Техносфера как источник негативных факторов. Техносфера безопасность токсический производственный
Скачать 3.35 Mb.
|
Рисунок 1 - Пространственно-временной континуум планетарной эволюции Здесь выделяются три основных этапа: 1) неживой материи (естественной), 2) живой материи, куда входят биосфера и антропосфера (человеческая цивилизация), 3) неживой материи (искусственной), представленной техносферой и ноосферой. Техносфера, впрочем, как и все предшествующие ей планетные структуры, имеет сквозной, транзитный характер, открывая возможность для появления качественно нового, еще более сложного образования, ранее отсутствующего в земной истории. Укажем на относительность наших представлений об эволюции, которая, в зависимости от ракурса рассмотрения, будет проявлять различные свойства. Это обусловлено относительностью самих систем отсчета, выбранных в качестве базовых, а соответственно и относительном характере разных моделей эволюции. Один и тот же планетарно-эволюционный процесс может иметь совершенно разные интерпретации - линейную (рис.1) и нелинейную или циклическую (рис.2). Земная эволюция в совокупности ее этапов отражает глобально-исторические циклические преобразования: неживая материя (естественная) - живая материя - неживая материи (искусственная). А если расширим диапазон пространственно-временного восприятия, то увидим и более глобальный цикл: космос - планетарная эволюция - космос. Рисунок 2 - Нелинейная модель планетарной эволюции Такие выводы могут привести к осознанию транзитности всей земной эволюции, ее конечном, переходном характере. А экстраполяция выявленного свойства на крупномасштабную структуру Вселенной позволяет выдвинуть гипотезу транзитности любых космических цивилизаций, которые с неизбежностью, минуя планетную фазу своего существования и испытав глубинные качественные трансформации, распространяются далее в безбрежный космос. Следует отметить тот важный познавательный момент, что перенос фазового перехода неорганического вещества в примитивную органику (так называемое рождение жизни) с поверхности планеты в окружающее космическое пространство (гипотеза панспермии) принципиально не меняет общей картины. Сама биосфера и ее организмы, включая высших животных и человека, есть продукт именно земной эволюции, всей совокупности действующих в ней эндогенных и экзогенных условий. Естественно, мир таит в себе еще много неизвестного. Существуют различные факторы, как планетарной, так и космической природы, способные привести к нелинейным исходам будущего. Например, удар астероида или резкое повышение сейсмической активности, вулканической деятельности. Подобные «встряски» уже не раз случались в земной истории, но свернули ли они эволюцию со столбовой дороги? Вовсе нет. Некоторые ветви эволюции, действительно, заходили в тупик и угасали. В других развитие консервировалось и виды долгое время оставались неизменными. В третьих наоборот, получали импульс, что приводило к качественным перестройкам и возникновению новых структур. Рассмотрение эволюции в совокупности ее ветвей, отражаемой дендроидной моделью (рис.3), может породить иллюзию множественности путей в будущее. На самом деле реализуется общее направление. Данная ситуация напоминает дельту реки, где, несмотря на разнообразие каналов, сохраняется единый вектор потока. Рисунок 3 - Коэволюция масштабных планетарных систем В русле относительности эволюционных моделей, получает новое осмысление и хронотоп - топология времени и его размерности. Время предстает и как одномерное (линейное, векторное), и как многомерное (ветвление, канализированность), и как циклическое. Более того, новые технологии (генная инженерия, нанотехнологии) открывают возможность для реализации еще более сложных топологических форм, например, сетчатой. Когда эволюционные ветви начинают смыкаться межу собой, как в рамках самого техногенеза или антропогенеза, так и между ними. Мы сталкиваемся с явлением непривычным не только для обыденного, но и для научного мышления. Речь идет о наличии объективно существующих алгоритмов планетарной эволюции. Их открытие имеет эпохальное значение для человечества (сравнимое с научной революцией, вызванной теорией Ч.Дарвина), так как позволит понять логику масштабно-исторических трансформаций и увидеть контуры будущего. Человек так долго восторгался своей уникальностью и собственным величием (позиция антропоцентризма), что почти утратил объективность оценки планетарно-эволюционных изменений. Считая себя ключевым звеном и высшей фазой земной эволюции, он не учел того важного обстоятельства, что материя обладает способностью производить иные формы жизни и иные формы разума (искусственный интеллект). Сегодня нам необходимо понять главное: именно благодаря технике раскрываются различные измерения глобализации - экологические, экономические, производственные, энергетические, культурологические, социально-политические и проч. Если бы отсутствовал техногенный мир, то все эти измерения так и остались лишь в потенции, в свернутом виде. Поэтому технику следует признать в качестве первоосновы планетарных процессов глобализации. Мысленно допустив одномоментное исчезновение техносферы, мы увидим, что цивилизация будет просто парализована, для нее наступит тяжелейший всеобъемлющий кризис. Человечество окажется отброшенным назад вглубь тысячелетий, когда существовало примитивное натуральное хозяйство. Но до сих пор многие исследователи не хотят замечать нового игрока, который уже проявил свою действенность и активность, доказав свою планетарную мощь и значимость. Именно таким игроком, за которым будущее, выступает техносфера. Ноосфера же в реальности оказывается еще более удаленной за горизонт исторической перспективы. 2. НЕГАТИВНОЕ ВОЗДЕЙСТВИЕ ТЕХНОСФЕРЫ на человека и окружающую среду .1 Критерии комфортности и безопасности техносферы. Показатели негативности Комфортное состояние жизненного пространства по показателям микроклимата и освещения достигается соблюдением нормативных требований. В качестве критериев комфортности устанавливают значения температуры воздуха в помещениях, его влажности и подвижности (например, ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны»). Условия комфортности достигаются также соблюдением нормативных требований к естественному и искусственному освещению помещений и территорий (например, СНиП 23-05-95 «Естественное и искусственное освещение»). При этом нормируются значения освещенности и ряд других показателей систем освещения. Комфортное состояние производственной среды определяется оптимальными показателями микроклимата (ГОСТ 12.1.005-88, СанПиН 2.2.4.548-96) и соблюдением нормативных требований к освещению (СНиП 23-05-95). Указом Президента РФ, обязана обеспечить надзор и контроль за соблюдением нормативных требований по охране труда и за реализацией в целом постановления Правительства РФ, используя предоставленные инспекции полномочия. Комфортное состояние жизненного пространства по показателям микроклимата и освещения достигается соблюдением нормативных требований. В качестве критериев комфортности устанавливают значения температуры воздуха в помещениях, его влажности и подвижности (например, ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны»). Условия комфортности достигаются также соблюдением нормативных требований к естественному и искусственному освещению помещений и территорий (например, СНиП 23-05-95 «Естественное и искусственное освещение»). При этом нормируются значения освещенности и ряд других показателей систем освещения. Критериями безопасности техносферы являются ограничения, вводимые на концентрации веществ, и потоки энергий в жизненном пространстве. Конкретные значения ПДК и ПДУ устанавливаются нормативными актами Государственной системы санитарно-эпидемиологического нормирования Российской Федерации. Так, например, применительно к условиям загрязнения производственной и окружающей среды электромагнитными излучениями радиочастотного диапазона действуют Санитарные правила и нормы СанПиН 2.2.4/2.1.8.055-96. Для оценки загрязнения атмосферного воздуха в населенных пунктах регламентированы класс опасности и допустимые концентрации загрязняющих веществ. Концентрация каждого вредного вещества в приземном слое не должна превышать максимально разовой предельно допустимой концентрации, т.е. С≤ ПДКmax, при экспозиции не более 20 мин. Если время воздействия вредного вещества превышает 20 мин, то С≤ ПДКсс. Опираясь на значения ПДК и ПДУ и зная фоновые значения концентраций веществ (Сф) и потоков энергии (Iф) в конкретном жизненном пространстве, можно определить предельно допустимые выбросы (сбросы) примесей (энергии) для конкретных источников загрязнения среды обитания. Таким образом, наличие достаточно жесткой связи между концентрациями примесей в жизненном пространстве и потоком примесей, выделяемых источником загрязнения, позволяет реально управлять ситуацией, связанной с загрязнением жизненного пространства, за счет изменения количества выбрасываемых веществ (энергии). Предельно допустимые выбросы (сбросы) и предельно допустимые излучения энергии источниками загрязнения среды обитания являются критериями экологичности источника воздействия на среду обитания. Соблюдение этих критериев гарантирует реализацию условий [0.1] - [0.2| и безопасность жизненного пространства. В тех случаях, когда потоки масс и/или энергий от источника негативного воздействия в среду обитания могут нарастать стремительно и достигать чрезмерно высоких значений (например, при авариях), в качестве критерия безопасности принимают допустимую вероятность (риск) возникновения подобного события. Риск - вероятность реализации негативного воздействия в зоне пребывания человека. Вероятность возникновения чрезвычайных ситуаций применительно к техническим объектам и технологиям оценивают на основе статистических данных или теоретических исследований. В настоящее время сложились представления о величинах приемлемого (допустимого) и неприемлемого риска. Неприемлемый риск имеет вероятность реализации негативного воздействия более 10-3, приемлемый - менее 10-6. При значениях риска от 10-3 до 10-6 принято различать переходную область значений риска. Следует заметить, что, несмотря на то, что потоки масс и энергий при авариях технических систем формируются, как правило, спонтанно, наих величину и вероятность возникновения можно оказывать влияние ограничением запасов масс веществ и энергий в одном объекте, контролем за состоянием объекта, введением защитных зон, использованием предохранительных средств и др. Показатели негативности техносферы. В тех случаях, когда состояние среды обитания не удовлетворяет критериям безопасности (0.1)- [0.3] и комфортности, неизбежно возникают негативные последствия. Для интегральной оценки влияния опасностей на человека и среду обитания используют ряд показателей негативности. К ним относят: численность пострадавших Ттр от воздействия травмирующих факторов. Для оценки травматизма в производственных условиях, кроме абсолютных показателей, используют относительные показатели частоты и тяжести травматизма. Для оценки уровня нетрудоспособности вводят показатель нетрудоспособности Кн = Д 1000 /С; нетрудно видеть, что Кн = Кч Кт; численность пострадавших Тз, получивших профессиональные или региональные заболевания; показатель сокращения продолжительности жизни (СПЖ) при воздействии вредного фактора или их совокупности. К показателям СПЖ относятся абсолютные значения СПЖ в сутках и относительные показатели СПЖ, определяемые по формуле СПЖ=(П-СПЖ/365)/П, где П -средняя продолжительность жизни, лет; региональная младенческая смертность определяется числом смертей детей в возрасте до 1 года из 1000 новорожденных; материальный ущерб. .2 Загрязнение регионов техносферы токсическими веществами. Загрязнение атмосферы, гидросферы Регионы техносферы и природные зоны, примыкающие к очагам техносферы, постоянно подвергаются активному загрязнению различными веществами и их соединениями. Атмосферный воздух всегда содержит некоторое количество примесей, поступающих от естественных и антропогенных источников. К числу примесей, выделяемых естественными источниками, относят: пыль (растительного, вулканического, космического происхождения, возникающую при эрозии почвы, частицы морской соли); туман; дым и газ от лесных и степных пожаров; газы вулканического происхождения; различные продукты растительного, животного происхождения и др. Естественные источники загрязнений бывают либо распределенными, например, выпадение космической пыли, либо локальными, например, лесные и степные пожары, извержения вулканов. Уровень загрязнения атмосферы естественными источниками является фоновым и мало изменяется с течением времени. Каждой отрасли промышленности присущ характерный состав и масса веществ, поступающих в атмосферу. Это определяется прежде всего составом веществ, применяемых в технологических процессах, и экологическим совершенством последних. В настоящее время экологические показатели теплоэнергетики, металлургии, нефтехимического производства и ряда других производств изучены достаточно подробно. Необходимые сведения можно найти в работах [2.4, 2.5]. Меньше исследованы показатели машиностроения и приборостроения, их отличительными особенностями являются: широкая сеть производств, приближенность к жилым зонам, значительная гамма выбрасываемых веществ, среди которых могут содержаться вещества 1 и 2-го класса опасности, такие как пары ртути, соединения свинца и т. п. Выбросы токсичных веществ приводят, как правило, к превышению текущих концентраций веществ над предельно допустимыми. Контроль состояния атмосферы в городах страны показал, что уровень загрязнения в 1996 г. остался весьма высоким. Максимальные концентрации загрязняющих веществ превышали 10 ПДКср в 70 городах. В табл. 2.4 приведены данные по некоторым городам страны с большим уровнем загрязнения атмосферного воздуха. Большая часть примесей атмосферного воздуха в городах проникает в жилые помещения. В летнее время (при открытых окнах) состав воздуха в жилом помещении соответствует составу воздуха вне помещения на 90 %, зимой -на 50 %. Высокие концентрации и миграция примесей в атмосферном воздухе стимулируют их взаимодействие с образованием более токсичных соединений (смога, кислот) или приводят к таким явлениям, как «парниковый эффект» и разрушение озонового слоя. Для образования смога в атмосфере в солнечную погоду необходимо наличие оксидов азота, углеводородов (их выбрасывают в атмосферу автотранспорт, промышленные предприятия). Фотохимические смоги, впервые обнаруженные в 40-х годах в г. Лос-Анджелес, теперь периодически наблюдаются во многих городах мира. Кислотные дожди известны более 100 лет, однако проблема этих дождей возникла около 20 лет назад. Источниками кислотных дождей служат газы, содержащие серу и азот. Наиболее важные из них: SO2, NOх, H2S. Кислотные дожди возникают вследствие неравномерного распределения этих газов в атмосфере. Серная и азотная кислоты поступают в атмосферу также в виде тумана и паров от промышленных предприятий и автотранспорта. В городах их концентрация достигает 2 мкг/м3. Соединения серы и азота, попавшие в атмосферу, вступают в химическую реакцию не сразу, сохраняя свои свойства соответственно, в течение 2 и 8... 10 суток. За это время они могут вместе с атмосферным воздухом пройти расстояния 1000...2000 км и лишь после этого выпадают с осадками на земную поверхность. Различают два вида седиментации: влажная и сухая. Влажная - это выпадение кислот, растворенных в капельной влаге, она возникает при влажности воздуха 100,5 %; сухая -реализуется в тех случаях, когда кислоты присутствуют в атмосфере в виде капель диаметром около 0,1 мкм. Скорость седиментации в этом случае весьма мала и капли могут проходить большие расстояния (следы серной кислоты обнаружены даже на Северном полюсе). Наибольшую опасность кислотные осадки представляют при попадании в водоемы и почву, что приводит к уменьшению рН воды (рН = 7 -нейтральная среда). От значения рН воды зависит растворимость алюминия и тяжелых металлов в ней и, следовательно, их накопление в корнеплодах, а затем и в организме человека. При изменении рН воды меняется структура почвы и снижается ее плодородие. Снижение рН питьевой воды способствует поступлению в организм человека указанных выше металлов и их соединений. В нашей стране повышенная кислотность осадков (рН == 4...5,5) отмечается в отдельных промышленных регионах. Наиболее неблагополучны города Тюмень, Тамбов, Архангельск, Северодвинск, Вологда, Петрозаводск, Омск и др. Плотность выпадения осадков серы, превышающая 4 т/(км∙год), зарегистрирована в 22 городах страны, а более 8...12 т/(км2∙год)) в городах: Алексин, Новомосковск, Норильск, Магнитогорск. Состояние и состав атмосферы определяют во многом величину солнечной радиации в тепловом балансе Земли. На ее долю приходится основная часть поступающей в биосферу теплоты: Экранирующая роль атмосферы в процессах передачи теплоты от Солнца к Земле и от Земли в космос влияет на среднюю температуру биосферы, которая длительное время находилась на уровне около + 15°С. Расчеты показывают, что при отсутствии атмосферы средняя температура биосферы составляла бы приблизительно -15° С. Основная доля солнечной радиации передается к поверхности Земли в оптическом диапазоне излучений, а отраженная от земной поверхности - инфракрасном (ИК). Поэтому доля отраженной лучистой энергии, поглощаемой атмосферой, зависит от количества многоатомных минигазов (СО2, Н2О, СН4, Оз и др.) и пыли в ее составе. Чем выше концентрация минигазов и пыли в атмосфере, тем меньше доля отраженной солнечной радиации уходит в космическое пространство, тем больше теплоты задерживается в биосфере за счет парникового эффекта. ИК-излучение поглощается метаном, фреонами, озоном, оксидом диазота и т. п. в диапазоне длины волн 1...9 мкм, а парами воды и углекислым газом при длине волн 12 мкм и более. В последние годы наметилась тенденция к значительному росту концентраций СО2, СН4, N2O и других газов в атмосфере. |