Главная страница

МУ ПЗ МДК02.01. Методические указания по выполнению практических работ по междисциплинарному курсу мдк 02. 01 Организация и технология проверки электрооборудования


Скачать 3.48 Mb.
НазваниеМетодические указания по выполнению практических работ по междисциплинарному курсу мдк 02. 01 Организация и технология проверки электрооборудования
Дата28.11.2022
Размер3.48 Mb.
Формат файлаdocx
Имя файлаМУ ПЗ МДК02.01.docx
ТипМетодические указания
#817014
страница14 из 14
1   ...   6   7   8   9   10   11   12   13   14

Вентильные преобразователи обычно имеют систему автоматического регулирования постоянного тока путем фазового управления. При повышении напряжения в сети угол регулирования автоматически увеличивается, а при понижении напряжения уменьшается. Повышение напряжения на 1 % приводит к увеличению потребления реактивной мощности преобразователем примерно на 1-1,4%, что приводит к ухудшению коэффициента мощности. В то же время другие показатели вентильных преобразователей с повышением напряжения улучшаются, и поэтому выгодно повышать напряжение на их выводах в пределах допустимых значений.

Электрические печи чувствительны к отклонениям напряжения. Понижение напряжения электродуговых печей, например, на 7 % приводит к удлинению процесса плавки стали в 1,5 раза. Повышение напряжения выше 5% приводит к перерасходу электроэнергии.

Отклонения напряжения отрицательно влияют на работу электросварочных машин: например, для машин точечной сварки при изменении напряжения на 15% получается 100 % - ный брак продукции.

4.3 Влияние колебаний напряжения

К числу ЭП, чрезвычайно чувствительных к колебаниям напряжения относятся осветительные приборы, особенно лампы накаливания и электронная техника.

Стандартом определяется воздействие колебаний напряжения на осветительные установки, влияющие на зрение человека. Мигание источников освещения (фликер-эффект) вызывает неприятный психологический эффект, утомление зрения и организма в целом. Это ведет к снижению производительности труда, а в ряде случаев и к травматизму.

Наиболее сильное воздействие на глаз человека оказывают мигания с частотой 3 - 10 Гц, поэтому допустимые колебания напряжения в этом диапазоне минимальны - менее 0,5 % .

При одинаковых колебаниях напряжения отрицательное влияние ламп накаливания проявляется в значительно большей мере, чем газоразрядных ламп. Колебания напряжения более 10 % могут привести к погасанию газоразрядных ламп. Зажигание их в зависимости от типа ламп происходит через несколько секунд и даже минут.

Колебания напряжения нарушают нормальную работу и уменьшают срок службы электронной аппаратуры: радиоприемников, телевизоров, телефонно-телеграфной связи, компьютерной техники, рентгеновских установок, радиостанций, телевизионных станций и т.д.

При значительных колебаниях напряжения (более 15%) могут быть нарушены условия нормальной работы электродвигателей, возможно отпадание контактов магнитных пускателей с соответствующим отключением работающих двигателей.

Колебания напряжения с размахом 10 – 15 % могут привести к выходу из строя батарей конденсаторов, а также вентильных преобразователей.

Влияние колебаний напряжения на отдельные приемники электроэнергии изучены еще недостаточно. Это затрудняет технико - экономический анализ при проектировании и эксплуатации систем электроснабжения с резко переменными нагрузками.

4.4 Влияние несимметрии напряжений

Несимметрия напряжений, как уже отмечалось, вызывается чаще всего наличием несимметричной нагрузки. Несимметричные токи нагрузки, протекающие по элементам системы электроснабжения, вызывают в них несимметричные падения напряжения. Вследствие этого на выводах ЭП появляется несимметричная система напряжений. Отклонения напряжения у ЭП перегруженной фазы могут превысить нормально допустимые значения, в то время как отклонения напряжения у ЭП других фаз будут находиться в нормируемых пределах. Кроме ухудшения режима напряжения у ЭП при несимметричном режиме существенно ухудшаются условия работы как самих ЭП, так и всех элементов сети, снижается надежность работы электрооборудования и системы электроснабжения в целом .

Качественно отличается действие несимметричного режима по сравнению с симметричным для таких распространенных трехфазных ЭП, как асинхронные двигатели. Особое значение для них имеет напряжение обратной последовательности. Сопротивление обратной последовательности электродвигателей примерно равно сопротивлению заторможенного двигателя и, следовательно, в 5 – 8 раз меньше сопротивления прямой последовательности. Поэтому даже небольшая несимметрия напряжений вызывает значительные токи обратной последовательности. Токи обратной последовательности накладываются на токи прямой последовательности и вызывают дополнительный нагрев статора и ротора (особенно массивных частей ротора), что приводит к ускоренному старению изоляции и уменьшению располагаемой мощности двигателя (уменьшению к.п.д. двигателя). Так, срок службы полностью загруженногоасинхронного двигателя, работающего при несимметрии напряжения 4%, сокращается в 2 раза. При несимметрии напряжения 5% располагаемая мощность двигателя уменьшается на 5 – 10% .

При несимметрии напряжений сети в синхронных машинах наряду с возникновением дополнительных потерь активной мощности и нагревом статора и ротора могут возникнуть опасные вибрации в результате появления знакопеременных вращающих моментов и тангенциальных сил, пульсирующих с двойной частотой сети. При значительной несимметрии вибрация может оказаться опасной, а в особенности при недостаточной прочности и наличии дефектов сварных соединений. При несимметрии токов, не превышающей 30%, опасные перенапряжения в элементах конструкций, как правило, не возникают.

Правила технической эксплуатации электрических сетей и станций в РФ указывают, что “длительная работа генераторов и синхронных компенсаторов при неравных токах фаз допускается, если разница токов не превышает 10% номинального тока статора для турбогенераторов и 20% для гидрогенераторов. При этом токи в фазах не должны превышать номинальных значений. Если эти условия не выполняются, то необходимо принимать специальные меры по уменьшению несимметрии”.

В случае наличия токов обратной и нулевой последовательности увеличиваются суммарные токи в отдельных фазах элементов сети, что приводит к увеличению потерь активной мощности и может быть недопустимо с точки зрения нагрева. Токи нулевой последовательности протекают постоянно через заземлители. При этом дополнительно высушивается и увеличивается сопротивление заземляющих устройств. Это может быть недопустимым с точки зрения работы релейной защиты,а также из-за усиления воздействия на низкочастотные установки связи и устройства железнодорожной блокировки .

Несимметрия напряжения значительно ухудшает режимы работы многофазных вентильных выпрямителей: значительно увеличивается пульсация выпрямленного напряжения, ухудшаются условия работы системы импульсно-фазового управления тиристорных преобразователей.

Конденсаторные установки при несимметрии напряжений неравномерно загружаются реактивной мощностью по фазам, что делает невозможным полное использование установленной конденсаторной мощности. Кроме того, конденсаторные установки в этом случае усиливают уже существующую несимметрию, так как выдача реактивной мощности в сеть в фазе с наименьшим напряжением будет меньше, чем в остальных фазах (пропорционально квадрату напряжения на конденсаторной установке) .

Несимметрия напряжений значительно влияет и на однофазные ЭП, если фазные напряжения неравны, то, например, лампы накаливания, подключенные к фазе с более высоким напряжением, имеют больший световой поток, но значительно меньший срок службы по сравнению с лампами, подключенными к фазе с меньшим напряжением. Несимметрия напряжений усложняет работу релейной защиты, ведет к ошибкам при работе счетчиков электроэнергии и т.д.

4.5 Влияние несинусоидальности напряжения

ЭП с нелинейными вольт-амперными характеристиками потребляют из сети несинусоидальные токи при подведении к их зажимам синусоидального напряжения. Токи высших гармоник, проходя по элементам сети, создают падения напряжения в сопротивлениях этих элементов и, накладываясь на основную синусоиду напряжения, приводят к искажениям формы кривой напряжения в узлах электрической сети. В связи с этим ЭП с нелинейной вольт-амперной характеристикой часто называют источниками высших гармоник.

Наиболее серьезные нарушения КЭ в электрической сети имеют место при работе мощных управляемых вентильных преобразователей. При этом порядок высших гармонических составляющих тока и напряжения в сети определяется по формуле



где m – число фаз выпрямления;

k – последовательный ряд натуральных чисел (0,1,2 …).

В зависимости от схемы выпрямления вентильные преобразователи генерируют в сеть следующие гармоники тока: при 6-фазной схеме – до 19-го порядка; при 12-фазной схеме – до 25-го порядка включительно .

Коэффициент искажения синусоидальности кривой напряжения в сетях с электродуговыми сталеплавильными и руднотермическими печами определяется в основном 2, 3, 4, 5, 7-й гармониками.

Коэффициент искажения синусоидальности кривой напряжения установок дуговой и контактной сварки определяется в основном 5, 7, 11, 13-й гармониками.

Токи 3-й и 5-й гармоник газоразрядных ламп составляют 10 и 3 % от тока 1-й гармоники. Эти токи совпадают по фазе в соответствующих линейных проводах сети и, складываясь в нулевом проводе сети 380/220 В, обусловливают ток в нем, почти равный току в фазном проводе. Остальными гармониками для газоразрядных ламп можно пренебречь .

Исследования кривой тока намагничивания трансформаторов, включенных в сеть синусоидального напряжения, показали, что при трехстержневом сердечнике и соединениях обмоток U/U; и /U; в электрической сети имеются все нечетные гармоники, в том числе гармоники, кратные трем. Гармоники, кратные трем, обусловлены несимметрией намагничивающих токов по фазам:

(4.10)

Действующее значение намагничивающего тока трансформатора:

(4.11)

Токи намагничивания образуют системы токов прямой и обратной последовательности, которые по абсолютной величине одинаковы для гармоник, кратных трем. Для других нечетных гармоник токи обратной последовательности составляют около 0,25 токов прямой последовательности .

Если на вводы трансформаторов подается несинусоидальное напряжение возникают дополнительные составляющие высших гармоник тока. Трансформаторы ГПП дают 5-ю гармонику небольшой величины .

В целом несинусоидальные режимы обладают теми же недостатками, что и несимметричные.

Высшие гармоники тока и напряжения вызывают дополнительные потери активной мощности во всех элементах системы электроснабжения: в линиях электропередачи, трансформаторах, электрических машинах, статических конденсаторах, так как сопротивления этих элементов зависят от частоты.

Так, например, емкостное сопротивление конденсаторов, устанавливаемых в целях компенсации реактивной мощности, с повышением частоты подводимого напряжения уменьшается. Поэтому, если в напряжении питающей сети есть высшие гармоники, то сопротивление конденсаторов на этих гармониках оказывается значительно ниже, чем на частоте 50 Гц. Из-за этого в конденсаторах, предназначенных для компенсации реактивной мощности, даже небольшие напряжения высших гармоник могут вызвать значительные токи гармоник. На предприятиях с большим удельным весом нелинейных нагрузок батареи конденсаторов работают плохо. Они или отключаются защитой от перегрузки по току или за короткий срок выходят из строя из-за вспучивания банок (или ускоренного старения изоляции). Известны случаи, когда на предприятиях с развитой кабельной сетью напряжением 6 –10 кВ батареи конденсаторов оказываются в режиме резонанса токов (или близких к этому режиму) на частоте какой – либо из гармоник, что приводит к опасной перегрузке их по току.

Высшие гармоники вызывают:

  • паразитные поля и электромагнитные моменты в синхронных и асинхронных двигателях, которые ухудшают механические характеристики и КПД машины. В результате необратимых физико-химических процессов, протекающих под воздействием полей высших гармоник, а также повышенного нагрева токоведущих частей наблюдается:

  • ускоренное старение изоляции электрических машин, трансформаторов, кабелей;

  • ухудшение коэффициента мощности ЭП;

  • ухудшение или нарушение работы устройств автоматики, телемеханики, компьютерной техники и других устройств с элементами электроники;

  • погрешности измерений индукционных счетчиков электроэнергии, которые приводят к неполному учету потребляемой электроэнергии;

  • нарушение работы самих вентильных преобразователей при высоком уровне высших гармонических составляющих.

  • Наличие высших гармоник неблагоприятно сказывается на работе не только электрооборудования потребителей, но и электронных устройствах в энергосистемах.

  • Для некоторых установок (система импульсно-фазового управления вентильными преобразователями, комплектные устройства автоматики и др.) допустимые значения отдельных гармоник тока (напряжения) указываются изготовителем в паспорте изделия.

Кривая напряжения, подводимого к ЭП, не должна содержать высших гармоник в установившемся режиме работы электросети. Следует подчеркнуть, что в условиях работы ЭП, несинусоидальность напряжения проявляется совместно с действиями других влияющих факторов и поэтому необходимо рассматривать всю совокупность факторов совместно.

4.6 Влияние отклонения частоты

Жесткие требования стандарта к отклонениям частоты питающего напряжения обусловлены значительным влиянием частоты на режимы работы электрооборудования, ход технологических процессов производства и, как следствие, технико-экономические показатели работы промышленных предприятий.

Электромагнитная составляющая ущерба обусловлена увеличением потерь активной мощности в электрических сетях и ростом потребления активной и реактивной мощностей. Известно, что снижение частоты на 1 % увеличивает потери в электрических сетях на 2 % .

Технологическая составляющая ущерба вызвана в основном недовыпуском промышленными предприятиями своей продукции и стоимостью дополнительного времени работы предприятия для выполнения задания. Согласно экспертным оценкам значение технологического ущерба на порядок выше электромагнитного .

Анализ работы предприятий с непрерывным циклом производства показал, что большинство основных технологических линий оборудовано механизмами с постоянным и вентиляторным моментами сопротивлений, а их приводами служат асинхронные двигатели. Частота вращения роторов двигателей пропорциональна изменению частоты сети, а производительность технологических линий зависит от частоты вращения двигателя.

Степень влияния частоты на производительность ряда механизмов может быть выражена через потребляемую ими активную мощность:

(4.4)

где a - коэффициент пропорциональности, зависящий от типа механизма;

f - частота сети;

n – показатель степени.

В зависимости от значений показателя степени n, ЭП можно разбить на следующие группы:

  1. механизмы с постоянным моментом сопротивления - поршневые насосы, компрессоры, металлорежущие станки и др.; для них n=1;

  2. механизмы с вентиляторным моментом сопротивления - центробежные насосы, вентиляторы, дымососы и др.; для нихn=3; на ТЭС, КЭС, АЭС обычно это двигатели насосов питательной воды, циркуляционных насосов, дымовых вентилятоов, маслонасосов и т. д.

  3. механизмы, длякоторых n=3,5-4 - центробежные насосы, работающие с большим статическим напором (противодавлением), например, питательные насосы котельных .

ЭП 2-й и 3-й групп, наиболее подверженые влиянию частоты, имеют регулировочные возможности, благодаря которым потребляемая ими мощность из сети остается практически неизменной.

Наиболее чувствительны к понижению частоты двигатели собственных нужд электростанций. Снижение частоты приводит к уменьшению их производительности, что сопровождается снижением располагаемой мощности генераторов и дальнейшим дефицитом активной мощности и снижением частоты (имеет место лавина частоты).

Такие ЭП, как лампы накаливания, печи сопротивления, дуговые электрические печи на изменение частоты практически не реагируют.

Отклонения частоты отрицательно влияют на работу электронной техники: отклонение частоты более +0,1 Гц приводит к яркостным и геометрическим фоновым искажениям телевизионного изображения, изменения частоты от 49,9 до 49,5 Гц влечет за собой почти четырехкратное увеличение допустимого размаха телевизионного сигнала к фоновой помехе. Изменение частоты до 49,5 Гц требует существенного ужесточения требований к отношению сигнал/фоновая помеха во всех звеньях телевизионного тракта – от оборудования аппаратно-студийного комплекса до телевизионного приемника, выполнение которых сопряжено со значительными материальными затратами .

Кроме этого, пониженная частота в электрической сети влияет и на срок службы оборудования, содержащего элементы со сталью (электродвигатели, трансформаторы, реакторы со стальным магнитопроводом), за счет увеличения тока намагничивания в таких аппаратах и дополнительного нагрева стальных сердечников.

Для предотвращения общесистемных аварий, вызванных снижением частоты предусматриваются специальные устройства автоматической частотной разгрузки (АЧР), отключающие часть менее ответственных потребителей. После ликвидации дефицита мощности, например после включения резервных источников, специальные устройства частотного автоматического повторного включения (ЧАПВ) включают отключенных потребителей и нормальная работа системы восстанавливается.

Поддержание нормальной частоты, соответствующей требованиям стандарта является технической, а не научной задачей, основной путь решения которой – ввод генерирующих мощностей с целью создания резервов мощности в сетях энергоснабжающих организаций.

4.7 Влияние электромагнитных помех

В системах электроснабжения общего назначения нашли широкое применение электронные и микроэлектронные системы управления, микропроцессоры и ЭВМ, что привело к снижению уровня помехоустойчивости систем управления ЭП и резкому возрастанию количества их отказов. Основной причиной отказов является воздействие электромагнитных переходных помех, возникающих при электромагнитных переходных процессах как в сетях энергосистем, так и в городских, и промышленных электрических сетях. Длительность протекания переходных процессов составляет от нескольких периодов тока промышленной частоты до нескольких секунд, а эффективная полоса частот помех может достигать десятков мегагерц.

Характеристикой электромагнитных переходных помех являются провалы и импульсы напряжения, кратковременные перенапряжения. Для этих ПКЭ стандарт не устанавливает допустимых численных значений, однако, рассматривает эти помехи в рамках проблемы электромагнитной совместимости.

Электромагнитные переходные помехи, сопровождающиеся провалами напряжения, возникают, в основном, при однофазных коротких замыканиях воздушных линий вследствие перекрытия изоляции. Эти повреждения либо самоликвидируются, либо устраняются при кратковременном отключении с последующим автоматическим повторным включением (АПВ). Кроме того, причиной возникновения провалов напряжения являются междуфазные замыкания, возникающие в результате атмосферных явлений, а также отключения питающих линий и конденсаторов. Количество провалов напряжения с глубиной до 20 % достигает в распределительных сетях 55 – 60 %. Свыше 60 % остановов механизмов приходится на провалы напряжения с глубиной более 20 %.

Причиной возникновения электромагнитных переходных помех в системах электроснабжения общего назначения могут быть перенапряжения, возникающие при однофазных замыканиях на землю, при коммутациях батарей конденсаторов и резонансных фильтров, при отключении ненагруженных кабельных линий и трансформаторов, при одновременной коммутации контактов выключателей и другой коммутационной аппаратуры, при неполнофазных режимах работы электрической сети вследствие различных причин, приводящих к феррорезонансным явлениям. Восприимчивость электронного оборудования и ЭВМ к перенапряжениям зависит как от АЧХ ЭП, так и от АЧХ электромагнитных помех.

Увеличение мощности энергосистем и количества воздушных линий, применяемых для повышения надежности электроснабжения промышленных предприятий, приводит к снижению надежности функционирования сложных электронных систем управления и возрастанию числа отказов помехочувствительных ЭП.

Как уже отмечалось, при значениях всех ПКЭ по напряжению, отличных от нормируемых, происходит ускоренное старение изоляции электрооборудования, в результате возрастает интенсивность потоков отказов с течением времени. Так, при несинусоидальности кривой напряжения сети даже при резонансной настройке дугогасящих аппаратов, через место замыкания на землю проходит ток высших гармоник, и может произойти прожигание кабеля в месте первого повреждения. В этом случае возможно возникновение, как показывает опыт эксплуатации, одновременно двух и более аварий из-за перенапряжений.

При низком КЭ имеет место взаимозависимость отказов элементов, например, когда отрицательное влияние нелинейных, нессимметричных и ударных нагрузок скомпенсировано с помощью соответствующих корректирующих устройств при отключении того или иного устройства. Так, выход из строя быстродействующего статического компенсатора вызывает появление несимметрии, колебаний и гармоник напряжения, которые ранее компенсировались, что, в свою очередь, чревато возникновением ложных срабатываний релейных защит, аварийным выходом из строя некоторых видов электрооборудования и другими аналогичными отрицательными последствиями. Сбои в каналах передачи информации по силовым цепям при наличии гармоник приводят к подаче неправильных команд на управление коммутационной аппаратурой . Таким образом, КЭ существенно влияет на надёжность электроснабжения, поскольку аварийность в сетях с низким КЭ выше, чем в случае, когда ПКЭ находятся в допустимых пределах.

Контрольные вопросы.
Критерии оценки:

Оценка «5» ставится в том случае, если обучающийся:

а) выполнил работу в полном объеме с соблюдением необходимой последовательности выполнения практической работы;

б) в представленном отчете правильно и аккуратно выполнил все записи, таблицы, рисунки, чертежи, графики, вычисления и сделал выводы;

в) соблюдал требования безопасности труда.

Оценка «4» ставится в том случае, если выполнены требования к оценке «5», но:

а) было, допущено два-три недочета, или не более одной негрубой ошибки и одного недочета.

Оценка «3» ставится, если работа выполнена не полностью, но объем выполненной части таков, что позволяет получить правильные результаты и выводы, или если в ходе проведения опыта и измерений были допущены следующие ошибки:

а) в отчете были допущены в общей сложности не более двух ошибок (в записях единиц, измерениях, в вычислениях, графиках, таблицах, схемах, анализе погрешностей и т. д.), не принципиального для данной работы характера, но повлиявших на результат выполнения,

в) работа выполнена не полностью, однако объем выполненной части таков, что позволяет получить правильные результаты и выводы по основным, принципиально важным задачам работы.

Оценка «2» ставится в том случае, если:

а) работа выполнена не полностью, и объем выполненной части работы не позволяет сделать правильных выводов,

б) в ходе работы и в отчете обнаружились в совокупности все недостатки, отмеченные в требованиях к оценке «3».

Защита практической работы

«Отлично»: выполнены все задания практической (лабораторной) работы, обучающийся четко и без ошибок ответил на все контрольные вопросы.

«Хорошо»: выполнены все задания практической (лабораторной) работы; обучающийся ответил на все контрольные вопросы с замечаниями.

«Удовлетворительно»: выполнены все задания практической (лабораторной) работы с замечаниями; обучающийся ответил на все контрольные вопросы с замечаниями.

«Неудовлетворительно» (не зачтено): обучающийся не выполнил или выполнил неправильно задания практической (лабораторной) работы; обучающийся ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы.
Информационное обеспечение

Печатные издания

  1. Сидорова Л.Г.Сборка, монтаж, регулировка и ремонт узлов и механизмов оборудования, агрегатов, машин, станков и другого электрооборудования промышленных организаций. Уч. М. Изд-во центр «Академия»,

  2. Сибикин Ю.Д. Техническое обслуживание, ремонт электрооборудования и сетей промышленных предприятий. Уч. в 2-х кн.; кн.1 М.- Изд. центр «Академия»,

  3. В. М. Нестеренко. А. М. Мысьянов. Технология электромонтажных работ: Москва,«Академия», Сибикин Ю.Д., Сибикин М.Ю. Техническое обслуживание, ремонт электрооборудования и сетей промышленных предприятий. Уч. в 2-х кн.; кн.2. М.- Изд. центр «Академия»,

  4. С.В.Григорьева. Общая технология электромонтажных работ. - Москва, "Академия",

Электронные издания .

http://www.electrolibrary.info/books/20lessons.htm"20 Уроков по Электромонтажу Иллюстрированное практическое руководство для начинающих электромонтажников"

- http://yanviktor.narod.ru/ - Электролаборатория

http://almih.narod.ru/lib-en.htm - Всё для электрика. ПУЭ,ПТЭ И ПТБ, ГОСТЫ, ЕСКД, Справочники, книги серии «Библиотека Электромонтёра» и т.д.

- http://www.v-bazis.ru - Всё от электрике и электромонтаже. Общие сведения, розетки, Электропроводки, Заземление и электробезовасность, Полезные советы и т.д.

Дополнительные источники

1.Москаленко В.В. Справочник электромонтера. – М. Изд. центр «Академия».

2.Сибикин Ю.Д. Справочник электромонтера по ремонту электрооборудования промышленных предприятий. – М. Изд-во «Радиософт».

3.Суворов А.В. Современный справочник электрика. Ростов на Дону. Феникс.
1   ...   6   7   8   9   10   11   12   13   14


написать администратору сайта