НТСиТР_Акимов_учебник. Учебное пособие Надежность технических систем и техногенный риск
Скачать 7.5 Mb.
|
§ 1 Природа и характеристика опасностей в техносфере 1.1. ТЕХНОСФЕРА. ТЕХНИКА. ТЕХНИЧЕСКАЯ СИСТЕМА. ТЕХНОЛОГИЯ. Техносфера - часть биосферы, коренным образом преобразованная человеком в технические и техногенные объекты (механизмы, здания, сооружения, горные выработки, дороги и т.д.) с помощью прямого или косвенного воздействия технических средств в целях наилучшего соответствия социально-экономическим потребностям человека. Таким образом, в преобразовании участвуют техника, технические системы и используемая технология. Техника (oт греч. techne - искусство, мастерство, умение) - совокупность средств человеческой деятельности, созданных для осуществления процессов производства и обслуживания непроизводственных потребностей общества. В технике материализованы знания и производственный опыт, накопленные человечеством в процессе развития производства. Техника облегчает трудовые усилия человека и увеличивает их эффективность, позволяет преобразовывать природу в соответствии с потребностями общества. По мере развития производства техника последовательно заменяет человека в выполнении технологических функций, связанных с физическим и умственным трудом. Средствами техники пользуются для воздействия на предметы труда при создании материальных и культурных благ, для получения, передачи и превращения энергии, исследования законов развития природы и общества, передвижения и связи, сбора, хранения, переработки и передачи информации, управления обществом, обслуживания быта, ведения войны и обеспечения обороны. По функциональному назначению различают технику производственную, военную, бытовую, медицинскую, для научных исследований, образования, культуры и др. Основную часть технических средств составляет производственная техника, к которой относятся машины и механизмы, инструменты, аппаратура управления машинами и технологическими процессами, а также производственные здания и сооружения, коммуникации и т. д. Технику обычно классифицируют по отраслевой структуре производства (например, промышленности, транспорта) или применительно к отдельным структурным подразделениям производства. Например, техника авиационная, мелиоративная, энергетическая, химическая, горная и т.п. Техника все в большей мере становится материализацией научных знаний. Развитие техники выражается в создании новых и усовершенствовании существующих типов машин, оборудования, повышения технического уровня производств, процессов, их комплексной механизации и автоматизации, в создании новых материалов, топлива и преобразователей энергии и т.п. Исторически техника прошла путь развития от примитивных машин, выполняющих одну операцию до сложнейших автоматических машин современного производства, объединенных в единое целое - систему, имеющую соответствующую структуру и направленную на достижение определенных целей. Под технической системой (объектом) понимается упорядоченная совокупность отдельных элементов, связанных между собой функционально и взаимодействующих таким образом, чтобы обеспечить выполнение некоторых заданных функций (достижение цели) при различных состояниях работоспособности. Объектами могут быть различные системы и их элементы, в частности: сооружения, установки, технические изделия, устройства, машины, аппараты, приборы и их части, агрегаты и отдельные детали. Упорядоченность означает, что относительно окружающей среды система выступает и соответственно воспринимается как нечто функционально единое. Признаком системы является структурированность, взаимосвязанность составляющих ее частей, подчиненность организации всей системы определенной цели (рис.1.1.1). Обязательным компонентом любой системы являются составляющие элементы (подсистемы) и само понятие элемента условно и относительно, так как любой элемент, в свою очередь, всегда можно рассматривать как совокупность других элементов. Поскольку все подсистемы и элементы, из которых состоит система, определенным образом взаиморасположены и взаимосвязаны, образуя данную систему, можно говорить о структуре системы. Структура системы - это то, что остается неизменным в системе при не изменении ее состояния, при реализации различных форм поведения, при совершении системой операций и т.п. Рис. 1.1.1. Система охлаждения и очистки отработавшего газа: 1 - нагнетательный вентилятор; 2 - сетчатая прокладка; 3 - два циркуляционных насоса предварительной очистки газа; 4 - предварительный газоочиститель; 5 - водяной насос; 6 - два охлаждающих насоса Любая система имеет, как правило, иерархическую структуру, т.е. может быть представлена в виде совокупности подсистем разного уровня, расположенных в порядке постепенности. При анализе тех или иных конкретных систем достаточным оказывается выделение некоторого определенного числа ступеней иерархии. Системы функционируют в пространстве и времени. Процесс функционирования систем представляет собой изменение состояния системы, переход ее из одного состояния в другое. В соответствии с этим системы подразделяются на статические и динамические. Статическая система - это система с одним возможным состоянием. Динамическая система - система с множеством состояний, в которой с течением времени происходит переход от состояния в состояние. С позиций безопасности задачи исследования технических систем заключаются в том, чтобы увидеть, каким образом элементы системы функционируют в системе во взаимодействии с другими ее частями и по каким причинам может произойти отказ, грозящий негативными последствиями для окружающей среды. 1.2. ОПРЕДЕЛЕНИЕ ОПАСНОСТИ Опасность - центральное понятие, как сферы безопасности жизнедеятельности в техносфере, так и промышленной безопасности. Под опасностью понимаются явления, процессы, объекты, способные в определенных условиях наносить вред здоровью человека, ущерб окружающей природной среде и социально - экономической инфраструктуре, т.е. вызывать нежелательные последствия непосредственно или косвенно. Другими словами, опасность - следствие действия некоторых негативных (вредных и опасных) факторов на определенный объект (предмет) воздействия. При несоответствии характеристик воздействующих факторов характеристикам объекта (предмета) воздействия и появляется феномен опасности (например, ударная волна, аномальная температура, недостаток кислорода в воздухе, токсичные примеси в воздухе и т.п.). Опасность - свойство, внутренне присущее сложной технической системе. Она может реализоваться в виде прямого или косвенного ущерба для объекта (предмета) воздействия постепенно или внезапно, и резко в результате отказа системы. Скрытая (потенциальная) опасность для человека реализуется в форме травм, которые происходят при несчастных случаях, авариях, пожарах и пр., для технических систем - в форме разрушений, потери управляемости и т.д., для экологических систем - в виде загрязнений, утрате видового разнообразия и др. Определяющие признаки - возможность непосредственного отрицательного воздействия на объект (предмет) воздействия; возможность нарушения нормального состояния элементов производственного процесса, в результате которого могут возникнуть аварии, взрывы, пожары, травмы. Наличие хотя бы одного из указанных признаков является достаточным для отнесения факторов к разделу опасных или вредных. Количество признаков, характеризующих опасность, может быть увеличено или уменьшено в зависимости от целей анализа. 1.3. АКСИОМЫ О ПОТЕНЦИАЛЬНОЙ ОПАСНОСТИ ТЕХНИЧЕСКИХ СИСТЕМ Анализ реальных аварийных ситуаций, событий и факторов и человеческая практика уже сегодня позволяет сформулировать ряд аксиом об опасности технических систем: Аксиома 1. Любая техническая система потенциально опасна. Потенциальность опасности заключается в скрытом, неявном характере и проявляется при определенных условиях. Ни один вид технической системы при ее функционировании невозможно достичь абсолютной безопасности. Аксиома 2. Техногенные опасности существуют, если повседневные потоки вещества, энергии и информации в техносфере превышают пороговые значения. Пороговые или предельно допустимые значения опасностей устанавливаются из условия сохранения функциональной и структурной целостности человека и природной среды. Соблюдение предельно допустимых значений потоков создает безопасные условия жизнедеятельности человека в жизненном пространстве и исключает негативное влияние техносферы на природную среду. Аксиома 3. Источниками техногенных опасностей являются элементы техносферы. Опасности возникают при наличии дефектов и иных неисправностей в технических системах, при неправильном использовании технических систем. Технические неисправности и нарушения режимов использования технических систем приводят, как правило, к возникновению травмоопасных ситуаций, а выделение отходов (выбросы в атмосферу, стоки в гидросферу, поступление твердых веществ на земную поверхность, энергетические излучения и поля) сопровождается формированием вредных воздействий на человека, природную среду и элементы техносферы. Аксиома 4. Техногенные опасности действуют в пространстве и во времени. Травмоопасные воздействия действуют, как правило, кратковременно и спонтанно в ограниченном пространстве. Они возникают при авариях и катастрофах, при взрывах и внезапных разрушениях зданий и сооружений. Зоны влияния таких негативных воздействий, как правило, ограничены, хотя возможно распространение их влияния и на значительные территории, например, при аварии на ЧАЭС. Для вредных воздействий характерно длительное или периодическое негативное влияние на человека, природную среду и элементы техносферы. Пространственные зоны вредных воздействий изменяются в широких пределах от рабочих и бытовых зон до размеров всего земного пространства. К последним относятся воздействия выбросов парниковых и озоноразрушающих газов, поступление радиоактивных веществ в атмосферу и т.п. Аксиома 5. Техногенные опасности оказывают негативное воздействие на человека, природную среду и элементы техносферы одновременно. Человек и окружающая его техносфера, находясь в непрерывном материальном, энергетическом и информационном обмене, образуют постоянно действующую пространственную систему "человек - техносфера". Одновременно существует и система "техносфера - природная среда". Техногенные опасности не действуют избирательно, они негативно воздействуют на все составляющие вышеупомянутых систем одновременно, если последние оказываются в зоне влияния опасностей. Аксиома 6. Техногенные опасности ухудшают здоровье людей, приводят к травмам, материальным потерям и к деградации природной среды. 1.4. ТАКСОНОМИЯ ОПАСНОСТЕЙ Таксономия - слово греческого происхождения (taxis - расположение по порядку + monos - закон) - определяется в словаре иностранных слов как "теория классификации и систематизации сложноорганизованных областей деятельности, имеющих обычно иерархическое строение". Таким образом, таксономия в науке - классификация и систематизация сложных явлений, понятий, объектов. Поскольку опасность является понятием сложным, иерархическим, имеющим много признаков, таксономирование их выполняет важную роль в организации научного зрения в области безопасности деятельности и позволяет познать природу опасностей, дает новые подходы к задачам их описания, введения количественных характеристик и управления ими. Представляется возможным привести примеры имеющихся таксономий: - по природе происхождения: природные, техногенные, антропогенные, экологические, смешанные; - производственные опасности: физические, химические, биологические, психофизиологические, организационные; - по времени проявления отрицательных последствий: импульсивные (в виде кратковременного воздействия, например удар) и кумулятивные (накопление в живом организме и суммирование действия некоторых веществ и ядов); - по месту локализации в окружающей среде: связанные с атмосферой, гидросферой, литосферой; - по сфере деятельности человека: бытовые, производственные, спортивные, военные, дорожно-транспортные и т.д.; - по приносимому ущербу: социальный, технический, экономический, экологический и т.д.; - по характеру воздействия на человека: активные (оказывают непосредственное воздействие на человека путем заключенных в них энергетических ресурсов); пассивно-активные (активизирующиеся за счет энергии, носителем которой является сам человек, неровности поверхности, уклоны, подъемы, незначительное трение между соприкасающимися поверхностями и др.); пассивные - проявляются опосредованно (к этой группе относятся свойства, связанные с коррозией материалов, накипью, недостаточной прочностью конструкций, повышенными нагрузками на оборудование и т.п. Проявляются в виде разрушений, взрывов и т.п.); - добровольные и принудительные опасности: воздействию опасностей можно подвергаться как добровольно, например, занимаясь горнолыжным спортом, альпинизмом или работая на промышленном предприятии, так и принудительно, находясь вблизи места событий в момент реализации опасностей. Такой подход позволяет выделять опасности производственные и непроизводственные (риск для населения); - по структуре (строению): простые (электрический ток, повышенная температура) и производные - порожденные взаимодействием простых (пожар, взрыв и т.п.). - по сосредоточению: сконцентрированные (например, место захоронения токсичных отходов) и рассеянные (например, загрязнение почвы осажденными из атмосферы выбросами тепловых электростанций). Список можно продолжить. Таксономия проводится в зависимости от того, какую цель поставил исследователь, например: оценить эффекты изменения состояния окружающей среды на организм человека. Значительная часть перечисленных выше опасностей не всегда приводит к возникновению происшествий, но усложняет выполнение работ при регламентированной технологии. Таксономия позволяет выделить основные опасности. 1.4.1. Примеры таксономий Здесь не приводится таксономия производственных опасностей. Классификация вредных и опасных производственных факторов подробно рассматривается в курсе БЖД. Приведенные примеры характерны для опасностей, возникающих при отказе технических систем. Классификация по эффектам изменения окружающих условий. Любое заметное отклонение от привычных, определившихся в ходе длительной биологической эволюции условий существования человека приводит к травмам или заболеваниям. Наиболее существенные параметры среды обитания человека, имеющие значение для его нормальной и безопасной жизнедеятельности, таковы: а) температура; б) давление окружающего атмосферного воздуха; в) внешнее давление, оказываемое на отдельные участки тела; г) концентрация кислорода; д) концентрация токсичных или коррозионно-активных веществ; е) концентрация болезнетворных микроорганизмов; ж) плотность потока электромагнитного излучения; з) уровень ионизирующих излучений; и) разность электрического потенциала; к) звуковые нагрузки. Воздействия, связанные с повышением или понижением температуры человеческого тела (как изнутри, так и снаружи), могут приводить к травмам или смертям. К таким воздействиям относятся тепловое излучение, конвекция и прямая теплопередача с кожного покрова или к нему, вдыхание чересчур холодного или горячего воздуха, употребление внутрь слишком холодных или теплых жидкостей или твердых веществ. Внезапные изменения окружающего воздуха, обусловленные действием воздушных ударных волн, могут приводить к травмам или смерти. Механические травмы возникают из-за приложения чрезмерного давления к отдельным участкам человеческого тела. Механические травмы - это рваные и резаные раны, ушибы, переломы, размозжение, отрывы частей тела, травмы, затрагивающие жизненно важные органы - мозг, сердце, легкие и другие органы. Снижение концентрации кислорода в воздухе приводит к травмам и смертям. Перерыв в дыхании происходит, если человек тонет или погребен под твердыми материалами. С другой стороны, и избыток кислорода опасен. При концентрации кислорода резко возникает пожарная опасность. Хорошо известно, что присутствие определенных веществ в окружающей среде приводит к заболеванию или смерти (например, избыточная концентрация оксида или диоксида углерода). Не менее хорошо известно, что избыточная концентрация болезнетворных микроорганизмов вредна и приводит к инфекционным заболеваниям. Для всех длин волн электромагнитного излучения существуют пределы интенсивности, за которыми их воздействие на организм человека становится опасным для здоровья. Человеческий организм приспособился к существованию в условиях естественного радиоактивного фона, а вклад относительно небольшой техносферной составляющей (ядерной энергетики в нормальных условиях эксплуатации, медицинской диагностики, неразрушающих методов контроля в технике и т.д.) можно считать безвредным. Повышенный уровень дозовых нагрузок приводит к хроническим заболеваниям, значительные дозы вызывают лучевую болезнь и смерть. Человеческий организм чувствителен к разности потенциалов порядка десятков вольт. Разность потенциалов в сотни вольт (безразлично - постоянного или переменного напряжения) вполне может привести к гибели. Звуковые и вибрационные нагрузки могут привести к хроническим заболеваниям несмертельного характера. Таксономия по времени реализации. В медицине издавна используются термины "острый" и "хронический" для описания характера заболевания: быстро развивающуюся и бурно протекающую болезнь называют "острой", медленно развивающаяся и долго текущая болезнь обозначается как хроническая. В медицине никогда не придавалось точного значения понятиям "быстро" и "медленно". С медицинской точки зрения понятия "острый" или "хронический" никоим образом не связывалось с тяжестью заболевания, такое понимание этих терминов сохранено при рассмотрении опасностей. Легко видеть, что термины "острый" и "хронический" отвечают противоположным полюсам некоего диапазона значений; провести строгую разделительную черту между ними весьма непросто. Термин "острая" будет относиться к опасностям, для которых время проявления действия не превышает часа. Опасность будет называться "хронической", если ее реализация занимает более месяца. Опасности, срок реализации которых находится внутри обозначенного интервала, будут рассматриваться как нечто среднее между острыми и хроническими опасностями. Табл.1.1.4.1 иллюстрирует использование такой классификации. Под временем действия опасности понимается период, в течение которого зарождаются, развиваются и действуют поражающие факторы. Таблица 1.4.1.1 Временной масштаб опасных событий Таксономия опасностей по числу пораженных. Идея этой классификации - качественная характеристика индивидуальных и групповых опасностей. Значимые качественные различия между этими классами опасностей (несмотря на существование количественной близости между ними) отражены в табл.1.4.1.2. Эти различия могут быть положены в основу регулирования и выявления основных опасностей - в отличие от прочих. Таксономия по виду энергетического носителя: а) механические - характеризуются кинетической и потенциальной энергией и механическим влиянием на объекты воздействия; к ним относятся: кинетическая энергия движущихся и вращающихся элементов, потенциальная энергия тел (в том числе людей, находящихся на высоте), шумы (ультразвук, инфразвук), вибрация, ускорения, гравитационная тяжесть, статическая нагрузка, дым, туман, ударная волна и др.; Таблица 1.4.1.2 Характеристики индивидуальных и групповых опасностей б) термические - характеризуются тепловой энергией и аномальной температурой; к ним относятся: температура нагретых или охлажденных поверхностей, открытого огня, пожара, химических реакций и др. источников; сюда относятся и параметры микроклимата, нарушающие терморегуляцию организма; в) электрические - электрический ток, статическое электричество, ионизирующие излучения, электрическое поле, аномальная ионизация воздуха; г) электромагнитные - освещенность, ультрафиолетовая и инфракрасная радиация, электромагнитные излучения, магнитное поле; д) химические - едкие, ядовитые, огне- и взрывоопасные вещества, а также нарушение естественного газового состава воздуха, наличие вредных примесей в воздухе. Таксономия факторов, обусловливающих возможные отказы технических систем. Любая система эксплуатируется в определенных условиях окружающей среды; она испытывает воздействие факторов окружающей среды (климатических, динамических, биологических и др.), факторов нагрузки (режима работы и взаимодействие элементов), а также искусственных факторов (преднамеренное воздействие извне). Эти факторы могут привести к изменению параметров и состояния работоспособности отдельных элементов, узлов и системы в целом. Представляется целесообразным привести таксономию таких факторов [75]. 1. Перегрузка в результате недооценки действующей нагрузки: - снег и непродуманная его расчистка, наледи; - производственная пыль; - несоответствие фактических масс конструкций запроектированным; - ветер; - крановая нагрузка; - динамические воздействия нагрузки; - температурные воздействия. 2. Потеря устойчивости (общая и местная): - ошибки в расчетах, чертежах, нарушение правил производства работ; - слабая экспериментальная отработка проектных решений; - большая гибкость элементов, эксцентриситет при приложении нагрузки; - податливость монтажных стыков, несвоевременная или неправильная анкеровка опор; - температурные деформации при неправильном закреплении связей; - недостаточная толщина листовых конструкций; - искажение геометрических формы конструкций (особенно тонкостенных); - неудачное крепление вант, оттяжек; - наличие вмятин и местных искривлений. 3. Неудачные проектные решения и отступления от проекта: - неудачный выбор расчетной схемы (несоответствие действительной работе конструкции); - низкая точность расчета; - недоработка узлов сопряжений; - занижение расчетной нагрузки по сравнению с реальной; - недооценка жесткости узлов; - недостаточная жесткость, прочность, устойчивость; - замена одного материала другим; - низкая квалификация исполнителей; - отсутствие авторского и технического надзора; - наличие концентраторов напряжений. 4. Некачественное изготовление и монтаж конструкций: - применение некачественных материалов; - низкое качество изготовления конструкций; - неправильный выбор способа и порядка монтажа; - несвоевременная постановка связей жесткости; - некачественная сварка; - нарушение технологии сварки в зимнее время; - ввод в действие сооружений с существенными недостатками. 5. Нарушение правил эксплуатации конструкций и сооружений: - отсутствие защиты конструкций, работающих в агрессивных средах (резкие температурные колебания и изменения влажности); - взрывы, пожары, затопления; - вибрации, удары, истирание; - отсутствие надлежащего инструментального контроля; - перегрузка производственной пылью; - увеличение нагрузки без усиления конструкций и регулирования напряжений в них. 6. Усталость, вибрация, коррозия и старение материала: - усталостные разрушения; - разрушения от старения; - вибродинамическое действие кранов, подвижного состава; - загрязнение окружающей среды; - наличие поверхностных дефектов в конструкциях; - резкие колебания температуры; - осадки. 7. Дефектность оснований, на которые установлены конструкции: - неравномерная осадка сооружений, колонн; - дефекты кирпичной кладки; - наличие перекошенных закладных частей; - потеря устойчивости основания; - неравномерное промораживание грунта; - оттаивание грунта в зоне многолетнемерзлого грунта; - пучение грунта; - замачивание лессовидных грунтов; - блуждающие токи в грунте; - агрессивные грунтовые воды; - засоленные грунты; - дефекты инженерно-геологических изысканий. 8. Непредвиденные (непрогнозируемые) причины: - аварии от провалов, оползней, осыпей, обрушений вышележащих конструкций; - сейсмические воздействия и извержения вулканов; - грозовые разряды, град, падение метеоритов; - аварии от биологических вредителей; - ураганы, наводнения, цунами, ледоходы, сели; - ландшафтные пожары; - подмыв фундаментов, переувлажнение оснований. Некоторые основные выводы. Опасности - многоаспектное явление, и трудно, а подчас и невозможно, рассматривать одни составные части опасности в отрыве от других. Необходимо иметь представление о том, каких последствий следует ожидать, насколько велика угроза для окружающей природной среды и для общества. Рис. 1.4.1.1, построенный В.Маршаллом [38], представляет взаимосвязь между временным масштабом опасностей техносферы и числом несчастных случаев. Его можно рассматривать как наглядную иллюстрацию различий между групповыми и одиночными несчастными случаями, групповыми профессиональными заболеваниями. Видно, например, повышение значения медицинского вмешательства с увеличением временного масштаба. Рисунок одновременно указывает на связь опасностей и риска. Опасность одиночных несчастных случаев низка (поскольку пострадавший всегда один), однако риск велик. Для групповых несчастных случаев имеет место противоположная закономерность. Аналогично одиночные заболевания (когда заболевает лишь малая доля пострадавших) присущи малым опасностям с высоким риском, тогда как для групповых заболеваний (вспышек) опасность велика, а риск мал (из-за длительности между периодами заражения ввиду редких событий). Рис.1.4.1.1. Взаимосвязь таксономий 1.5. АЛГОРИТМ РАЗВИТИЯ ОПАСНОСТИ И ЕЕ РЕАЛИЗАЦИИ Собственно процесс развития опасности можно описать следующей логической последовательностью: - нарушение технологического процесса, допустимых пределов эксплуатации, условий содержания и т.п. - накопление, образование поражающих факторов, приводящих к аварии технические системы - разрушение конструкции - выброс, образование поражающих факторов - воздействие (взаимодействие) поражающих факторов с объектом воздействия (с окружающей природной средой, человеком, объектами техносферы и пр.) - реакция на поражающее воздействие. В зависимости от особенностей технической системы отдельные элементы приведенной цепи могут отсутствовать. Каждому такому событию можно приписать частный показатель в виде вероятности события: - вероятность отказа технической системы - вероятность аварийного исхода - вероятность образования поражающих факторов - вероятность поражения объектов воздействия - вероятность вторичных поражающих факторов - вероятность воздействия - вероятность поражения. Из приведенной логической последовательности следует, что наличие потенциальной опасности в системе не всегда сопровождается ее негативным воздействием на объект. Любое исключение в цепи ведет к нереализации опасности. Для реализации опасности необходимо выполнение минимум трех условий: опасность реально действует (присутствует); объект находится в зоне действия опасности; объект не имеет достаточных средств защиты. 1.6. ИСТОЧНИКИ ОПАСНОСТИ Источниками опасности (материальными носителями) являются: человек; объекты, формирующие трудовой процесс и входящие в него: предметы труда, средства труда (машины, станки, инструменты, сооружения, здания, земля, дороги, энергия и т.п.); продукты труда; технология, операции, действия; природно-климатическая среда (грозы, наводнения, солнечная активность и т.п.); флора, фауна. При анализе обстановки среды деятельности человека вырисовываются как внешние, так и внутренние источники опасности. Внешние источники - два рода явлений: состояние среды деятельности (технические системы) и ошибочные, непредвиденные действия персонала, приводящие к авариям и создающие для окружающей среды и людей рискованные ситуации. При этом разные факторы среды обитания воздействуют неодинаково: если техника и технологии могут представлять непосредственную опасность, то социально-психологическая среда, за исключением случаев прямого вредительства, влияют на человека через его психологическое состояние, через дезорганизацию его деятельности. Внутренние источники опасности обусловлены виктимностью - личными особенностями работающего, которые связаны с его социальными и психологическими свойствами и представляют субъективный аспект опасности (этот аспект более подробно рассматривается психологией безопасности деятельности). 1.7. ЭНЕРГОЭНТРОПИЙНАЯ КОНЦЕПЦИЯ ОПАСНОСТЕЙ Эксплуатация технических систем потенциально опасна, так как связана с различными процессами, а последние - с использованием (выработкой, транспортировкой, хранением и преобразованием) химической, электрической и других видов энергии, накопленной в оборудовании и материалах, непосредственно в человеке и окружающей среде. Опасность проявляется в результате неконтролируемого выхода энергии. В определенных условиях неконтролируемый выход энергии сопровождается происшествиями. Таблица 1.7.1 иллюстрирует настоящую концепцию. Таблица 1.7.1 1.8. НОМЕНКЛАТУРА ОПАСНОСТЕЙ Номенклатура (лат. nomenklatura) - перечень категорий, названий, терминов, употребляемых в отраслях науки и техники, систематизированных по определенному признаку. В настоящее время представляется возможным представить общую номенклатуру опасностей в алфавитном порядке. Алкоголь, аномальная температура воздуха, аномальная влажность воздуха, аномальная подвижность воздуха, аномальное барометрическое давление, ..., вакуум, взрыв, взрывчатые вещества, вибрация, ..., динамические перегрузки, ..., эмоциональная перегрузка, ядовитые вещества. При выполнении конкретных исследований составляется номенклатура опасностей для отдельных объектов деятельности (местность, производства, рабочие места, технологические процессы и др.). Таблица 1.8.1 Оценка числа смертельных случаев, вызванных различными источниками энергии в расчете на один гигаватт Конечная форма энергии: э - электрическая; м - механическая; т - тепловая. 1.9. КВАНТИФИКАЦИЯ ОПАСНОСТЕЙ Квантификация (лат. quatum - сколько) - количественное выражение, измерение, вводимое для оценки сложных, качественно определяемых понятий. Опасности характеризуются потенциалом, качеством, временем существования или воздействия на человека, вероятностью появления, размерами зоны действия. Потенциал проявляется с количественной стороны, например уровень шума, запыленность воздуха, напряжение электрического тока. Качество отражает его специфические особенности, влияющие на организм человека, например частотный состав шума, дисперсность пыли, род электрического тока. Применяются численные, балльные и другие приемы квантификации. Мерой опасности может выступать и число пострадавших. Известно, например, что каждый добытый 1 млн.т угля в бывшем СССР "стоил" жизни одному шахтеру. В настоящее время в России этот уровень приблизился к двум. Другой мерой опасности может быть и приносимый ее реализацией ущерб для окружающей среды, который только частично может быть измерен экономически (в основном через затраты на ликвидацию последствий). Наиболее распространенной оценкой является риск - вероятность потерь при действиях, сопряженных с опасностями. Проблеме риска посвящена отдельная глава. 1.10. ИДЕНТИФИКАЦИЯ ОПАСНОСТЕЙ Опасности носят потенциальный, т.е. скрытый характер. Под идентификацией (лат. indentifico) понимается процесс обнаружения и установления количественных, временных, пространственных и иных характеристик, необходимых и достаточных для разработки профилактических и оперативных мероприятий, направленных на обеспечение нормального функционирования технических систем и качества жизни. В процессе идентификации выявляются номенклатура опасностей, вероятность их проявления, пространственная локализация (координаты), возможный ущерб и др. параметры, необходимые для решения конкретной задачи. Методы обнаружения опасностей делятся на: - инженерный. Определяют опасности, которые имеют вероятностную природу происхождения. - экспертный. Он направлен на поиск отказов и их причин. При этом создается специальная экспертная группа, в состав которой входят разные специалисты, дающие заключение. - социологический метод. Применяется при определении опасностей путем исследования мнения населения (социальной группы). Формируется путем опросов. - регистрационный. Заключается в использовании информации о подсчете конкретных событий, затрат каких-либо ресурсов, количестве жертв. - органолептический. При органолептическом методе используют информацию, получаемую органами чувств человека (зрением, осязанием, обонянием, вкусом и др.). Примеры применения - внешний визуальный осмотр техники, изделия, определение на слух (по монотонности звука) четкости работы двигателя и пр. В следующих главах будут рассмотрены подробно инженерные методы и метод экспертизы технических систем. 1.11. ПРИЧИНЫ И ПОСЛЕДСТВИЯ Условия, при которых реализуются потенциальные опасности, называются причинами. Они характеризуют совокупность обстоятельств, благодаря которым опасности проявляются и вызывают те или иные нежелательные события - последствия. Формы нежелательного последствия различны - травмы, материальный ущерб, урон окружающей среде и др. "Опасность - причина - нежелательные последствия" - это логический процесс развития, реализующий потенциальную опасность в реальное нежелательное последствие. Как правило, этот процесс является многопричинным. 1.12. ПОРОГОВЫЙ УРОВЕНЬ ОПАСНОСТИ Организмы и растения способны без вреда для себя переносить воздействие опасностей в определенных количествах, например, загрязняющих веществ, теплового излучения, вибрации. Их уровень, ниже которого болезненные реакции не наблюдаются, называют пороговым уровнем. При больших количествах проявляются отрицательные воздействия. Они зависят от величины опасной дозы (P), так и от длительности воздействия (экспозиции) опасности (t). При короткой экспозиции (малой длительности) переносимы более высокие уровни, т.е. пороговые значения для них могут быть выше и понижаться при более длительной экспозиции (рис. 1.12.1). Рис. 1.12.1 Для ряда опасностей, способных к биоаккумуляции, таких как, например, загрязнители элементов биосферы (тяжелые металлы, ДДТ), существуют определенные пределы, в рамках которых организм способен компенсировать их негативное воздействие. Именно такой подход заложен в ряд предельно допустимых значений - ПДУ (предельно допустимый уровень), ПДК (предельно допустимая концентрация) и др. Установление значений предельных доз воздействия базируется на подпороговых концентрациях веществ (или иных величин воздействия), при которых не наблюдается сколько-нибудь заметного отклонения или изменения функционального состояния организма, определенного точными и чувствительными физиологическими, биохимическими и патогистологическими методами, принятыми в современных медико-биологических исследованиях. Исходя из этого, предметом регламентирования при оценке влияния опасных и вредных факторов на безопасность жизнедеятельности человека является степень влияния факторов среды на характер и уровень изменений функционального состояния, функциональных возможностей организма, его потенциальных резервов, адаптивных способностей и возможностей развития последних. Для исключения необратимых биологических эффектов устанавливают нормируемые безопасные и предельно допустимые уровни или концентрации энергетического или биологического воздействия. При определении предельно допустимых значений приходится делать выбор между вероятностью нанести ущерб здоровью человека и экономической выгодой обеспечения более жестких нормативов. Пороговый уровень воздействия опасности существует и для технических систем, строительных конструкций, горно-технических сооружений и т.д. Он характеризуется способностью элементов технических систем, строительных конструкций и т.д. сопротивляться до определенного предела и в течение определенного времени негативным (разрушающим) воздействиям или полезным (рабочим) нагрузкам, сохраняя при этом свои заданные функции. Этот уровень оценивается качественными и количественными характеристиками материала элементов или систем в целом, именуемыми показателями надежности. 1.13. ПОКАЗАТЕЛИ БЕЗОПАСНОСТИ ТЕХНИЧЕСКИХ СИСТЕМ Показатели надежности. К показателям надежности относятся показатели безотказности, долговечности, ремонтопригодности (изучает теория надежности). Эргономические показатели. Определяют систему взаимодействия "человек-машина" и характеризуют комплекс гигиенических, антропометрических, физиологических, и психологических свойств, которые проявляются в процессах взаимодействия системы "человек-машина" (изучает инженерная психология и эргономика). Гигиенические показатели используют при определении соответствия системы условиям жизнедеятельности и работоспособности человека при его взаимодействии с технической системой (показатели освещенности, температуры, влажности, магнитного и электрического полей, запыленности, излучения, токсичности, шума, вибрации, перегрузок и т.д.). Физиологические и психофизиологические показатели используют при определении соответствия системы физиологическим свойствам человека и особенностям функционирования его органов чувств. Такие показатели характеризуют соответствие системы возможностям человека воспринимать и перерабатывать информацию, соответствие системы закрепленным и вновь приобретенным навыкам человека. Показатели безопасности. Определяют способность системы обусловливать при ее эксплуатации безопасность обслуживающего персонала и населения. К показателям безопасности следует отнести вероятность безопасной работы человека в конкретных условиях в течение определенного времени, время срабатывания блокировочных и защитных устройств, электропрочность линий передач и т.д. Хотя безопасность рассматривается как одно из свойств надежности, оно выходит за рамки надежности, поскольку неполнота безопасности может проявляться и в нормальных условиях работы объекта. Примером может служить работа теплоэлектроцентралей на органическом топливе (угле, сланце, мазуте) с нормальным режимом функционирования котлов, но с выбросами в атмосферу вредных продуктов сгорания в дозах, превышающих допустимые из-за несоответствия качества топлива режимам горения. Этот случай также можно рассматривать как отказ системы, при котором следует изменить режимы сжигания или режимы работы фильтров. Экологические показатели определяют уровень вредных воздействий на окружающую среду при эксплуатации, производстве, потреблении и транспортировании продукции. К ним следует отнести содержание вредных компонентов, выбрасываемых в окружающую среду; вероятность выбросов вредных компонентов (газов, жидкостей, различных излучений и т.д.). |