

ПРЕДВАРИТЕЛЬНАЯ ОБРАБОТКА ДАННЫХ

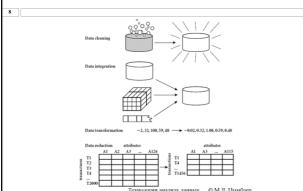
Предварительное знание того, что хочешь сделать, дает смелость и легкость. Д. Дидро

Технологии анализа данных

- □ Понятие и цели предварительной обработки данных
- □ Методы предварительной обработки данных

Зачем нужна предварительная обработка данных

- □ Неполнота данных
 - □ Отсутствие значений
 - Место=" ", ГодРождения="n/a"
- 🗆 "Шумы" (ошибки или аномалии) в данных
 - □ Зарплата=-10000
- □ Несогласованность данных
 - Возраст=70 и ДатаРождения="7-Окт-52"
 - \blacksquare В разных записях Категория $\in \{1, 2, 3\}$ или $\{A, B, C\}$


□ Неполные данные □ "n/a" при сборе данных □ Изменение точки зрения на корректность с момента сбора данных на момент анализа данных □ Ошибки в программном/аппаратном обеспечении, человеческий фактор □ "Шумы" в данных □ Ошибки в программном обеспечении сбора данных, человеческий фактор □ Сбои при передаче данных □ Несогласованность данных □ Много различных источников данных □ Нарушения ФЗ (например, модификация связанных данных) □ Дублирование данных Технологии анализа данных Технологии анализа данных О М.Л. Цымблер
 □ Изменение точки зрения на корректность с момента сбора данных на момент анализа данных □ Ошибки в программном/аппаратном обеспечении, человеческий фактор □ "Шумы" в данных □ Ошибки в программном обеспечении сбора данных, человеческий фактор □ Сбои при передаче данных □ Несогласованность данных □ Много различных источников данных □ Нарушения ФЗ (например, модификация связанных данных) □ Дублирование данных
фактор "Шумы" в данных Ошибки в программном обеспечении сбора данных, человеческий фактор Сбои при передаче данных Несогласованность данных Много различных источников данных Нарушения ФЗ (например, модификация связанных данных) Дублирование данных
 □ Ошибки в программном обеспечении сбора данных, человеческий фактор □ Сбои при передаче данных □ Несогласованность данных □ Много различных источников данных □ Нарушения ФЗ (например, модификация связанных данных) □ Дублирование данных
 □ Несогласованность данных □ Много различных источников данных □ Нарушения ФЗ (например, модификация связанных данных) □ Дублирование данных
 □ Нарушения ФЗ (например, модификация связанных данных) □ Дублирование данных
Технологии анализа данных © М.Л. Цымблер
Почему предварительная обработка
данных важна —
 □ Нет качественных данных – нет качественных результатов их анализа
 ■ Качественные решения должны быть основаны на качественных данных
□ Хранилище данных нуждается в согласованной интеграции качественных данных
□ Извлечение, очистка и трансформация данных составляют большую часть работы по построению
хранилища данных
Технологии анализа данных © М.Л. Цымблер
Измерение качества данных
Общепринятая шкала качества
□ Точность □ Полнота
□ Согласованность□ Поддержка времени
□ Правдоподобие — — — — — — — — — — — — — — — — — — —
■ Интерпретируемость ■ Доступность
□ Другие категории □ Привязка к контексту, репрезентативность, доступность

Цели предварительной обработки

- □ Очистка данных (data cleaning)
 - Заполнить отсутствующие значения, сгладить зашумленные данные, определить или удалить аномалии, исправить несогласованность
- □ Интеграция данных
 - □ Интеграция баз данных, кубов данных, файлов
- □ Трансформация данных
 - Нормализация и агрегация
- □ Редукция данных
 - Усеченное представление, гарантирующее те же или сходные результаты аналитической обработки
- □ Дискретизация данных
 - □ Часть редукции для числовых данных

Технологии анализа данных С М II Пымблег

Цели предварительной обработки

Обобщение данных

- □ Мотивация
 - Лучше понять данные: общая тенденция, вариативность, разброс
- п Характеристики дисперсии
 - медиана, min, max, квантили и др.
- □ Численные измерения, соответствующие упорядоченным интервалам
 - Анализ упорядоченных интервалов
- □ Анализ разброса вычисленных мер
 - Перевод мер в числовые значения
 - Анализ OLAP-куба

Измерение тенденции данных

- □ Среднее (теап)
 - **п** арифметическое $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - □ взвешенное

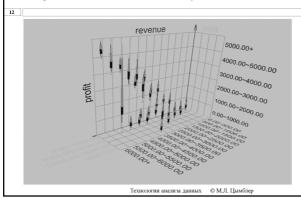
□ Медиана (median,)

oe
$$\overline{x} = \frac{|x|}{\sum_{i=1}^{n} 1}$$

 $median(a_1,...,a_n) =$

- □ Mo∂a (mode)
 - □ значение, которое встречается наиболее часто
 - уни- и мультимодальность
 - \blacksquare эмпирическая формула: $mean-mode = 3 \times (mean-median)$
- □ Средний уровень (midrange): (max min)/2

п-нечетное

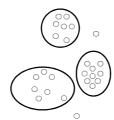

п-четное

Измерение дисперсии данных

- □ Среднеквадратичное отклонение σ = Стандартное отклонение □ Разброс: тах – тіп □ Ящики с усами (box-and-whiskers plot) k-й перцентиль — число, отделяющее сверху k% расположенных в возрастающем порядке значений числового ряда □ Квартили Q1 – 25-й перцентиль
 Q2 – медиана, 50-й перцентиль

 - Q3 75-й перцентиль
 - Интерквартильный размах: IQR=Q3-Q1
 Выбросы (аномалии): 1,5*Q3 выше Q3 или ниже Q1.

Визуализация дисперсии данных


Очистка данных
B
□ Важность
□ Очистка данных – одна из основных проблем
построения хранилищ данных
□ Основные цели
 Заполнение отсутствующих значений
□ Определить аномалии и сгладить шумы
■ Исправить несогласованные данные
□ Устранить избыточность данных, вызванную
интеграцией
-
_
Технологии анализа данных
Opposition of a victor by a contract by
Обработка отсутствующих данных
14
□ Игнорировать запись
 □ Ввести вручную (часто невозможно)
□ Ввести автоматически
значение глобальной константы
■ значения UNKNOWN или N/A – не всегда хорошо
■ Ввести среднее или медиану
■ Ввести среднее или медиану класса (классы должны
быть определены)
■ Ввести наиболее ожидаемую величину (используя моду,
деревья решений или др.)
Технологии анализа данных © М.Л. Цымблер
0
Зашумленные данные
15
 Шум – случайное значение измеряемой переменной
 □ Причины некорректного значения
□ сбои при сборе данных
□ сбои при вводе данных □ сбои при вводе данных
□ сбои при передаче данных□ сбои при передаче данных
 ■ сбои при преобразовании данных
■ несогласованность имен данных
□ технологические лимиты (на размер записи и др.)
□ Другие проблемы, требующие очистки
дублирование записей
неполные данные
несогласованные данные
Технологии анализа ланину СМ II Инмблер

Обработка зашумленных данных	
16	
□ Биннинг (binning)	
□ Сортировка набора данных, затем разделение на	
равномощные поднаборы, затем сглаживание средним,	
медианой или граничными значениями поднабора	
Регрессия	
□ Сглаживание путем подгонки данных под регрессионную	
функцию	
Кластеризация	
□ Определение и удаление аномалий	
 Совместная инспекция человека и компьютера 	
□ Определение подозрительных значений с помощью	
компьютера для их последующей проверки экспертом	
Технологии анализа данных	
	7
_	
Биннинг	
17	
 □ Отсортированные данные: □ 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34 	
□ Разделение данных на группы с одинаковой частотой	
4 , 8, 9, 15	
2 1, 21, 24, 25	
a 26, 28, 29, 34	
 □ Сглаживание с помощью среднего арифметического группы □ 9, 9, 9, 9 	-
2 3, 23, 23, 23	
2 9, 29, 29, 29	
 □ Сглаживание с помощью граничных значений группы 	
□ 4, 4, 4, 15 □ 21, 21, 25, 25	
2 21, 21, 23, 23 2 26, 26, 26, 34	
Технологии анализа данных © М.Л. Цымблер	
	_
	7
Регрессия	
I CIPCOUNT	
18	
□ Регрессия – зависимость среднего значения какой-	
либо величины от некоторой другой величины или	
от нескольких величин.	
→ Y	
.,	
y1	
·	
y = x + 1	
/ /	
v	-

Кластеризация

19

□ Кластеризация – разбиение заданной выборки объектов на подмножества (кластеры) таким образом, чтобы каждый кластер состоял из схожих объектов, а объекты разных кластеров существенно отличались.

Технологии анализа данных © М.Л. Цымблер

Несогласованность данных

20

- □ Верификация вводимых данных (проверка форматов и значений)
- □ Корректировка с использованием данных по внешним ссылкам

Технологии анализа данных © М.Л. Цымбл

Интеграция данных

21

- □ Основные проблемы
 - □ Идентификация сущностей
 - Как понять, что A.CustCode = B.CustID = C.CustNo ?
 - □ Избыточность
 - Значение некоторого атрибута выводимо из других атрибутов
 - Несогласованность в именах атрибутов
- □ Пути решения проблем
 - □ Использование метаданных
 - Использование корреляционного анализа
 - статистический анализ взаимосвязи двух или нескольких случайных величин

Технологии анализа данных © М.Л. Цымблер

Корреляционный анализ числовых данных

□ Коэффициент корреляции Пирсона

$$r_{\scriptscriptstyle A,B} = \frac{\sum (A - \overline{A})(B - \overline{B})}{(n-1)\sigma_{\scriptscriptstyle A}\sigma_{\scriptscriptstyle B}} = \frac{\sum (AB) - n\overline{AB}}{(n-1)\sigma_{\scriptscriptstyle A}\sigma_{\scriptscriptstyle B}}$$

- □ $r_{A,B} > 0$: положительная корреляция A и B
- □ $r_{A,B}$ < 0: отрицательная корреляция A и B
- $\ \square \ r_{A,B} = 0$: независимость A и B

Корреляционный анализ нечисловых данных

 \square Тест χ^2

Yecτ
$$\chi^2$$
 $\chi^2 = \sum \frac{(Observed - Expected)^2}{Expected}$

- Чем больше х², тем больше связь между величинами
- □ Пример

1 1			
	Играют	НЕ играют	ВСЕГО
	в шахматы	в шахматы	
Любят фантастику	250 (90)	200 (360)	450
НЕ любят фантастику	50 (210)	1000 (840)	1050
ВСЕГО	300	1200	1500

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$
Технологии анализа данных Ф М.Л. Цымбаер

Трансформация данных

- □ Сглаживание
 - удаление шумов с помощью биннинга, регрессии или кластеризации
- □ Агрегация
 - суммирование частичных итогов (например, месячные продажи вместо ежедневных)
- □ Обобшение
 - замена частных значений более общими (например, "молодой", "среднего возраста", "пожилой" вместо значения возраста)
- □ Нормализация
 - приведение значений к одному заданному промежутку
- □ Создание новых атрибутов из имеющихся
 - например, SP.TotalSale=SP.Qty*P.Price

HΩ	рма	пиза	шия	дан	нь	IX

25

 \square Мин-макс [$new_min_A..new_max_A$]

$$v' = \frac{v - min_{\iota}}{max_{\iota} - min_{\iota}} (new_max_{\iota} - new_min_{\iota}) + new_min_{\iota}$$

□ Z-нормализация

$$v' = \frac{v - \mu_A}{\sigma_A}$$

□ Десятичное масштабирование

$$\mathbf{v'} = \frac{\mathbf{v}}{10^{J}}$$
 где j – наименьшее целое, что $max(|\mathbf{v'}|) < 1$

Технологии анализа данных © М.Л. Цымблер

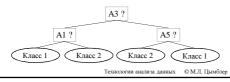
Редукция данных

26

- □ Уменьшение количества строк (объектов)
- □ Уменьшение количества столбцов (атрибутов)
- □ Сжатие
- □ Дискретизация

Технологии анализа данных © М.Л. Цымблер

Уменьшение количества строк


27

- Агрегация
 - Использование более высокого уровня иерархии в измерениях (например, день→неделя→месяц→год)
- □ Использование моделей
 - Если данные подходят под некоторую модель, оцениваем параметры модели, сохраняем параметры, отбрасываем данные (за исключением аномалий)
- Использование гистограмм
 - Разделение данных на подгруппы, хранение представления подгрупп (сумма, количество и др.)
- Кластеризация
 - Разделение данных на подгруппы на основе расстояний между элементами, хранение представителей (центроидов) кластеров и аномалий
- □ Сэмплинг
 - Большое множество данных представляется своим существенно меньшим по мощности подмножеством, элементы которого выбираются случайным образом

Технологии анализа данных © М.Л. Цымблер

Уменьшение количества столбцов

- □ Пошаговый прямой отбор
 - $\blacksquare \{\} \rightarrow \{A1\} \rightarrow \{A1,A3\} \rightarrow \{A1,A3,A5\}$
- □ Пошаговый обратный отбор
 - \blacksquare {A1,A2,A3,A4,A5} → {A1,A3,A4,A5} → {A1,A3,A5}
- □ Деревья решений
 - $\blacksquare \{A1,A2,A3,A4,A5\} \rightarrow \dots \rightarrow \{A1,A3,A5\}$

Сжатие данных

29

- □ Может принести выгоду, если алгоритму интеллектуального анализа не потребуется восстановление сжатых данных
- □ Сжатие без потерь
 - □ LZW, ZIP, DWT, ...
- □ Сжатие с потерями
 - □ JPEG, MPEG, ...

Технологии анализа данных © М.Л. Цымбл

Дискретизация

30

- □ Типы атрибутов
 - Номинальные значения из неупорядоченного множества (например, Цвет, Профессия)
 - Ординальные значения из упорядоченного множества (например, ВоинскоеЗвание)
 - Непрерывные вещественные или целые числа
- □ Дискретизация
 - Разбиение промежутка значений непрерывного атрибута на интервалы
 - Уменьшение размера данных (границы/метки интервала заменяют значения)
 - Введение иерархий

Технологии анализа данных

© М.Л. Цымбле

Дискретизация
•
31
Биннинг
□ Гистограммы 1 5
□ Кластеризация
□ Дискретизация на основе энтропии
 ■ Выбор точки разбиения интервала таким образом, чтобы минимизировать функцию энтропии
□ Естественное разбиение
□ Правило 3-4-5
Технологин анализа данных © М.Л. Цымблер
Дискретизация на основе энтропии
32
\Box Пусть T – граница интервала S , разделяющая его на
интервалы $S_{\it I}$ и $S_{\it 2}$. Тогда
$I(S,T) = \frac{ S_1 }{ S } Entropy(S_1) + \frac{ S_2 }{ S } Entropy(S_2) \qquad Entropy(S_1) = -\sum_{i=1}^{\infty} p_i \log_2(p_i)$
\Box Выбирается граница T , которая минимизирует
функцию энтропии.
Процесс разбиения может повторяться до
достижения определенного критерия останова
Технологин анализа данных
Дискретизация по правилу 3-4-5
33
□ Если интервал содержит 3, 6, 7 или 9 различных
значений (по заданной значащей цифре), разбить его
на 3 равных интервала
□ Если интервал содержит 2, 4 или 8 различных значений (по заданной значащей цифре), разбить его
на 4 равных интервала
□ Если интервал содержит 1, 5 или 10 различных
значений (по заданной значащей цифре), разбить его

на 5 равных интервалов

Дискретизация категорийных данных

- □ Порядок атрибутов на уровне схемы данных □ Улица < Город < Область < Округ
- □ Улица < Город < Область < Округ
 □ Спецификация иерархии для набора данных
- { Челябинск, Златоуст, Магнитогорск } < Челябинская область</p>
- $\hfill\Box$ Спецификация частичного порядка атрибутов
 - Улица < Город</p>
- Автоматическая генерация иерархии из множества атрибутов на основе анализа количества уникальных значений
 - \blacksquare К-во уникальных значений: Округ > Область > Город > Улица
 - при Исключения: ДеньНедели, Месяц, Квартал, Год

Технологии анализа данных

© М.Л. Цымблер

\sim									
3	2	ИI	ПI	Λ	u	മ	ч	IЛ	Δ
v	u	1/1		v	7	u		vI	$\mathbf{-}$

35

- □ Предварительная обработка данных важная задача для построения хранилищ данных и интеллектуального анализа данных.
- \Box Нет качественных данных нет качественных результатов их анализа.
- □ Предварительная обработка включает в себя
 - □ Очистка и интеграция данных
 - □ Редукция данных
 - □ Дискретизация данных

Технологии анализа данных © М.Л. Цымбле

-	-