Главная страница

Витгенштейн логикофилософский трактат


Скачать 136 Kb.
НазваниеВитгенштейн логикофилософский трактат
Дата12.02.2023
Размер136 Kb.
Формат файлаdoc
Имя файла08_Vitgenshteyn_L_Logiko-filosofsky_traktat.doc
ТипКнига
#932751
страница2 из 3
1   2   3
Как, но не до Что.

5.5521. И если бы это было не так, то как могли бы мы применять логику? Можно было бы сказать: если бы была логика, даже если не было бы мира, как тогда могла бы быть логика, поскольку есть мир?

<…>

5.6. Границы моего языка означают границы моего мира.

5.61. Логика наполняет мир; границы мира являются также ее границами. Поэтому мы не можем говорить – в логике: это и это существует в мире, а то – нет.
Ибо это, по-видимому, предполагало бы, что мы исключаем определенные возможности, а этого не может быть, так как для этого логика должна была бы выйти за границы мира: чтобы она могла рассматривать эти границы также с другой стороны.

То, чего мы не можем мыслить, того мы мыслить не можем; мы, следовательно, не можем и сказать того, чего мы не можем мыслить.

5.62. Это замечание дает нам ключ к решению вопроса о том, а какой мере солипсизм является истиной.

То, что в действительности подразумевает солипсизм, вполне правильно, только это не может быть сказано, а лишь показывает себя.

Тот факт, что мир есть мой мир, проявляется в том, что границы языка (единственного языка, который понимаю я) означают границы моего мира.

5.621. Мир – и жизнь едины.

5.63. Я есть мой мир (микрокосм).

5.631. Мыслящего, представляющего субъекта нет. Если я пишу книгу «Мир, как я его нахожу», в ней должно быть также сообщено о моем теле и сказано, какие члены подчиняются моей воле и какие – нет и т. д. Это есть, собственно, метод изоляции субъекта, или скорее, показа, что в некотором важном смысле субъекта нет, т. е. о нем одном не может идти речь в этой книге.

5.632. Субъект не принадлежит миру, но он есть граница мира.

5.633. Где в мире можно заметить метафизический субъект? Вы говорите, что здесь дело обстоит точно так же, как с глазом и полем зрения. Но в действительности вы сами не видите глаза. И не из чего в поле зрения нельзя заключить, что оно видится глазом.

5.6331. Ибо поле зрения не имеет такой формы.

5.634. Это связано с тем, что ни одна часть нашего опыта не является также априорной.
Все, что мы видим, может быть также другим. Все, что мы можем вообще описать, может также быть другим.

Нет никакого априорного порядка вещей.

5.64. Здесь видно, что строго проведенный солипсизм совпадает с чистым реализмом. Я солипсизма сокращается до непротяженной точки, и остается соотнесенная с ним реальность.

5.641. Следовательно, действительно имеется смысл, в котором в философии можно не психологически говорить о Я. Я выступает в философии благодаря тому, что «мир есть мой мир». Философское Я есть не человек, человеческое тело и человеческая душа, о которой говорится в психологии, но метафизический субъект, граница – а не часть мира.

<…>

6.1. Предложения логики суть тавтологии.

6.11. Предложения логики, следовательно, ничего не говорят. (Они являются аналитическими предложениями.)

6.111. Теории, в которых предложение логики может казаться содержательным, всегда ложны. Можно, например, верить, что слова «истинно» и «ложно» обозначают два свойства среди других свойств, и тогда казалось бы удивительным фактом то, что всякое предложение обладает одним из этих свойств. Это кажется теперь далеко не самоочевидным, столь же мало самоочевидным, как, например, предложение «все розы или желтые, или красные», даже если оно истинно. Да, каждое такое предложение в таком случае получает полностью характер естественнонаучного предложения, а это есть верный признак того, что оно было ложно понято.

6.112. Правильное объяснение логических предложений должно ставить их в исключительное положение среди всех предложений.

6.113. Специфическим признаком логических предложений является то, что их истинность узнается из символа самого по себе, и этот факт заключает в себе всю философию логики. И одним из важнейших фактов является также то, что истинность или ложность нелогических предложений не может быть познана из одних этих предложений.

6.12. Тот факт, что предложения логики – тавтологии, показывает формально-логические свойства языка, мира. То, что их составные части, будучи так связаны, дают тавтологию, характеризует логику их составных частей.

Чтобы предложения, соединенные определенным образом, дали тавтологию, они должны иметь определенные свойства структуры. То, что, будучи так связаны, они дают тавтологию, показывает, следовательно, что они обладают этими свойствами структуры.

<…>

6.121. Предложения логики демонстрируют логические свойства предложений, связывая их в ничего не говорящие предложения.

Этот метод можно было бы назвать также методом нуля. В логическом предложении предложения уравновешиваются друг с другом, и тогда состояние равновесия указывает, как должны логически строиться эти предложения.

6.122. Из этого следует, что мы можем обходиться без логических предложений, так как мы ведь можем узнавать в соответствующей записи формальные свойства предложений простым наблюдением их.

<…>

6.1222. Это проливает свет на вопрос, почему логические предложения могут подтверждаться, опытом не более, чем они могут опровергаться опытом. Предложение логики не только не должно опровергаться никаким возможным опытом, но оно также не может им подтверждаться.

6.1223. Теперь ясно, почему мы нередко чувствуем, будто «логические истины» должны «требоваться» нами. Мы можем фактически требовать их постольку, поскольку мы можем требовать удовлетворительного способа записи.

6.1224. Теперь также ясно, почему логика была названа учением о формах и выводе.

6.123. Ясно, что логические законы сами не могут в свою очередь подчиняться логическим законам.

(Для каждого «типа» нет своего особого закона противоречия, как полагал Рассел, но достаточно одного, так как он ведь не применяется к самому себе.)

6.1231. Признаком логического предложения не является общезначимость. Быть общим – это ведь только значит: случайно иметь значение для всех предметов. Необобщенное предложение может быть тавтологичным точно так же, как и обобщенное.

6.1232. Логическую общезначимость можно было бы назвать существенной, в противоположность случайной общезначимости, которая выражается, например, в предложении «все люди смертны». <…>

<…>

6.124. Логические предложения описывают строительные леса (das Gerust) мира, или, скорее, изображают их. Они ни о чем не «трактуют». Они предполагают, что имена имеют значение, а элементарные предложения – смысл; это и есть их связь с миром. Ясно, что должен показывать нечто о мире тот факт, что некоторые связи символов, имеющие, по существу, определенный характер, являются тавтологиями. В этом – решающее. Мы сказали, что в символах, которые мы употребляем, кое-что является произвольным, а кое-что – нет. В логике выражается только это; но это означает, что в логике не мы выражаем с помощью знаков то, что мы хотим, а в логике высказывает себя природа естественно необходимых знаков. Иными словами, если мы знаем логический синтаксис какого-либо знакового языка, то уже даны все предложения логики.

6.125. Можно – также и по старому пониманию логики – дать заранее описание всех «истинных» логических предложений.

6.1251. Следовательно, в логике не может быть ничего неожиданного.

<…>

6.1261. В логике процесс и результат эквивалентны. (Поэтому нет никаких неожиданностей.)

6.1262. Доказательство в логике есть только механическое средство облегчить распознавание тавтологии там, где она усложнена.

6.1263. Также было бы чересчур хорошо, если бы можно было логически доказать одно осмысленное предложение из другого, а также доказать логическое предложение. Заранее ясно, что логическое доказательство осмысленного предложения и доказательство в логике должны быть совершенно различными вещами.

6.1264. Осмысленное предложение нечто высказывает, а его доказательство показывает, что это так и есть; в логике каждое предложение является формой доказательства.

<…>

6.1265. Всегда можно так понять логику, что каждое предложение есть свое собственное доказательство.

6.127. Все предложения логики равноправны, среди ник нет существенно исходных и выводимых из них предложений. Всякая тавтология сама показывает, что она – тавтология.

6.1271. Ясно, что число «логических исходных предложений» произвольно, так как ведь можно было бы вывести логику из одного исходного Предложения. <…>

6.13. Логика не теория, а отражение мира.

Логика трансцендентальна2.

6.2. Математика есть логический метод.

Предложения математики являются уравнениями, а потому – псевдопредложениями.

6.21. Предложение математики не выражает никакой мысли.

6.211. В жизни ведь нет таких математических предложений, в которых мы бы нуждались, но математические предложения мы употребляем только для того, чтобы из предложений, не принадлежащих математике, выводить другие, равным образом не принадлежащие математике.

(В философии вопрос «Для чего мы, собственно, употребляем данное слово, данное предложение» всегда приводил к ценным результатам.)

6.22. Логику мира, которую предложения логики показывают в тавтологиях, математика показывает в уравнениях.

<…>

6.232. Фреге говорит, что эти выражения имеют, одинаковое значение, но различный смысл.

Но в уравнении существенно то, что оно не необходимо для того, чтобы показать, что оба выражения, связываемые знаком равенства, имеют одинаковое значение, так как это может быть понято из самих этих двух выражений.

6.2321. И то обстоятельство, что предложения математики могут доказываться, означает не что иное, как то, что их правильность можно усмотреть, не сравнивая то, что они выражают, с фактами относительно их правильности.

6.2322. Тождество значений двух выражений не может утверждаться. Ибо для того, чтобы иметь возможность что-либо утверждать об их значении, я должен знать их значение; а зная эти значения, я знаю, означают ли они одно и то же или нечто различное.

<…>

6.233. На вопрос, нужна ли для решения математических проблем интуиция, следует отвечать, что сам язык доставляет здесь необходимую интуицию.

6.2331. Процесс счета (Rechnens) как раз способствует этой интуиции.

Расчет не есть эксперимент.

6.234. Математика есть метод логики.

6.2341. Существо математического метода – работа с уравнениями. На этом методе основывается, собственно говоря, то обстоятельство, что всякое предложение математики должно быть понятно само собой.

6.24. Метод, с помощью которого математика приходит к своим уравнениям, есть метод подстановки.

Ибо уравнения выражают заместимость двух выражений, и мы переходим от одного количества уравнений к новым уравнениям, заменяя соответственно уравнениям одни выражения другими.

6.3. Исследование логики означает исследование всей закономерности. А вне логики все случайно.

6.31. Так называемый закон индукции ни в коем случае не может быть логическим законом, так как очевидно, что он является осмысленным предложением, и поэтому также он не может быть априорным законом.

6.32. Закон причинности не закон, а форма закона.

6.321. «Закон причинности» – это родовое имя. И, как в механике, мы говорим, что имеется закон минимума, например закон наименьшего действия, так и в физике имеются причинные законы, законы причинностной формы.

6.3211. Ведь о том, что должен быть «закон наименьшего действия», догадывались еще прежде, чем узнали, как он формулируется. (Здесь, как всегда, априорно достоверное оказывается чем-то чисто логическим.)

6.33. Мы не верим априори в закон сохранения, но мы априори знаем возможность логической формы.

6.34. Все такие предложения, как закон основания, непрерывности в природе, наименьшей затраты в природе и т. д., все он представляют априорные умозрения возможных форм предложений науки.

6.341. Например, ньютоновская механика приводит описание мира к единой форме. Представим себе белую поверхность, на которой в беспорядке расположены черные пятна. Теперь мы говорим: какую бы картину они ни образовывали, я всегда могу сделать ее описание сколь угодно точным, покрывая эту поверхность достаточно частой сеткой, составленной из квадратных ячеек, и говоря о каждом квадрате, белый он или черный. Таким образом я буду приводить Описание поверхности к единой форме. Эта форма произвольна, поскольку я мог бы с таким же успехом применить сетку из треугольных или шестиугольных ячеек. Может случиться, что описание с помощью треугольной сетки было бы проще, то есть мы могли бы точнее описать поверхность с помощью более редкой треугольной сетки, чем с помощью более частой, составленной из квадратных ячеек (или наоборот), и т. д. Различным сеткам соответствуют различные системы описания мира. Механика определяет форму описание мира, говоря: все предложения в описании мира должны быть получены данным способом из некоторого числа данных предложений – механических аксиом. Этим самым она закладывает кирпичи в фундамент здания науки и говорит: какое бы здание ты ни захотел воздвигнуть, ты должен его сложить каким-либо способом из этих и только из этих кирпичей.

(Как система чисел дает возможность написать любое произвольное число, так и система механики должна давать возможность написать любое произвольное предложение физики.)

6.342. И теперь мы видим взаимоотношение логики и механики. (Можно было бы образовать сетку и из различного вида фигур, например из треугольников и шестиугольников.) Тот факт, что картина, подобная вышеупомянутой, может описываться сеткой данной формы, ничего не говорит о картине. (Ибо это относится к любой картине этого рода.) Но картину характеризует то, что она может полностью описываться определенной сеткой определенной частоты.

Также ничего не говорит о мире тот факт, что он может быть описан ньютоновской механикой, но, однако, о мире нечто говорит то обстоятельство, что он может быть описан ею так, как это фактически имеет место.

О мире также что-то говорит и тот факт, что одной механикой он может описываться проще, чем другой.

6.343. Механика есть попытка построить по единому плану все истинные предложения, в которых мы нуждаемся для описания мира.

6.3431. Всем своим логическим аппаратом физические законы все же говорят об объектах мира.

6.3432. Мы не должны забывать, что описание мира механикой всегда является совершенно общим. В механике, например, речь никогда не идет об определенных материальных точках, но всегда только о каких-нибудь.

6.35. Хотя пятна на нашей картине являются геометрическими фигурами, геометрия сама по себе не может решительно ничего сказать об их действительной форме и положении. Но сетка является чисто геометрической, все ее свойства могут быть даны априори.

Законы, как закон основания и т. д., говорят о сетке, но не о том, что описывает сетка.

6.36. Если бы был дан закон причинности, то он бы гласил: «есть естественные законы».

Но, конечно, это не может быть сказано; это показывает себя.

6.361. Употребляя способ выражения Герца, можно сказать: только закономерные связи мыслимы.

6.3611. Ни один процесс мы не можем сравнивать с «течением времени» – этого не существует, мы только можем сравнивать один процесс с другим (например, с ходом хронометра).

Поэтому описание течения времени возможно только в том случае, если мы основываемо на другом процессе. Аналогично и для пространства.

Там, где, например говорят, что не может наступить ни одно из двух событий (которые взаимно исключают друг друга), поскольку нет причины, по которой одно должно наступить скорее другого, там в действительности дело в том, что невозможно описать даже одного из этих двух событий, если только нет какой-либо асимметрии. А если такая асимметрия есть, то мы можем рассматривать ее как причину наступления одного и ненаступления другого события.

<…>

6.362. То, что может быть описано, может и случиться, и то, что должно исключаться законом причинности, то не может быть описано.

6.363. Процесс индукции состоит в том, что мы принимаем простейший закон, согласующийся с нашим опытом.

6.3631. Но этот процесс имеет не логическое, а только психологическое основание.

Ясно, что нет никакого основания верить, что в действительности наступит только простейший случай.

6.36311. То, что завтра взойдет солнце, – гипотеза, а это означает, что мы не знаем, взойдет ли оно.

6.37. Не существует необходимости, по которой одно должно произойти потому, что произошло другое. Имеется только логическая необходимость.

6.371. В основе всего современного мировоззрения лежит иллюзия, что так называемые законы природы являются объяснениями природных явлений.

6.372. Таким образом, люди останавливаются перед естественными законами как перед чем-то неприкосновенным, как древние останавливались перед богом и судьбой.

И они одновременно правы и не правы. Но древние были яснее, поскольку они признавали один ясный предел, в то время как новые системы представляют дело так, как будто все объяснено.

6.373. Мир не зависит от моей воли.

6.374. Даже если бы все, чего мы желаем, произошло, все же это было бы только, так сказать, милостью судьбы, так как нет никакой логической связи между волей и миром, которая гарантировала бы это, и мы сами все-таки не могли бы опять желать принятой физической связи.

6.375. Поскольку существует только логическая необходимость, постольку также существует только логическая невозможность.

6.3751. Например, для двух цветов невозможно находиться одновременно в одном и том же месте в поле зрения, и именно логически невозможно, так как это исключается логической структурой цвета.

Рассмотрим, как изображается это противоречие в физике. Примерно так: частица не может в одно и то же время обладать двумя скоростями, то есть она не может быть в двух местах в одно и то же время, то есть частицы в разных местах в одно и то же время не могут быть тождественными.
1   2   3


написать администратору сайта