Главная страница

Фатыхов М.А. Лекции по механикe. Министерство образования и науки


Скачать 3.22 Mb.
НазваниеМинистерство образования и науки
АнкорФатыхов М.А. Лекции по механикe.doc
Дата18.04.2018
Размер3.22 Mb.
Формат файлаdoc
Имя файлаФатыхов М.А. Лекции по механикe.doc
ТипУчебное пособие
#18177
страница13 из 17
1   ...   9   10   11   12   13   14   15   16   17

6. Свободные затухающие колебания
Рассмотрим свободные затухающие колебания – колебания, амплитуда которых из-за потерь энергии реальной колебательной системы с течением времени уменьшается. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических колебательных системах.

Закон затухающих колебаний определяется свойствами колебательных систем. Обычно рассматривают линейные системы – идеализированные реальные системы, в которых параметры, определяющие физические свойства системы, в ходе процесса не изменяются. Линейными системами являются, например, пружинный маятник при малых растяжениях пружины (когда справедлив закон Гука). Различные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями, что позволяет подходить к изучению колебаний различной физической природы с единой точки зрения, а также проводить их моделирование, в том числе и на ЭВМ.

Дифференциальное уравнение свободных затухающих колебаний линейной системы задается в виде

, (11.39)

где s – колеблющаяся величина, описывающая тот или иной физический процесс, = const – коэффициент затухания, – циклическая частота свободных незатухающих колебаний той же колебательной системы, т.е. при (при отсутствии потерь энергии) называется собственной частотой колебательной системы.

Решение уравнения (11.39) рассмотрим в виде

(11.40)

где u = u(t). После нахождения первой и второй производных выражения (11.40) и подстановки их в (11.39) получим

(11.41)

Решение этого уравнения зависит от знака коэффициента перед искомой величиной. Рассмотрим случай, когда этот коэффициент положителен:

(11.42)

Тогда получим уравнение типа (11.4): .

Решением его является функция .

Таким образом, решение уравнения (11.39) в случае малых затуханий есть

(11.43)

где , (11.44)

амплитуда затухающих колебаний, – начальная амплитуда.

Промежуток времени , в течение которого амплитуда затухающих колебаний уменьшается в е раз, называется временем релаксации.

Затухание нарушает периодичность колебаний, поэтому затухающие колебания не являются периодическими и, строго говоря, к ним неприменимо понятие периода или частоты. Однако если затухание мало, то можно условно пользоваться понятием периода как промежутка времени между двумя последующими максимумами (или минимумами) колеблющейся физической величины. Тогда период затухающих колебаний равен

Если A(t) и A(t+T) – амплитуды двух последовательных колебаний, соответствующих моментам времени, отличающимся на период, то отношение называется декрементом затухания, а его логарифм

(11.45)

логарифмическим декрементом затухания; N – число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания – постоянная для данной колебательной системы величина.

Для характеристики колебательной системы пользуются понятием добротности Q, которая при малых значениях логарифмического декремента равна

(11.46)

(так как затухание невелико (), то Т принято считать равным T0).

Из формулы (11.46) следует, что добротность пропорциональна числу колебаний N, совершаемых системой за время релаксации.

Применим выводы, полученные для свободных затухающих колебаний линейных систем, для механических колебаний. В качестве примера рассмотрим пружинный маятник.

Для пружинного маятника массой т, совершающего малые колебания под действием упругой силы F=-kx, сила трения пропорциональна скорости, т.е. где – коэффициент сопротивления; знак минус указывает на противоположные направления силы трения и скорости.

При данных условиях закон движения маятника будет иметь вид

(11.47)

Используя формулу и принимая, что коэффициент затухания

, (11.48)

получим дифференциальное уравнение затухающих колебаний маятника:

Из предыдущих выражений вытекает, что маятник колеблется по закону

(11.49)

с частотой .

Добротность пружинного маятника .

При увеличении коэффициента затухания период затухающих колебаний растет и при обращается в бесконечность, т.е. движение перестает быть периодическим. В данном случае колеблющаяся величина асимптотически приближается к нулю, когда . Процесс не будет колебательным. Он называется апериодическим.
7. Вынужденные колебания
Чтобы в реальной механической колебательной системе получить незатухающие колебания, надо компенсировать потери энергии. Такая компенсация возможна с помощью периодически действующей вынуждающей силы, изменяющейся по гармоническому закону:

(11.50)

С учетом силы (11.50) закон движения для пружинного маятника запишется в виде.

Используя соответствующие обозначения, придем к уравнению

(11.51)

Колебания, возникающие под действием внешней периодически изменяющейся силы, называются вынужденными механическими колебаниями.

Решение уравнения (11.51) равно сумме общего решения однородного уравнения (11.47) и частного решения неоднородного уравнения. Частное решение найдем в комплексной форме. Заменим правую часть уравнения (11.51) на комплексную величину :

(11.52)

Частное решение этого уравнения будем искать в виде

Найдем производные для : . Подставляя выражение для и его производных в уравнение (11.52), получим

(11.53)

Так как это равенство должно быть справедливым для всех моментов времени, то время tиз него должно исключаться. Отсюда следует, что . Тогда (11.53) имеет вид Найдем отсюда величину x0 : Оно имеет вид

Это комплексное число удобно представить в экспоненциальной форме: где

(11.54)

и(11.55)

Следовательно, решение уравнения (11.53) в комплексной форме примет вид:

Его вещественная часть равна

, (11.56)

где и задаются соответственно формулами (11.54) и (11.55).

Таким образом, частное решение неоднородного уравнения (11.52) имеет вид

(11.57)

Решение уравнения (11.52) равно сумме общего решения однородного уравнения

(11.58)

и частного решения (11.57). Слагаемое (11.58) играет существенную роль только в начальной стадии процесса (при установлении колебаний) до тех пор, пока амплитуда вынужденных колебаний не достигнет значения, определяемого равенством (11.54). Следовательно, в установившемся режиме вынужденные колебания происходят с частотой и являются гармоническими; амплитуда и фаза колебаний, определяемые выражениями (11.54) и (11.55), также зависят от .
8. Амплитуда и фаза вынужденных колебаний. Резонанс
Рассмотрим зависимость амплитуды А вынужденных колебаний отчастоты .

Из формулы (11.54) следует, что амплитуда А смещения имеет максимум. Чтобы определить резонансную частоту – частоту, при которой амплитуда А смещения достигает максимума, – нужно найти максимум функции (11.54), или, что то же самое, минимум подкоренного выражения. Продифференцировав подкоренное выражение по и приравняв нулю, получим условие, определяющее : .

Это равенство выполняется при и , у которых только лишь положительное значение имеет физический смысл. Следовательно, резонансная частота

(11.59)

Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к частоте называется механическим резонансом. При значение практически совпадает с собственной частотой колебательной системы. Подставляя (11.59) в формулу (11.54), получим

(11.60)

На рис. 11.7 приведена зависимость амплитуды вынужденных колебаний от частоты при различных значениях .



Рис.11.7


Из (11.59) и (11.60) вытекает, что чем меньше , тем выше и правее лежит максимум данной кривой. Если , то все кривые приходят к одному и тому же, отличному от нуля, предельному значению , так называемому статическому отклонению. Если , то все кривые асимптотически стремятся к нулю. Приведенная совокупность кривых называется резонансными кривыми.

Из формулы (11.60) вытекает, что при малом затухании () резонансная амплитуда смещения , где Q – добротность колебательной системы, – статическое отклонение. Отсюда следует, что добротность Q характеризует резонансные свойства колебательной системы: чем больше Q, тем больше . На рис. 11.8 представлены резонансные кривые для амплитуды скорости. Амплитуда скорости максимальна при и равна , т.е. чем больше коэффициент затухания, тем ниже максимум резонансной кривой.

Из выражения следует, что если затухание в системе отсутствует, то только в этом случае колебания и вынуждающая сила имеют одинаковые фазы.




Рис.11.8


Зависимость от при разных коэффициентах представлена на рис.11.9. Отсюда следует, что при изменении изменяется и сдвиг фаз . Из формулы (11.55) вытекает, что при , а при независимо от значения коэффициента затухания , т.е. сила опережает по фазе колебания на р/2. При дальнейшем увеличении щ сдвиг фаз возрастает и при , т.е. фаза колебаний почти противоположна фазе внешней силы. Семейство кривых, изображенных на рис. 11.9, называется фазовыми резонансными кривыми.

Явления резонанса могут быть как вредными, так и полезными. Например, при конструировании машин и различного рода сооружений необходимо, чтобы собственная частота колебаний их не совпадала с частотой возможных внешних воздействий, в противном случае возникнут вибрации, которые могут вызвать серьезные разрушения. С другой стороны, наличие резонанса позволяет обнаружить даже очень слабые колебания, если их частота совпадает с частотой собственных колебаний прибора. Так, радиотехника, прикладная акустика, электротехника, используют явление резонанса.






Рис.11.9



9. Автоколебания
Огромный интерес для техники представляет возможность поддерживать колебания незатухающими. Для этого необходимо восполнять потери энергии реальной колебательной системы. Особенно важны и широко применимы так называемые автоколебания – незатухающие колебания, поддерживаемые в диссипативной системе за счет постоянного внешнего источника энергии, причем свойства этих колебаний определяются самой системой.

Автоколебания принципиально отличаются от свободных незатухающих колебаний, происходящих без действия сил, а также от вынужденных колебаний, происходящих под действием периодической силы. Автоколебательная система сама управляет внешними воздействиями, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени (в такт с ее колебаниями).

Примером автоколебательной системы могут служить часы. Храповой механизм подталкивает маятник в такт с его колебаниями. Энергия, передаваемая при этом маятнику, берется либо за счет раскручивающейся пружины, либо за счет опускающегося груза. Колебания воздуха в духовых инструментах и органных трубах также возникают вследствие автоколебаний, поддерживаемых воздушной струей. Автоколебательными системами являются также двигатели внутреннего сгорания, паровые турбины, ламповый генератор и т.д.
10. Распространение колебаний в однородной упругой среде
Если в каком-либо месте упругой (твердой, жидкой или газообразной) среды возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью х. Процесс распространения колебаний в пространстве называется волной.

Частицы среды, в которой распространяется волна, не вовлекаются волной в поступательное движение, они лишь совершают колебания около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества.

Среди разнообразных волн, встречающихся в природе и технике, выделяются следующие их типы: волны на поверхности жидкости, упругие и электромагнитные волны. Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде.

В зависимости от направления колебаний частиц по отношению к направлению, в котором распространяется волна, различают продольные и поперечные волны. В продольной волне частицы среды колеблются вдоль направления распространения волны. В поперечной волне частицы среды колеблются в направлениях, перпендикулярных направлению распространения волны. Продольные волны могут распространяться в средах, в которых возникают упругие силы при деформации сжатия и растяжения, т.е. твердых, жидких и газообразных телах. Поперечные волны могут распространяться в среде, в которой возникают упругие силы при деформации сдвига, т.е. фактически только в твердых телах; в жидкостях и газах возникают только продольные волны, а в твердых телах – как продольные, так и поперечные.

Н
Рис. 11.10

а рис. 11.10 показано движение частиц при распространении в среде поперечной волны. Номерами 1, 2 и т.д. обозначены частицы, отстоящие друг от друга на расстояние, равное (1/4) vT, т.е. на расстояние, проходимое волной за четверть периода колебаний, совершаемых частицами. В момент времени, принятый за нулевой, волна, распространяясь вдоль оси слева направо, достигла частицы 1, вследствие чего частица начала смещаться из положения равновесия вверх, увлекая за собой следующие частицы. Спустя четверть периода частица 1 достигает крайнего верхнего положения; одновременно начинает смещаться из положения равновесия частица 2. По прошествии еще четверти периода первая частица будет проходить положение равновесия, двигаясь в направлении сверху вниз, вторая частица достигнет крайнего верхнего положения, а третья частица начнет смещаться вверх из положения равновесия. В момент времени, равный Т, первая частица закончит полный цикл колебания и будет находиться в таком же состоянии движения, как и в начальный момент. Волна к моменту времени Т, пройдя путь vT, достигнет частицы 5.

На рис. 11.11 показано движение частиц при распространении в среде продольной волны. Все рассуждения, касающиеся поведения частиц в поперечной волне, могут быть отнесены и к данному случаю с заменой смещений вверх и вниз смещениями вправо и влево. Из рисунка видно, что при распространении продольной волны в среде создаются чередующиеся сгущения и разрежения частиц (места сгущения частиц обведены на рисунке пунктиром), перемещающиеся в направлении распространения волны со скоростью х.






Рис.11.11

На рис. 11.10 и 11.11 показаны колебания частиц, положения равновесия которых лежат на оси х. В действительности колеблются не только частицы, расположенные вдоль оси х, а совокупность частиц, заключенных в некотором объеме. Распространяясь от источника колебаний, волновой процесс охватывает все новые и новые части пространства. Геометрическое место точек, до которых доходят колебания к моменту времени t, называется фронтом волны (или волновым фронтом). Фронт волны представляет собой ту поверхность, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли.

Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновую поверхность можно провести через любую точку пространства, охваченного волновым процессом. Следовательно, волновых поверхностей существует бесконечное множество, в то время как волновой фронт каждый момент времени только один. Волновые поверхности остаются неподвижными, а волновой фронт все время перемещается.

Волновые поверхности могут быть любой формы. В простейших случаях они имеют форму плоскости или сферы. Соответственно волна в этих случаях называется плоской или сферической. В плоской волне волновые поверхности представляют собой множество параллельных друг другу плоскостей, в сферической волне – множество концентрических сфер.

Рассмотрим случай, когда плоская волна распространяется вдоль оси х. Тогда все точки среды, положения равновесия которых имеют одинаковую координату х (но различные значения координат y и z), колеблются в одинаковой фазе.





Рис.11.12


На рис.11.12 изображена кривая, которая дает смещение из положения равновесия точек с различными x в некоторый момент времени. Не следует воспринимать этот рисунок как зримое изображение волны. На рисунке показан график функции (х, t)для некоторого фиксированного момента времени 1. С течением времени график перемещается вдоль оси х. Такой график можно строить как для продольной, так и для поперечной волны. В обоих случаях он выглядит одинаково.

Расстояние л, на которое распространяется волна за время, равное периоду колебаний частиц среды, называется длиной волны. Очевидно, что
1   ...   9   10   11   12   13   14   15   16   17


написать администратору сайта