обуславливают, как уже отмечалось, технологический и электромагнитный ущербы. От электрических сетей систем электроснабжения общего назначения питаются ЭП различного назначения, рассмотрим промышленные и бытовые ЭП. Наиболее характерными типами ЭП, широко применяющимися на предприятиях различных отраслей промышленности, являются электродвигатели иустановки электрического освещения. Значительное распространение находят электротермические установки, а также вентильные преобразователи, служащие для преобразования переменного тока в постоянный. Постоянный ток на промышленных предприятиях применяется для питания двигателей постоянного тока, для электролиза, в гальванических процессах, при некоторых видах сварки и т. д. Электродвигатели применяются в приводах различных производственных механизмов. В установках, не требующих регулирования частоты вращения в процессе работы, применяются электроприводы переменного тока: асинхронные и синхронные электродвигатели. Установлена наиболее экономичная область применения асинхронных и синхронных электродвигателей в зависимости от напряжения. При напряжении до 1 кВ и мощности до 100 кВт экономичнее применять асинхронные двигатели, а свыше 100 кВт - синхронные, при напряжении до 6 кВ и мощности до 300 кВт - асинхронные двигатели, а выше 300 кВт - синхронные, при напряжении 10 кВ и мощности до 400 кВт - асинхронные двигатели, выше 400 кВт – синхронные. Большое распространение асинхронных двигателей обусловлено их простотой в исполнении и эксплуатации и относительно небольшой стоимостью. Синхронные двигатели имеют ряд преимуществ по сравнению с асинхронными двигателями: обычно используются в качестве источников реактивной мощности, их вращающий момент меньше зависит от напряжения на зажимах, во многих случаях они имеют более высокий КПД. В то же время синхронные двигатели являются более дорогими и сложными в изготовлении и эксплуатации. Установки электрического освещения с лампами накаливания, люминесцентными, дуговыми, ртутными, натриевыми, ксеноновыми применяются на всех предприятиях для внутреннего и наружного освещения, для нужд городского освещения и т.д. Электросварочные установки переменного тока дуговой и контактной сварки представляют собой однофазную неравномерную и несинусоидальную нагрузку с низким коэффициентом мощности: 0,3 для дуговой сварки и 0,7 для контактной. Сварочные трансформаторы и аппараты малой мощности подключаются к сети 380/220 В, более мощные – к сети 6 – 10 кВ . Вентильные преобразователи в силу специфики их регулирования являются потребителями реактивной мощности (коэффициент мощности вентильных преобразователей прокатных станов колеблется от 0,3 до 0,8), что вызывает значительные отклонения напряжения в питающей сети; коэффициент несинусоидальности при работе тиристорных преобразователей прокатных станов может достигать значения более 30 % на стороне 10 кВ питающего их напряжения, на симметрию напряжения в силу симметричности их нагрузок вентильные преобразователи не влияют . Электросварочные установки могут являться причиной нарушения нормальных условий работы для других ЭП. В частности, сварочные агрегаты, мощность которых в настоящее время достигает 1500 кВт в единице, вызывают значительно большие колебания напряжения в электрических сетях, чем, например, пуск асинхронных двигателей с короткозамкнутым ротором. Кроме того, эти колебания напряжения происходят длительно и с широким диапазоном частот, в том числе и в самом неприятном для установок электрического освещения диапазоне (порядка 10 Гц). Электротермические установки в зависимости от метода нагрева делятся на группы: дуговые печи, печи сопротивления прямого и косвенного действия, электронные плавильные печи, вакуумные, шлакового переплава, индукционные печи. Данная группа ЭП также оказывает неблагоприятное влияние на питающую сеть, например, дуговые печи, которые могут иметь мощность до 10 МВт, в настоящее время сооружаются как однофазные. Это приводит к нарушению симметрии токов и напряжений (последнее происходит в связи с падениями напряжения на сопротивлениях сети от токов разных последовательностей). Кроме того, дуговые печи, как и вентильные установки, являются нелинейными ЭП с малой инерционностью. Поэтому они приводят к несинусоидальности токов, а, следовательно, и напряжений. Современная электрическая нагрузка квартиры (коттеджа) характеризуется широким спектром бытовых ЭП, которые по их назначению и влиянию на электрическую сеть можно разделить на следующие группы: пассивные потребители активной мощности (лампы накаливания, нагревательные элементы утюгов, плит, обогревателей); ЭП с асинхронными двигателями, работающими в трехфазном режиме (привод лифтов, насосов - в системе водоснабжения и отопления и др.); ЭП с асинхронными двигателями, работающими в однофазном режиме (привод компрессоров холодильников, стиральных машин и др.); ЭП с коллекторными двигателями (привод пылесосов, электродрелей и др.); сварочные агрегаты переменного и постоянного тока (для ремонтных работ в мастерской и др.); выпрямительные устройства(для зарядки аккумуляторов и др.); радиоэлектронная аппаратура (телевизоры, компьютерная техника и др.);высокочастотные установки (печи СВЧ и др.); лампы люминесцентного освещения. Воздействие каждого отдельно взятого бытового ЭП незначительно, совокупность же ЭП, подключаемых к шинам 0,4 кВ трансформаторной подстанции, оказывает существенное влияние на питающую сеть. 4.2 Влияние отклонений напряжения Отклонения напряженияоказывают значительное влияние на работу асинхронных двигателей (АД), являющихся наиболее распространенными приемниками электроэнергии в промышленности. Рис.4.1. Механическая характеристика двигателя при номинальном (М1) и пониженном (М2) напряжениях. При изменении напряжения изменяется механическая характеристика АД – зависимость его вращающего момента М от скольжения s или частоты вращения (рис.4.1). С достаточной точностью можно считать, что вращающий момент двигателя пропорционален квадрату напряжения на его выводах. При снижении напряжения уменьшается вращающий момент и частота вращения ротора двигателя, так как увеличивается его скольжение. Снижение частоты вращения зависит также от закона изменения момента сопротивления Mc (на рис 4.1 Mc принят постоянным) и от загрузки двигателя. Зависимость частоты вращения ротора двигателя от напряжения можно выразить: где – синхронная частота вращения; – коэффициент загрузки двигателя; , – номинальные значения напряжения и скольжения соответственно. Из формулы (4.1) видно, что при малых загрузках двигателя частота вращения ротора будет больше номинальной частоты вращения (при номинальной загрузке двигателя). В таких случаях понижения напряжения не приводят к уменьшению производительности технологического оборудования, так как снижения частоты вращения двигателей ниже номинальной не происходит. Для двигателей, работающих с полной нагрузкой, понижение напряжения приводит к уменьшению частоты вращения. Если производительность механизмов зависит от частоты вращения двигателя, то на выводах таких двигателей рекомендуется поддерживать напряжение не ниже номинального. При значительном снижении напряжения на выводах двигателей, работающих с полной нагрузкой, момент сопротивления механизма может превысить вращающий момент, что приводит к “опрокидыванию” двигателя, т.е. к его остановке. Во избежание повреждений двигатель необходимо отключить от сети. Снижение напряжения ухудшает и условия пуска двигателя, так как при этом уменьшается его пусковой момент. Практический интерес представляет зависимость потребляемой двигателем активной и реактивной мощности от напряжения на его выводах. В случае снижения напряжения на зажимах двигателя реактивная мощность намагничивания уменьшается (на 2 – 3 % при снижении напряжения на 1 %), при той же потребляемой мощности увеличивается ток двигателя, что вызывает перегрев изоляции. Если двигатель длительно работает при пониженном напряжении, то из-за ускоренного износа изоляции срок службы двигателя уменьшается. Приближенно срок службы изоляции Т можно определить по формуле: (4.2) где – срок службы изоляциидвигателяпри номинальном напряжении и номинальной нагрузке; R – коэффициент, зависящий от значения и знака отклонения напряжения, а также откоэффициента загрузки двигателяи равный: , при - 0,2 < <0; (4.3) при 0,2 ≥ > 0; (4.4) . Поэтому с точки зрения нагрева двигателя более опасны в рассматриваемых пределах отрицательные отклонения напряжения. Снижение напряжения приводит также к заметному росту реактивной мощности, теряемой в реактивных сопротивлениях рассеяния линий, трансформаторов и АД. Повышение напряжения на выводах двигателя приводит к увеличению потребляемой ими реактивной мощности. При этом удельное потребление реактивной мощности растет с уменьшением коэффициента загрузки двигателя. В среднем на каждый процент повышения напряжения потребляемая реактивная мощность увеличивается на 3 % и более (в основном за счет увеличения тока холостого хода двигателя), что в свою очередь приводит к увеличению потерь активной мощности в элементах электрической сети. Лампы накаливания характеризуются номинальными параметрами: потребляемой мощностью , световым потоком , световой отдачей (равной отношению излучаемого лампой светового потока к ее мощности) и средним номинальным сроком службы .Эти показатели в значительной мере зависят от напряжения на выводахламп накаливания. При отклонениях напряжения на 10% эти характеристики приближенно можно описать следующими эмпирическими формулами: (4.5) (4.6) (4.7) (4.8) Рис.4.2. Зависимости характеристик ламп накаливания от напряжения: 1 – потребляемая мощность, 2 – световой поток, 3 – световая отдача, 4 – срок службы. Из кривых на рис.4.2. видно, что со снижением напряжения наиболее заметно падает световой поток. При повышении напряжения сверх номинального увеличивается световой поток F, мощность лампы P и световая отдача h , но резко снижается срок службы ламп Т и в результате они быстро перегорают. При этом имеет место и перерасход электроэнергии. Изменения напряжения приводят к соответствующим изменениям светового потока и освещенности, что, в конечном итоге, оказывает влияние на производительность труда и утомляемость человека. Люминесцентные лампы менее чувствительны к отклонениям напряжения. При повышении напряжения потребляемая мощность и световой поток увеличиваются, а при снижении – уменьшаются, но не в такой степени как у ламп накаливания. При пониженном напряжении условия зажигания люминесцентных ламп ухудшаются, поэтому срок их службы, определяемый распылением оксидного покрытия электродов, сокращается как при отрицательных, так и при положительных отклонениях напряжения. При отклонениях напряжения на 10% срок службы люминесцентных ламп в среднем снижается на 20 – 25%. Существенным недостатком люминесцентных ламп является потребление ими реактивной мощности, которая растет с увеличением подводимого к ним напряжения. Отклонения напряжения отрицательно влияют на качество работы и срок службы бытовой электронной техники(радиоприемники, телевизоры, телефонно-телеграфная связь, компьютерная техника). |