Федеральное агентство железнодорожного транспорта Управление учебных заведений и правового обеспечения

Федеральное государственное бюджетное образовательное учреждение «Учебно-методический центр по образованию на железнодорожном транспорте»

МДК 02.01

Ремонт и наладка устройств электроснабжения (раздел 1, темы 1.4; 1.5)

МЕТОДИЧЕСКОЕ ПОСОБИЕ

по проведению лабораторных работ и практических занятий профессионального модуля

«ОРГАНИЗАЦИЯ РАБОТ ПО РЕМОНТУ ОБОРУДОВАНИЯ ЭЛЕКТРИЧЕСКИХ ПОДСТАНЦИЙ И СЕТЕЙ»

специальность **140409**Электроснабжение
(по отраслям) (для железнодорожного транспорта)

базовый уровень среднего профессионального образования

Методическое пособие по проведению лабораторных работ и практических занятий составлено в соответствии с примерной программой профессионального модуля ПМ.02. Организация работ по ремонту оборудования электрических подстанций и сетей. Раздел 1. Планирование, организация и проведение ремонтных работ. МДК 02.01. Ремонт и наладка устройств электроснабжения для специальности 140409 Электроснабжение (по отраслям) (для железнодорожного транспорта), рекомендовано к изданию на заседании Учебно-методического совета по специальности «Электроснабжение».

Председатель УМС *В.С. Почаевец* 19 апреля 2012 г.

Автор — *С.Ю. Мельникова*, преподаватель Тайгинского института железнодорожного транспорта — филиала Φ ГБОУ ВПО «Омский государственный университет путей сообщения»

 $H.Б.\ Годунов$, преподаватель Вологодского техникума железнодорожного транспорта — филиала ФГБОУ ВПО «Петербургский государственный университет путей сообщения»

© ФГБОУ «Учебно-методический центр по образованию на железнодорожном транспорте», 2014

Введение

Методическое пособие по проведению лабораторных работ и практических занятий содержит основные теоретические сведения для качественного закрепления теоретических знаний, полученных при изучении профессионального модуля ПМ.02. «Организация работ по ремонту оборудования электрических подстанций и сетей». Раздел 1. «Планирование, организация и проведение ремонтных работ». МДК 02.01. «Ремонт и наладка устройств электроснабжения» и выполнения ремонтных работ электроустановок в условиях, максимально приближенных к реальным условиям.

При выполнении работ заполняется нормативно-техническая документация, используемая в электроустановках, наряды-допуски. Бригады формируются из числа студентов, экипируются и снабжаются средствами защиты, электромонтажными приспособлениями и инструментами, для отработки навыков по ремонту и обслуживанию устройств электроснабжения в лабораториях и на полигонах учебного заведения.

Выполнение лабораторных работ и практических занятий должны проводиться в лабораториях: «Электроснабжение», «Электрические подстанции», «Техническое обслуживание электрических установок», «Релейная защита и автоматизированные системы управления устройствами электроснабжения», а также на полигоне технического обслуживания и ремонта устройств электроснабжения.

Для наиболее эффективного использования учебного времени знакомство студентов с целью и содержанием занятий, а также подготовка бланков отчетов к ним проводятся заранее в виде домашнего задания.

Итоговый письменный отчёт о лабораторных работах может предусматривать включение самостоятельной работы студентов по подготовке отчёта и выполнению отдельных заданий.

Приведенные ниже описания лабораторных работ следует рассматривать как методическое пособие для организации работы в лабораториях. Практические занятия могут быть адаптированы применительно к конкретным условиям и возможностям учебного заведения.

После окончания лабораторной работы или практического занятия необходимо составить отчет и, защитив его, получить оценку преподавателя.

Содержание отчета

- 1. № раздела и лабораторной работы или практического занятия.
- 2. Тема практического занятия или лабораторной работы.
- 3. Цель практического занятия или лабораторной работы.
- 4. Перечень используемого оборудования и материалов.
- 5. Постановка задачи.
- 6. Исходные данные.
- 7. Выполнение задания, анализ результатов лабораторной работы или практического занятия, вывод.
 - 8. Ответы на контрольные вопросы.

Обеспечение безопасности при проведении лабораторных работ и практических занятий

1. Общие требования охраны труда:

- 1.1. При выполнении работ необходимо быть внимательными и дисциплинированными, точно выполнять указания преподавателя.
- 1.2. Запрещается приступать к выполнению работы без разрешения преподавателя.

2. Требования охраны труда перед началом работы:

- 2.1. Перед выполнением работы внимательно изучите ее содержание и ход выполнения, технологическую карту.
- 2.2. Следите за исправностью всех креплений в приборах и приспособлениях. Не прикасайтесь и не наклоняйтесь (особенно с неубранными волосами) к вращающимся частям машин.
- 2.3. При сборке электрической цепи используйте провода (с наконечниками и предохранительными чехлами) с прочной изоляцией без видимых повреждений.
 - 2.4. Получите инструктаж по правилам охраны труда у преподавателя.
- 2.5. При сборке электрической цепи избегайте пересечения проводов. Запрещается пользоваться проводником с изношенной изоляцией и выключателем открытого типа.
- 2.6. Источник тока к электрической цепи подключайте в последнюю очередь. Собранную цепь включайте только после проверки и с разрешения преподавателя. Наличие напряжения в цепи можно проверять только с помощью приборов или указателей напряжения.
- 2.7. Не прикасайтесь к находящимся под напряжением элементам цепей, лишенным изоляции.

3. Требования охраны труда во время работы:

- 3.1. К выполнению работы можно приступать после подготовки, преподавателем, рабочего места и получения инструктажа.
- 3.2. При работе на высоковольтном оборудовании допускаются студенты, имеющие группу по электробезопасности не ниже II, все действия выполнять только под наблюдением преподавателя.
- 3.3. Не производите присоединение в цепях и смену предохранителей до отключения источника электропитания.
- 3.4. Не прикасайтесь к корпусам стационарного электрооборудования, к зажимам отключенных конденсаторов.
- 3.5. Пользуйтесь исправным и испытанным инструментом с изолирующими ручками, средствами защиты, предохранительными приспособлениями.

4. Требования охраны труда по окончанию работы:

- 4.1. По окончании работы отключите источник электропитания, после чего разберите электрическую цепь.
- 4.2. Не уходите с рабочего места без разрешения преподавателя, и сдачи ему рабочего места.
- 4.3. Включение и отключение электроустановки производить только сухими руками и с использованием индивидуальных средств защиты.
- 4.4 Необходимо соблюдать правила эксплуатации электроустановок, не подвергать механическим ударам, не допускать падений.

5. Требования охраны труда в аварийных ситуациях:

- 5.1 Срочно прекратить работу в случае обнаружения: искрения соединений или щеток эл. машины, нарушения изоляции проводов или кабеля, поломки или разъединения заземляющего провода.
- 5.2. Категорически запрещается передавать работу в электроустановках лицу, не прошедшему обучение и инструктаж по правилам эксплуатации электроустановок и охраны труда, оставлять без присмотра включенную в электрическую сеть электроустановку даже на короткое время.

Раздел 1. Планирование, организация и проведение ремонтных работ

МДК 02.01. Ремонт и наладка устройств электроснабжения

Тема 1.4 Ремонт электрооборудования электрических подстанций

Лабораторная работа № 1

Текущий ремонт привода высоковольтного выключателя

Цель: приобретение практических навыков в проведении текущего ремонта привода высоковольтного выключателя типа ВМПЭ-10.

Оборудование и материалы: Учебная лаборатория электрических подстанций, технологическая карта № 3.3 сборника технологических карт на работы по текущему ремонту оборудования тяговых подстанций электрифицированных ж.д., инструменты, средства защиты, высоковольтный выключатель типа ВМП-10, ветошь, щуп, напильник, мелкая наждачная шкурка, смазка ЦИАТИМ, лак изоляционный, скребок, электросекундомер, ключи гаечные, плоскогубцы комбинированные.

Краткие теоретические сведения

Управляется выключатель электромагнитным приводом постоянного тока, встроенным в раму выключателя. Оперативное включение осуществляется за счет энергии включающего электромагнита, а отключение — за счет отключающих пружин и пружинного буфера, которые срабатывают при воздействии отключающего электромагнита или кнопки ручного отключения на защелку привода, удерживающую выключатель во включенном положении.

Электромагнитный привод, рисунок 1, предназначен для дистанционного и автоматического включения и отключения выключателей. Недостатком электромагнитных приводов является значительный ток, потребляемый катушками включения (до 100 A).

При ремонте приводов внимательно осмотреть все их части для выявления возможных неисправностей. Особое внимание обратить на детали, несущие самую большую нагрузку, и на трущиеся поверхности зацепления. Разбирают не весь привод, а только те

части, которые мешают устранению неисправностей. Для удаления пыли и старой смазки механизм привода протирают чистой тряпкой, смоченной в бензине или керосине. Новую смазку ЦИАТИМ наносят тонким слоем, удаляя излишки, разрешается использовать трансформаторное масло. Если имеется повышенный люфт в осях, их заменяют новыми. Винты и гайки подтягивают. После ремонта и регулировки проводят испытание привода.

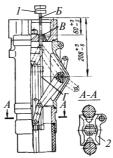


Рис. 1. Метод определения полного хода подвижного контакта и хода в розеточном контакте (выключатели серии ВМПЭ и т.п.)

I — штанга; 2 — колодка; E — включенное положение; E — момент касания контактов; E — отключенное положение (60 мм — ход в розеточном контакте; 208 мм — полный ход подвижного контакта)

Проверка одновременности замыкания и размыкания контактов выключателя производится также по схеме рисунок 2. Одновременность замыкания и размыкания контактов определяется при медленном ручном включении и отключении выключателя по меткам, наносимым при загорании и погасании ламп, фиксирующих моменты замыкания и размыкания соответствующих контактов выключателя они должны соответствовать заводским данным.

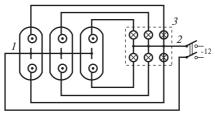


Рис. 2. Схема определения разновременности замыкания контактов масляного выключателя

1 — подвижный контакт выключателя. 2 — рубильник. 3 — сигнальные лампы

Порядок выполнения работы

- 1. Познакомиться с техническими характеристиками высоковольтного выключателя переменного тока.
- 2. Произвести измерение переходного сопротивления постоянному току. Полученные данные записать в таблицу 1, сравнить с паспортными. В случае несоответствия предложить меры по устранению.
- 3. Выполнить проверку времени движения подвижных частей масляного выключателя, для чего собрать схему, рисунок 1. Полученные данные записать в таблицу 1, сравнить с паспортными.

Таблица 1

Основные параметры и допуски выключателя

Наименование испытания	Параметр	Допуск	Измеряемый инструмент	Замечание
Измерение переходного сопро-				
тивления постоянному току				
Проверка времени движения				
подвижных частей				
Сопротивление изоляции под-				
вижных и направляющих частей				
Проверка хода подвижных				
контактов				

- 1. Как уменьшить переходное сопротивление контактов?
- 2. Каким испытаниям подвергают трансформаторное масло?
- 3. С какой целью выполняют профилактические испытания?
- 4. Какие испытания выполняют на высоковольтных выключателях?
- 5. Какие измерительные приборы применяют для измерения переходного сопротивления контактов?

Лабораторная работа № 2

Текущий ремонт высоковольтного выключателя переменного тока

Цель: приобретение практических навыков в проведении текущего ремонта высоковольтного выключателя типа ВМПЭ-10.

Оборудование и материалы: учебная лаборатория электрических подстанций, ВМПЭ-10, инструкционная карта, технологическая карта, инструменты, средства защиты, высоковольтный выключатель типа ВМП-10, ветошь, щуп, напильник, мелкая наждачная шкурка.

Краткие теоретические сведения

Текущий ремонт выключателя ВМПЭ-10 с частичной разборкой проводят в следующем технологическом порядке:

- 1. Снимают междуполюсные перегородки, сливают масло из полюсов снимают нижние крышки с розеточными контактами, вынимают дугогасительные камеры и распорные цилиндры, тщательно промывают сухим маслом, протирают и осматривают;
- 2. Переводят выключатель вручную в положение, соответствующее включенному для осмотра концов подвижных стержней;
- 3. Если контакты и камеры имеют износ (небольшие наплывы металла на рабочих поверхностях контактов, поверхностное обугливание перегородок камеры без увеличения сечения дутьевых каналов), то зачистить их поверхности напильником или мелкой наждачной шкуркой, а затем промыть маслом. Если контакты и камеры сильно повреждены дугой они должны быть заменены;
- 4. При ремонте розеточного контакта проследить чтобы ламели 4 были установлены без перекосов, при вытянутом стержне находились в наклонном положении к центру с касанием между собой в верхней части и опирались на опорное кольцо;
- 5. Токоведущие части промывают и протирают. Контактные выводы полюсов смазывают тонким слоем смазки ГОИ-54 или ПВК. При сборке обеспечивают плотное прилегание головки, верхнего фланца с корпусом; нижней крышки с фланцем. В собранных полюсах проверяют работу механизма. При повороте его за наружный рычаг подвижный стержень должен свободно, без заеданий, перемещаться по всему ходу до розеточного контакта;
 - 6. Проверяют исправность масляного буфера.

Порядок выполнения работы

- 1. Разбиться по бригадам (в составе 2-х человек), для осмотра масляного выключателя.
- 2. Изучить технологическую карту и провести текущий ремонт выключателя, проверить одновременность замыкания контактов.
- 3. Оформить отчет о проделанной работе и сделать вывод о состоянии выключателя.

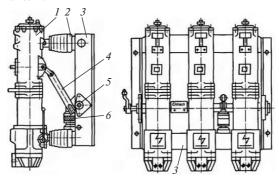


Рис. 3. Выключатель типа ВМП-10

1 — полюс; 2 — опорный изолятор; 3 — рама; 4 — изоляционная тяга; 5 — вал; 6 — масляный буфер

- 1. Как расшифровать ВМП-10, ВМПП-10, ВМПЭ-10, МКП-110?
- 2. Расскажите по плакату устройство полюса выключателя типа ВМПЭ-10?
 - 3. Что представляет собой электрическая дуга?
- 4. Назовите основные повреждения выключателя и причины вызвавшие их?
 - 5. Назовите состав бригады при выполнении ТР ВМПЭ-10?
 - 6. Назовите условия выполнения данной работы.
- 7. Как проверить выключатель на одновременность замыкания контактов?
- 8. Назовите основные операции технологического процесса по ТР данного выключателя.

Лабораторная работа № 3

Текущий ремонт трансформатора тока

Цель занятия: получить практические навыки при проведении текущего ремонта трансформатора тока

Оборудование и материалы: измерительный трансформатор, амперметры, реостат, мегаомметр, соединительные провода, лаборатория электрических подстанций.

Краткие теоретические сведения

Ремонт трансформаторов тока начинают с осмотра состояния фарфоровой, эпоксидной или другой изоляции; при этом проверяют надежность крепления трансформатора к конструкциям, количество масла в баке и отсутствие его течи в уплотнениях и сварных швах. Для удаления течи масла через уплотнение подтягивают скрепляющие болты. Если это не помогает, то прокладку заменяют новой из пробки или маслостойкой резины. Если течь масла обнаружена в сварном шве, трансформатор заменяют.

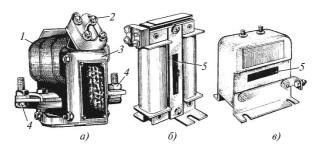


Рис. 4. Трансформаторы тока на напряжение до 1000 В a — катушечный; δ , δ — шинные ТШ-0,5 и ТШЛ-0,5; I — каркас; 2, 4 — зажимы вторичной и первичной обмоток; 3 — защитный кожух; 5 — окно

Проходные трансформаторы тока для внутренней установки на напряжение 10 кВ выполняют многовитковыми, одновитковыми и шинными с фарфоровой и пластмассовой (литой) изоляцией (рисунок 5, а-в).

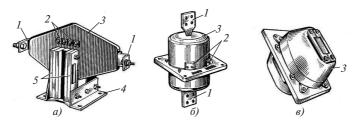


Рис. 5. Трансформаторы тока на напряжение 10 кB с литой изоляцией a — многовитковый ТПЛ-10; δ — одновитковый ТПОЛ — 10; δ — шинный ТПШЛ-10; 1,2 — зажимы первичной и вторичной обмоток; 3 — литая изоляция; 4 — установочный угольник; 5 — сердечник

Порядок выполнения

- 1. Изучить теоретические сведения.
- 2. Произвести внешний осмотр трансформатора тока. Дать его краткую характеристику.
- 3. Произвести измерение сопротивления изоляции: обмотка корпус; обмотки ВН обмотки НН мегаомметром;
- 4. Произвести проверку коэффициента трансформации. Полученные значения сравнить с паспортными данными.
- 5. Снять характеристики намагничивания, для чего собрать схему, рисунок 4, полученные значения сравнить с паспортными данными.
 - 6. Оформить результаты испытаний в таблицу.
 - 7. Оформить отчет о проделанной работе.
 - 8. Сделать вывод о состоянии трансформатора тока.

- 1. Каково назначение измерительного трансформатора тока?
- 2. Какие операции выполняют при проведении текущего ремонта ТТ?
- 3. Какие операции выполняют при испытании измерительного трансформатора тока?
- 4. Какие измерительные приборы можно подключать к трансформатору тока?
 - 5. В каком режиме работает трансформатор тока?
 - 6. Чем обеспечивается безопасность обслуживающего персонала?

Лабораторная работа № 4

Текущий ремонт трансформатора напряжения

Цель занятия: получить практические навыки при проведении текущего ремонта трансформатора напряжения

Оборудование и материалы: измерительный трансформатор, амперметры, лаборатория электрических подстанций.

Краткие теоретические сведения

При ремонте трансформаторов, рисунок 6, необходимо особое внимание уделять изоляционным работам, так как надежность трансформаторов в эксплуатации определяется в основном качеством изоляции. Наиболее часто в трансформаторах повреждаются обмотки ВН, реже НН. Повреждения в основном происходят из-за снижения электрических свойств изоляции на каком-нибудь участке обмотки, в результате чего наступает электрический пробой изоляции между витками и их замыкание, приводящее к выходу трансформатора из строя. Повреждение внешних деталей трансформатора (расширителя, бака, арматуры, вводов, пробивного предохранителя) можно обнаружить при внимательном осмотре, а внутренних — в результате испытаний.

Порядок выполнения

- 1. Изучить теоретические сведения.
- 2. Пройти инструктаж у преподавателя.
- 3. Произвести внешний осмотр трансформатора напряжения, определить объем работы.
 - 4. Подобрать необходимые инструменты.
 - 5. Дать краткую характеристику трансформатора.
 - 6. Заполнить дефектную ведомость на трансформатор.
 - 7. Произвести текущий ремонт трансформатора напряжения
 - 8. Оформить отчет о проделанной работе.
 - 9. Сделать вывод о состоянии трансформатора напряжения.

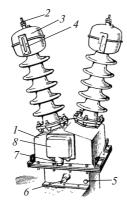


Рис. 6. Внешний вид трансформатора напряжения НОМ-35-66

Контрольные вопросы

- 1. Каково назначение измерительных трансформаторов напряжения?
- 2. Нарисуйте схемы включения трансформаторов.
- 3. Изложите основные технические характеристики измерительных трансформаторов напряжения.
- 4. Какие типы трансформаторов напряжения для внутренней установки применяются в настоящее время?
- 5. Объясните устройство и принцип работы измерительного трансформатора напряжения ЗНОМ.
- 6. Расскажите об устройстве и принципе работы измерительного трансформатора напряжения НТМИ.
- 7. Расскажите об устройстве и принципе работы измерительного трансформатора НКФ-110.

Лабораторная работа № 5 Текущий ремонт разъединителя

Цель занятия: получить практические навыки при проведении текущего ремонта разъединителя типа PBO-6-10

Оборудование и материалы: диэлектрические перчатки, мегаомметр на 1000 В, ключи гаечные, плоскогубцы комбинированные, отвертки, молоток, линейка измерительная, наждачное полотно, уайт-спирит, смазка ЦИАТИМ, лак изоляционный, обтирочный материал, лаборатория электрических подстанций.

Краткие теоретические сведения

Ремонт разъединителей включает ремонт изоляторов, токоведущих частей, приводного механизма и каркаса, общий вид разъединителя PBO-6—10, показано на рисунке 7. Сначала изоляторы очищают от пыли и грязи (слегка смоченной в бензине тряпкой) и внимательно осматривают с целью выявления дефектов. Далее проверяют крепление подвижных и неподвижных контактов на изоляторах, а также токоведущих шин проходных изоляторов; отсутствие при включении смещения подвижного контакта относительно оси неподвижного. Если смещение вызывает удар подвижного о неподвижный контакт, его устраняют изменением положения неподвижного контакта; надежность контакта в месте соединения шин с неподвижными контактами (на стягивающих болтах должны быть контргайки) и далее по технологической карте.

Порядок выполнения

- 1. Изучить теоретические сведения.
- 2. Произвести внешний осмотр разъединителя. Дать его краткую характеристику.
 - 3. Выявить дефекты разъединителя и заполнить ведомость дефектов.
- 4. Произвести текущий ремонт в соответствии с указаниями теоретических сведений.
 - 5. Оформить отчет о проделанной работе.
 - 6. Сделать вывод о состоянии разъединителя

- 1. Назначение разъединителей. Какие операции разрешается производить разъединителями?
 - 2. По каким признакам классифицируются разъединители?
- 3. Опишите устройство и области применения разъединителя типа PB-6-10.
 - 4. Объясните устройство разъединителя типа РВЗ-6-10.
- 5. Расскажите об устройстве и принципе действия разъединителя типа PBK-20.
- 6. Расскажите об устройстве и принципе действия разъединителя типа PBH-500.
 - 7. С какими дефектами не допускается разъединитель к эксплуатации?
- 8. Какие операции выполняются при текущем ремонте разъединителя типа PBO-6?

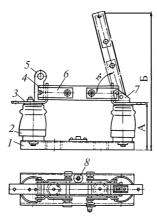


Рис. 7. Разъединитель РВО-6-10

I — рама; 2 — изолятор; 3 — неподвижный контакт; 4 — нож; 5 — зацеп; 6 — контактная пружина; 7 — скоба подвижного контакта; 8 — болт, заземления

Лабораторная работа № 6 Текущий ремонт привода разъединителя

Цель занятия: получить практические навыки при проведении текущего ремонта привода разъединителя типа PBO — 10 кВ

Оборудование и материалы: диэлектрические перчатки, мегаомметр на 1000 В, ключи гаечные, плоскогубцы комбинированные, отвертки, молоток, линейка измерительная, наждачное полотно, уайт-спирит, смазка ЦИАТИМ, лак изоляционный, обтирочный материал, привод УМП-II, полигон технического обслуживания и ремонта устройств электроснабжения.

Краткие теоретические сведения

Приводы УМП-II, рисунок 8, представляет собой двухступенчатые редукторы, собранные в чугунном корпусе 7.

Текущий ремонт привода совмещается с очередным текущим ремонтом выключателя. При текущем ремонте производится осмотр всех узлов и проверка их взаимодействия без разборки привода. Особо тщательно осматриваются поверхности зацепления собачек, защелок, кулачков, роликов и других доступных для осмотра трущихся деталей. При этом выполняется очистка всех частей привода от грязи и старой смазки и нанесение новой смазки. Для удаления

пыли и старой загрязненной смазки механизм привода протирают чистой тряпкой, смоченной бензином или керосином. Новую смазку наносят тонким слоем, удаляя излишки.

Ролики и удерживающие собачки (защелки) подлежат замене при наличии седловин и вмятин на рабочих поверхностях глубиной более 1 мм и эллиптичности роликов более 0,4 мм. Глубину седловины на рабочих поверхностях собачек контролируют измерением высоты горба пластилинового слепка с седловины, а глубину вмятины на поверхностях роликов определяют измерением наименьшего диаметра в месте вмятины.

Рис. 8. Привод разъединителя типа УМП-II

Порядок выполнения работы

- 1. Изучить теоретические сведения.
- 2. Произвести внешний осмотр привода разъединителя, проверить наличие на корпусе привода обозначение разъединителя, надежность и исправность заземления, закрепление привода на опоре, крепление тяги привода.
- 3. Осмотреть ввод питающего кабеля в клеммный шкаф и корпус привода, проверить состояние защитной стальной трубы на выходе из земли питающего кабеля (стояка), электрической изоляции корпуса привода от металлической оболочки и брони кабеля.
- 4. Открыть крышку привода, проверить уплотнения, работу кнопки блокировки, снять защитный кожух с электродвигателя, очистить уайт-спиритом коллектор, проверить свободно ли перемещаются щетки в направляющих (при необходимости отрегулировать их нажатие на коллектор).
- 5. Проверить исправность уплотняющих прокладок защитного кожуха и установить его на место.
- 6. Проверить надежность подключения и крепления проводов, протереть от пыли и грязи все детали привода, удалить старую смазку

и нанести новую, проверить исправность шестерен и смазать червячную передачу и шарнирные соединения.

- 7. Подключить питающий кабель к клеммной сборке привода, проверить ручное переключение привода. Закрыть крышку привода на замок.
- 8. Оформить отчет о проделанной работе и сделать вывод о состоянии разъединителя

Контрольные вопросы

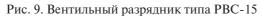
- 1. Расскажите конструкцию привода типа УМП II.
- 2. Назовите достоинства моторного привода.
- 3. От чего зависит работа привода?
- 4. На что необходимо обращать внимание при проверке осей?
- 5. На что необходимо обращать внимание при осмотре пружин?
- 6. Назовите организационные и технические мероприятия обеспечивающие безопасность работ.

Лабораторная работа № 7 Выполнение ремонта разрядника

(ограничителя перенапряжения)

Цель занятия: получить практические навыки при выполнении ремонта вентильных разрядников и ограничителей перенапряжения (ОПН) на напряжение $6{\text -}10~\text{kB}$

Оборудование и материалы: каски защитные, перчатки диэлектрические, пояс предохранительный, приставная лестница, мегаомметр на напряжение 2500В, ключи гаечные, плоскогубцы комбинированные, отвертки, молоток, наждачное полотно, уайт-спирит, смазка ЦИАТИМ, обтирочный материал, изоляционный лак, полигон технического обслуживания и ремонта устройств электроснабжения.


Краткие теоретические сведения

Вентильные разрядники. В вентильных разрядниках рисунок 9, последовательно с блоками искровых промежутков включают нелинейные резисторы. Эффективность защиты вентильными разрядниками определяется расстоянием их от защищаемого оборудования: чем ближе (считая по соединительным шинам) к защищаемому оборудованию они установлены, тем эффективнее их защита. Поэтому устанавливают их возможно ближе к наиболее ответственному обо-

рудованию (например, к трансформаторам). Наблюдение за работой вентильных разрядников ведется по показаниям регистраторов срабатывания.

Ограничители перенапряжений нелинейные (ОПН) они отличаются от разрядников только отсутствием искровых промежутков и материалом нелинейных резисторов.

Оперативное обслуживание ОПН мало, отличается от обслуживания вентильных разрядников. Текущий ремонт вентильных разрядников и ОПН выполняется со снятием напряжения по наряду, формы ЭУ-44.

I — блок искровых промежутков; 2 — блок нелинейных резисторов; 3 — фарфоровая рубашка; 4 — фланец

Рис. 10. Общий вид ОПН 10кB — 12.5—550A

Порядок выполнения

- 1. Изучить теоретические сведения.
- 2. Произвести внешний осмотр разрядника (ОПН). Проверить крепление разрядника (ОПН) и состояние заземления. Выявить дефекты.
 - 3. Проверить состояние контактных соединений.

- 4. Очистить разрядник (ОПН) и проверить состояние фарфоровой изоляции и армировки.
- 6. Оформить отчет о проделанной работе с заключение о состоянии разрядника (ОПН).

Контрольные вопросы

- 1. Назовите характер внутренних и внешних перенапряжений.
- 2. Назовите назначение вентильного разрядника.
- 3. Назовите требования к защитной характеристике разрядника.
- 4. Назовите разновидности вентильного разрядника.
- 5. Перечислите недостатки вентильного разрядника.
- 6. Назовите особенности конструкции ОПН.
- 7. Назовите категорию работы по ТР ОПН.
- 8. С какими дефектами не допускаются разрядники (ОПН) к эксплуатации?

Лабораторная работа № 8

Текущий ремонт аккумуляторной батареи

Цель занятия: получить практические навыки при испытании аккумуляторных батарей.

Оборудование и материалы: аккумулятор типа СК-6, ареометр, стеклянная трубка, милливольтметр, нагрузочная вилка, резиновые перчатки, лаборатория электрических подстанций.

Краткие теоретические сведения

Аккумуляторные батареи работают в режиме постоянного подзаряда, т.е. батарея постоянно подключена параллельно зарядному устройству. Такой режим обеспечивает надежность питания оперативных цепей, так как батарея находится всегда в заряженном состоянии; при этом уменьшается сульфатация пластин и выпадение их активной массы на дно сосуда вследствие отсутствия периодических глубоких разрядов большим током, что удлиняет срок службы батареи. В режиме постоянного подзаряда все элементы разряжаются и подзаряжаются равномерно, а в сосудах поддерживается одинаковый уровень и плотность электролита.

Порядок выполнения работы

- 1. Провести внешний осмотр батареи.
- 2. Измерить уровень электролита, рисунок 11, (а и б).

- 3. Измерить плотность электролита, рисунок 11, (в).
- 4. Измерить сопротивление изоляции.
- 5. Измерить напряжение пластин, рисунок 11, (г).
- 6. Заполнить таблицу 2.
- 7. Сделать вывод.

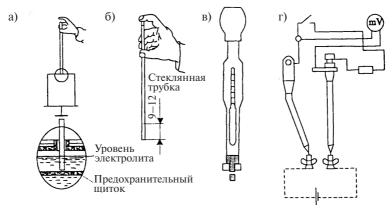


Рис. 11. Измерение уровня и плотности электролита и напряжения a, δ — проверка уровня электролита; δ — ареометр для измерения плотности электролита; ϵ — нагрузочная вилка для измерения

Таблица 2

Результаты измерений

Проверка	Параметр	Допуск	Заметки	Измерительные инструменты
Уровень электролита				
Плотность электролита				
Напряжение аккумулятора (U)				
Потенциал между $+$ и корпусом (U)				
Потенциал между — и корпусом (U)				

- 1. Назначение аккумуляторной батареи?
- 2. Какой должна быть плотность электролита?
- 3. Расскажите об устройстве аккумуляторной батареи?
- 4. Как определяются негодные пластины?
- 5. Напишите значение сопротивления изоляции?
- 6. Как подзаряжается аккумуляторная батарея?

Тема 1.5. Организация работ по ремонту оборудования электрических сетей

Практическое занятие № 1

Выполнение текущего ремонта воздушной линии напряжением до 1000 В

Цель занятия: получить практические навыки при выполнении текущего ремонта ВЛ до 1000 В

Оборудование и материалы: полигон технического обслуживания и ремонта устройств электроснабжения, ведомость дефектов, карандаш, ПУЭ.

Краткие теоретические сведения

Текущий ремонт воздушных линий и вводов проводит ремонтная бригада или бригада эксплуатационного участка по нарядудопуску формы ЭУ-44 в соответствии с графиком ППР. Перед началом работ мастер учитывает все недостатки, выявленные при осмотре линии, и подготовляет необходимые материалы, инструмент и приспособления.

В объем текущего ремонта входят: выправка и укрепление опор, подтяжка бандажей, проверка крюков и штырей, замена негодных и очистка загрязненных изоляторов, подтяжка отдельных участков проводов линии и вводов, проверка надежности соединений проводов и контактов, проверка предохранителей и перемычек,

восстановление нумерации столбов и вводов, проверка габаритов линии и вводов, очистка проводов от набросов, ремонт и окраска кабельных спусков и концевых муфт, проверка состояния верхней части опор и спусков заземления.

Ремонт ВЛ производят со снятием напряжения и выполнением необходимых мер в соответствии с правилами техники безопасности (наложение заземления, вывешивание плакатов и пр.).

Порядок выполнения работы

- 1. Изучить краткие теоретические сведения.
- 2. Подготовить дефектную ведомость (по образцу таблица 3, Тема 1.3, Лабораторная работа № 2, часть 1).
- 3. Выйти на полигон технического обслуживания и ремонта устройств электроснабжения и разбиться по бригадам.

- 4. По указанию преподавателя осмотреть закрепленные за бригадами участки ВЛ.
 - 5. Осмотреть состояние опор ВЛ.
 - 6. Результаты осмотров занести в ведомость дефектов.
 - 7. Оформить отчет о проделанной работе.
 - 8. Сделать вывод о состоянии ВЛ на основании ведомости дефектов.

Контрольные вопросы

- 1. Какие работы входят в объем текущего ремонта?
- 2. Для чего заземляются опоры?
- 3. Для какой цели выполняется ремонт и окраска кабельных спусков и концевых муфт?
 - 4. Как расшифровывается марка провода, А-35, АС-70?
 - 5. Как проверить состояние верхней части опор и спусков заземления?
 - 6. Назовите категорию работ при выполнении ТТ ВЛ.

Практическое занятие № 2

Выполнение текущего ремонта кабельной линии напряжением до 1000 В

Цель занятия: получить практические навыки при выполнении текущего ремонта КЛ до $1000\ \underline{\mathbf{B}}$

Оборудование и материалы: учебно-тренировочный полигон, кабельная линия, прибор типа ИКЛ-5, измерительный мост, полигон технического обслуживания и ремонта устройств электроснабжения.

Краткие теоретические сведения

Кабельные линии напряжением до 1000В, проложенные открыто, имеют свинцовые соединительные муфты, а до 1000 В проложенные в земле — чугунные.

Свинцовые соединительные муфты, расположенные открыто в кабельных сооружениях (туннелях, коллекторах, каналах), закрываются разъемными стальными кожухами, рисунок 12, которые при электрическом пробое изоляции в свинцовой муфте и ее загорании предохраняют соседние кабели от повреждений.

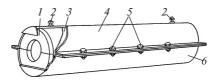


Рис. 12. Разъемный стальной кожух

I— асбестоцементная торцовая заглушка, 2— болты заземления, 3— прокладка из листового асбеста, 4 и 6— верхняя и нижняя половины стального кожуха, 5— обычные болты

Текущий ремонт включает в себя осмотр и чистку концевых воронок и соединительных муфт; рихтовку кабелей; восстановление нарушенной маркировки; проверку изоляции мегомметром; проверку заземления и устранения обнаруженных дефектов.

Осмотры кабельных линий напряжением до 1000 В производится 1 раз в год. Внеочередные осмотры трасс проводятся в периоды паводков и после ливней.

Причинами, вызывающими повреждения кабельных линий, могут быть следующие: пробои и вмятины, нанесенные при раскопках на кабельных трассах; дефекты монтажа муфт (непропаянные шейки муфт, надломы изоляции на жилах при разводке, плохая пропайка и обработка соединительных зажимов, неполная заливка муфт мастикой и т.п.); заводские дефекты; коррозия оболочки кабеля, вызванная действием блуждающих токов электрифицированного транспорта или влиянием различных химических реагентов, содержащихся в почве; обрывы токоведущих жил кабельных линий, возникающие при осадках или смещениях грунта на трассе линии, при перегорании жил во время к.з.; электрическое старение изоляции или ее перегрев; разложение компаунда в муфтах и воронках от его перегрева при заливке или от времени; дефекты прокладки.

Определение места повреждения (ОМП) кабеля начинают с выявления характера повреждения, что позволяет выбрать соответствующие методы ОМП и выявить необходимость предварительного «прожигания» — снижения переходного сопротивления в месте повреждения до значения.

Для применения *импульсного и индукционного методов* ОМП необходимо снизить переходное сопротивление в месте повреждения до единиц и даже долей ома. Для обеспечения такого сопротивления недостаточно полного обугливания канала в месте повреждения. Необходимо создание металлического проводящего мостика между жилой и оболочкой кабеля (либо между двумя жилами) за счет

выплавления с поверхности жилы и оболочки металлических частиц, постепенно заполняющих разрядный канал. Выплавление происходит при токах в десятки ампер последней ступенью прожигательной установки. *Акустический метод* требует создания акустического разряда в месте повреждения. Для прослушивания с поверхности земли электрического разряда в месте повреждения кабеля необходимо иметь сквозное отверстие в оболочке кабеля и достаточное переходное сопротивление для образования искрового разряда.

Переходное сопротивление при использовании *петлевого мето-да* должно составлять 0-5 кОм, а напряжение батареи, питающей кабельный мост, 24-140 В.

Метод колебательного разряда применяется при переходном сопротивлении в несколько мегаомов и наличии колебательного процесса в кабеле. Напряжение пробоя составляет от 8 кВ до испытательного. Приступая к измерению на кабельной линии, измеритель решает, к какому методу он сведет процесс прожигания, чтобы получить быстрый и точный результат.

После выяснения характера повреждения КЛ выбирают метод, наиболее подходящий для определения места повреждения.

Порядок выполнения работы

- 1. Изучить теоретические сведения.
- 2. Преподаватель распределяет группу на несколько бригад. Каждая бригада должна подробно изучить один из методов ОМП КЛ. Схемы методов определения места повреждения кабеля представлены в приложении 1.
- 3. Оформить отчет о проделанной работе с подробным описанием изучаемого метода и кратким описанием других методов ОМП КЛ.
 - 4. Сделать вывод о проделанной работе.

- 1. Назовите виды повреждений кабельных линии.
- 2. Назовите причины повреждения КЛ.
- 3. Назовите особенность индукционного метода.
- 4. Назовите особенность акустического метода.
- 5. Назовите особенность импульсного метода.
- 6. Назовите особенность метод колебательного разряда.
- 7. Назовите особенность петлевого метода.
- 8. Как выявить место повреждения на кабеле при раскопке?

Практическое занятие № 3

Выполнение текущего ремонта воздушной линии напряжением выше 1000 В

Цель занятия: получить практические навыки при выполнении текущего ремонта ВЛ выше 1000 В.

Оборудование и материалы: учебно-тренировочный полигон, ведомость дефектов, карандаш, ПУЭ, полигон технического обслуживания и ремонта устройств электроснабжения.

Краткие теоретические сведения

Текущий ремонт воздушных линий и вводов проводит ремонтная бригада или бригада эксплуатационного участка по наряду в соответствии с графиком работ. Перед началом работ мастер учитывает все недостатки, выявленные при осмотре линии, и подготовляет необходимые материалы, инструмент и приспособления.

В объем текущего ремонта входят выправка и укрепление опор, подтяжка бандажей, проверка крюков и штырей, замена негодных и очистка загрязненных изоляторов, подтяжка отдельных участков проводов линии и вводов, проверка надежности соединений проводов и контактов, проверка предохранителей и перемычек, восстановление нумерации столбов и вводов, проверка габаритов линии и вводов, очистка проводов от набросов, ремонт и окраска кабельных спусков и концевых муфт, проверка состояния верхней части опор и спусков заземления.

Порядок выполнения работы

- 1. Изучить краткие теоретические сведения. Выйти на полигон и разбиться по бригадам.
- 2. По указанию преподавателя осмотреть закрепленные за бригадами участки ВЛ, осмотреть состояние опор ВЛ, соединения проводов ВЛ.
- 3. Измерить переходное сопротивление соединений проводов ВЛ с помощью микроомметра. Результаты осмотров занести в ведомость дефектов.
- 4. Оформить отчет о проделанной работе и сделать вывод о состоянии ВЛ на основании ведомости дефектов.

Контрольные вопросы

- 1. Какие работы входят в объем текущего ремонта ВЛ?
- 2. Какова величина сопротивления в исправном соединении проводов ВЛ?
 - 3. Как часто осматривается соединение проводов ВЛ?
 - 4. Какие типы промежуточных опор вы знаете?
- 5. Как закрепить провода на штыревых изоляторах промежуточных опор на ВЛ выше 1 кВ?

Практическое занятие № 4

Выполнение текущего ремонта кабельных линий напряжением выше 1000 В

Цель занятия: получить практические навыки при выполнении текущего ремонта КЛ выше 1000 В.

Оборудование и материалы: учебно-тренировочный полигон, кабель, сварочный пистолет ПС-1, наждачное полотно, кабельный нож, бензин, ветошь, поливинилхлоридный пруток диаметром 4...6 мм, кабельная бумага, электромонтажные мастерские.

Краткие теоретические сведения

К основным причинам повреждения кабельных линий напряжением $1-10~{\rm kB}$ относятся механические повреждения; дефекты в соединительных муфтах и концевых заделках во время монтажа; повреждение кабеля и муфт в результате осадки грунта; коррозия металлических оболочек кабелей; нарушения при прокладке кабеля; старение изоляции;

Ремонт ЛЭП может быть аварийным, срочным и плановым.

Плановый ремонт — выполняется по плану-графику, утвержденному руководством энергослужбы.

Ремонты кабельных линий бывают простые, не требующие больших трудозатрат и времени, и сложные, когда ремонт продолжается в течении нескольких дней. *Ремонт наружного джутового покрова*. Протянутый через трубы, блоки или другие препятствия кабель, имеющий содранную пропитанную кабельную пряжу и остальные наружные покровы до стальной брони, необходимо восстановить Ремонт выполняется подмоткой смоляной лентой в два слоя с 50% перекрытием с последующей промазкой этого участка разогретой битумной мастикой МБ 70 (МБ 90). *Ремонт поливинилхлоридного*

шланга и оболочек. Первый способ ремонта поливинилхлоридного шланга или оболочек — сварка, которая в струе горячего воздуха (при температуре 170–200 °C) производится с применением сварочного пистолета с электрическим подогревом воздуха.

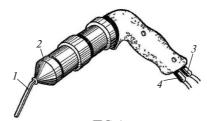


Рис. 14. Сварочный пистолет ПС-1 с электрическим подогревом 1— сопло для выхода горячего воздуха, 2— нагревательная воздушная камера; 3— штуцер для подачи сжатого воздуха, 4— электропровод

Порядок выполнения работы

- 1. Изучить теоретические сведения. Подобрать необходимый инструмент и средства защиты. Работу выполнять под наблюдением преподавателя, с соблюдением ТБ.
- 2. Перед сваркой место, подлежащее ремонту, необходимо очистить и обезжирить бензином. Кабельным ножом вырезать посторонние включения и срезать в местах повреждения шланга выступающие края и задиры.
- 3. Для ремонта проколов небольших отверстий и раковин место повреждения в шланге или оболочке и конец присадочного прутка прогреть в течение 10—15 с струёй горячего воздуха, затем струю отвести, а конец прутка прижать и приварить к шлангу в месте разогрева. После охлаждения, убедиться в прочности приварки прутка легким его подергиванием, пруток отрезать.
- 4. Для герметизации и выравнивания сварочного шва место ремонта прогреть до появления признаков плавления, после этого к разогретому месту прижимать рукой кусок кабельной бумаги, сложенной в 3—4 слоя. Для надежности операцию повторить 3—4 раза. Для ремонта шланга, имеющего щели, прорези и вырезы, конец присадочного прутка приварить к целому месту шланга на расстоянии 1—2 мм от места повреждения.
- 5. Убедиться в прочности приварки, направить струю воздуха так, чтобы одновременно прогревалась нижняя часть присадочного

прутка и обе стороны прорези или щели. Легким усилием нажать на пруток, последний уложить и приварить вдоль щели или прорези. Приварку прутка закончить на целом месте, на расстоянии 1—2 мм от повреждения. Затем ножом срезать выступающие поверхности прутка и произвести выравнивание сваренного шва.

- 6. Выполненную работу должен принять преподаватель и оценить качество ремонта.
 - 7. Оформить отчет о проделанной работе и сделать вывод.

Контрольные вопросы

- 1. Назовите основные повреждения КЛ напряжением 1–10 кВ.
- 2. В каком случае выполняется плановый ремонт КЛ?
- 3. Назовите последовательность операций при ремонте поливинилхлоридного шланга и оболочек.

Практическое занятие N_{2} 5

Выполнение ремонта железобетонной опоры

Цель занятия: получить практические навыки при выполнении ремонта КЛ железобетонной опоры

Оборудование и материалы: учебно-тренировочный полигон, карандаш, ведомость дефектов, железобетонные опоры и фундаменты ВЛ, полигон технического обслуживания и ремонта устройств электроснабжения.

Краткие теоретические сведения

Характерными дефектами железобетонных опор и фундаментов являются продольные и поперечные трещины стоек опор; выбоины, отверстия в бетоне стоек; смещение каркаса арматуры стоек опоры, выход арматуры на поверхность бетона; коррозия арматуры; некачественная заделка опор в грунте, отсутствие ригелей; трещины, сколы и осыпание бетона фундаментов, коррозия арматуры фундаментов; неплотное прилегание пяты опоры к поверхности фундамента; отклонение опоры от вертикального положения.

Дефекты в железобетонных опорах и фундаментах образуются вследствие нарушения технологии изготовления, в процессе эксплуатации под действием нагрузок, периодического увлажнения, размораживания дефекты развиваются, что приводит к разрушению бетона, коррозии арматуры и, в конечном итоге, к снижению несущей

способности опор и фундаментов и сокращению их срока службы.

В зависимости от характера дефектов железобетонных опор применяются следующие виды ремонта устранение поверхностных дефектов, восстановление и защита арматуры и бетона опор и фундаментов в случае отсутствия кривизны стоек или отклонения от вертикального положения; усиление опор.

Эффективность ремонта железобетонных конструкций в большей мере зависит от качества подготовки ремонтируемых поверхностей. Поверхность конструкции (участка) перед нанесением покрытия очищают до плотного бетона, особенно тщательно обрабатывают участки с отслоением бетона, шелушением и в зонах коррозии арматуры.

Порядок выполнения работы

- 1. Изучить теоретические сведения. Подготовить дефектную ведомость (приложение 2). Выйти на полигон и разбиться по бригадам. По указанию преподавателя осмотреть железобетонные опоры на закрепленных за бригадами участках ВЛ.
- 2. Определить характер повреждений опор ВЛ. Результаты осмотров занести в ведомость дефектов. В зависимости от характера дефектов железобетонных опор подобрать соответствующий вид ремонта.
- 3. Оформить отчет о проделанной работе и сделать вывод о состоянии опор ВЛ на основании ведомости дефектов.

- 1. Назовите характерные дефекты железобетонных опор ВЛ.
- 2. Назовите причины, которые вызывают повреждения железобетонных опор и фундаментов ВЛ.
- 3. Охарактеризуйте I группу дефектов железобетонных опор и фундаментов ВЛ.
- 4. Охарактеризуйте II группу дефектов железобетонных опор и фунламентов ВЛ.
- 5. Охарактеризуйте III группу дефектов железобетонных опор и фундаментов ВЛ
 - 6. Назовите виды ремонтов железобетонных опор и фундаментов ВЛ.

Практическое занятие № 6

Проверка состояния осветительного устройства

Цель занятия: получить практические навыки при проверке группового осветительного щитка с автоматами

Оборудование и материалы: осветительный щиток, ключи гаечные, отвертки, плоскогубцы комбинированные, щетка, изоляционная лента, ветошь, электромеханические мастерские.

Краткие теоретические сведения

Устройства освещения осматривают одновременно с остальным оборудованием подстанции. При этом проверяют состояние ламп, светильников, выключателей, переключателей, предохранителей, их креплений, степень запыленности светильников, наличие запаса ламп, патронов и плавких вставок. В помещении щита управления наружным осмотром проверяют всю цепь лампы «аварийного освещения, а также состояние и положение автомата аварийного освещения. На открытой части осматривают с земли прожекторы и трубы с электропроводкой на прожекторных опорах, производят пробное включение прожекторов.

Щиток осветительный выполнен в виде металлического ящика, внутри которого расположена аппаратура электрических цепей. Доступ в щиток обеспечен со стороны фасада через дверь. Ввод питающих линий осуществляется сверху, вывод отходящих линий — снизу. Общий вид щитка представлен на рисунке 16.

Осмотр осветительного щитка и проверка заземления выполняется бригадой в составе двух человек: электромеханика и электромонтера 3 разряда.

Рис. 24. Общий вид щитка серии ОЩВ-6

Порядок выполнения работы

- 1. Изучить теоретические сведения.
- 2. Осмотреть щиток. Проверить надежность его крепления. Про-

верить заземление и наличие знаков безопасности. Очистить щеткой от пыли. Мягкой ветошью протереть автоматы. Проверить наличие бирок на кабелях. Проверить на наличие оплавлений изоляции и следов нагрева присоединений. Изоляцию в ослабленных местах усилить изоляционной лентой.

3. Оформить отчет о проделанной работе и сделать вывод о состоянии шитка.

Контрольные вопросы

- 1. Что выявляется наружным осмотром в помещении щита управления?
 - 2. Назовите величину сопротивления изоляции осветительной сети?
 - 3. Назовите назначение шита серии ОШВ-6.
 - 4. Расскажите конструкцию щита серии ОЩВ-6.

Практическое занятие № 7

Проверка состояния ограничителя перенапряжений (разрядника)

Цель занятия: получить практические навыки при проверке состояния ОПН (разрядника)

Оборудование и материалы: разрядник PBM-6 и ОПН с номинальным напряжением 3 кВ и выше, мегаомметр на напряжение 2500 В, диэлектрические перчатки, коврик, полигон технического обслуживания и ремонта устройств электроснабжения.

Краткие теоретические сведения

Признаками нарушения герметичности аппарата являются наличие сколов и трещин на фарфоровой покрышке, повреждения армировочных швов между фланцами и крышкой, а также ослабление уплотнений между фланцами многоэлементных аппаратов. При наличии указанных повреждений аппарат выводится в ремонт.

Аппараты с полимерной покрышкой лучше сохраняют герметичность конструкции, являются более надежными при эксплуатации.

Порядок выполнения

- 1. Изучить теоретические сведения.
- 2. Осмотреть разрядник и ОПН, обратить внимание на герметичность конструкции. Проверить наличие сколов и трещин на фарфо-

ровой покрышке, повреждения армировочных швов между фланцами и крышкой, а также ослабление уплотнений между фланцами многоэлементных аппаратов. Оформить дефектную ведомость по образцу таблицы 3, Лабораторная работа \mathbb{N}_2 2, тема 1.3, часть 1.

3. Оформить отчет о проделанной работе и сделать вывод о состоянии разрядника и ОПН.

Контрольные вопросы

- 1. В каких случаях выполняют осмотр ОПН и вентильных разрядников?
 - 2. Назовите признаки разгерметизации конструкции?
- 3. Назовите требования, предъявляемые к аппарату при его эксплуатации?

Практическое занятие № 8

Выполнение ремонта комплектной трансформаторной подстанции

Цель занятия: получить практические навыки при выполнении ремонта КТП

Оборудование и материалы: лестница приставная 3 м, вольтметр со шкалой 250 В, напильник, наждачное полотно, отвертки, плоскогубцы комбинированные, ключи гаечные, заземление переносное, диэлектрические перчатки, жилет сигнальный, каска защитная, аптечка, полигон технического обслуживания и ремонта устройств электроснабжения.

Краткие теоретические сведения

Комплексная проверка состояния и ремонт комплектной трансформаторной подстанции (КТП) выполняется со снятием напряжения с КТП, с подъемом на высоту, по наряду-допуску формы ЭУ-44. Если КТП находится в оперативно-диспетчерском управлении, то выполнение организационно-технических мер осуществляется по приказу ЭЧЦ, а если КТП находится в оперативном ведении, то выполнение организационно-технических мер осуществляется ответственным за электрохозяйство соответствующего района электроснабжения.

Порядок выполнения работы

1. Изучить теоретическую часть и получить инструктаж у преподавателя. Подобрать необходимые инструменты, приспособления и средства защиты. Преподавателю: Отключить автоматический выключатель «Общий» в PY - 0.4 кB, отключить высоковольтный разъединитель Р-КТП и проверить отсутствие напряжения указателем напряжения. Установить со стороны высокого напряжения заземление. Студентам: по приставной лестнице подняться, очистить все изоляторы КТП от пыли и грязи чистой тряпкой, смоченной в бензине, проверить их состояние. Не допускаются на изоляторах: трещины, сколы на ребрах длиной более 60 мм по окружности и 5 мм по глубине, глубокие царапины на поверхности глазури длиной более 25 мм. При наличии допустимых дефектов, поверхность фарфора очистить и покрыть клеем БФ-4. Проверить состояние ошиновки, выявить места нагрева в ее контактах, при необходимости зачистить поверхность контактов наждачным полотном и нанести тонкий слой смазки ЦИАТИМ. Спуститься вниз. Проверить состояние фундамента и надежность крепления, состояние ограждения. Ослабленные крепления подтянуть, внешним осмотром проверить правильность схемы заземления КТП, целостность и исправность всех элементов, надежность их соединения. Проверить состояние трансформатора. Очистить кожух трансформатора от пыли и грязи, проверить состояние сварных швов, следы коррозии, все места уплотнений и убедиться в отсутствии подтекания масла.

Преподавателю: вставить низковольтные предохранители, снять переносные заземления со стороны высокого напряжения. Включить высоковольтный разъединитель и рубильник со стороны низкого напряжения.

- 2. Оформить отчет о проделанной работе.
- 3. Ответить на контрольные вопросы.

- 1. Расшифруйте: KCO-204M; KTПМ-AT-25/6(10)/0,4-У1; KTПК-AT-630/6(10)/0,4-У1; 2КТПНУ-AT-250...1600/6(10)/0,4-У1.
 - 2. Назовите назначение КТП?
 - 3. Какой комплект документ прикладывается к КТП?
 - 4. Назовите категории работ в электроустановках?
- 5. Назовите организационные и технические мероприятия по обеспечению безопасности работ в электроустановка?

Практическое занятие № 9

Составление дефектной ведомости и сметы на капитальный ремонт воздушной линии передачи. Составление сметы на монтаж ВЛ

Цель занятия: получить практические навыки при составлении дефектной ведомости на ВЛ ЛЭП и составлении сметы.

Оборудование и материалы: учебно-тренировочный полигон, блокнот, карандаш, дефектная ведомость, полигон технического обслуживания и ремонта устройств электроснабжения.

Краткие теоретические сведения

На основе ведомостей дефектов и расчетов потребности в материалах, оборудовании, приспособлениях, необходимых для выполнения работ, составляется смета, пример формы сметы представлен ниже. При разработке смет используются сметно-нормативные справочники. Смета устанавливает стоимость ремонта и включает в себя основную заработную плату, премии, затраты на материалы, запасные части, оборудование и комплектующие изделия, а также накладные расходы.

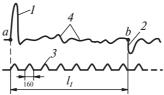
Порядок выполнения работы

- 1. Изучить краткие теоретические сведения. Подготовить дефектную ведомость. Выйти на полигон и разбиться по бригадам и по указанию преподавателя осмотреть закрепленные за бригадами участки ВЛ. Осмотреть состояние опор ВЛ, а результаты осмотров занести в ведомость дефектов. По заданию преподавателя составить смету на монтаж воздушной линии в виде таблицы 4.
- 2. Оформить отчет о проделанной работе и сделать вывод о состоянии ВЛ на основании ведомости дефектов.

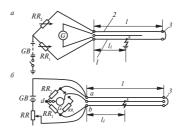
 Таблица 4

 Смета на капитальный ремонт ВЛ

		Изме- ритель	Количество	Сметная стоимость		Общая стоимость	
Обоснова-	Работа			всего	В том числе з\плата	всего	В том числе з\плата
1	2	3	4	5	6	7	8
Замена нераздельных железобетонных опор с использованием крана на ж.д. ходу							


1	2	3	4	5	6	7	8
EPKP 2–25	Земляные работы при установке опор в грунте второй группы	1 м ³ грунта	25,98	1,67			
EPKP 2-482	Погрузка железобетонной нераздельной опоры на платформу	1 опора	18	0,8			
EPKP 2-45	Установка железобетонной нераздельной опоры на платформу	1 опора	18	6,47			
СНС ч.11, раздел 11	Перевод контактной подвески при двух контактных проводах на новую опору:						
	прямой фиксатор	1 опора	8	1,98			
	обратный фиксатор	1 опора	10	2,80			
EPKP 2-59	Снятие железобетон- ной опоры	1 опора	18	6,58			
Итого: Нач ную плату	исления на заработ-	%	35				
ВСЕГО		_			_		

- 1. Какие дефекты выявляют во время эксплуатационного обслуживания ВЛ ЛЭП?
- 2. Что необходимо определить при составлении сметы на капитальный ремонт или монтаж ВЛ?
 - 3. На основании чего составляется смета на КР ВЛ?


ПРИЛОЖЕНИЯ

Приложение 1

Измерение расстояния до места повреждения кабеля с помощью прибора ИКЛ-5

Схемы определения места повреждения кабеля петлевым методом при однофазном K3 (a) и с помощью моста при двухфазном K3 (δ)

Схемы определения места повреждения кабеля емкостным методом на постоянном (a) и переменном (δ) токе

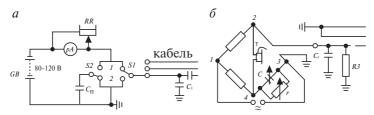
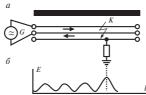



Схема включения генератора звуковой частоты для определения места замыкания между жилами кабеля (a) и кривая звучания по трассе (δ)

ДЕФЕКТНАЯ ВЕДОМОСТЬ №					
«	.»20г. г				
выяв	осмотре		ующих запасных		
№	Наименование	Ед. изм.	Количество		
1					
2					
3					
4					
5					
6					
7					
8					

9

Составили: главный механик_

Утверждаю

Перечень рекомендуемой литературы

Основные источники

- 1. *Ерохин Е.А.* Устройство, эксплуатация и техническое обслуживание контактной сети и воздушных линий: Учебник для профессиональной подготовки работников. М.: ГОУ «УМЦ ЖДТ», 2007.
- 2. *Москаленко А. В.* Электрические сети и системы: Учебник для техникумов и колледжей ж.-д. транспорта. М.: ГОУ «УМЦ ЖДТ», 2007.
- 3. *Почаевец В. С.* Защита и автоматика устройств электроснабжения: Учебник для техникумов и колледжей ж.-д. транспорта. М.: ГОУ «УМЦ ЖДТ», 2007.
- 4. *Южаков Б. Г.* Монтаж, наладка, обслуживание и ремонт электрических установок. М.: ГОУ «УМЦ ЖДТ», 2008.
- 5. *Ящура А. И.* справочник «Система технического обслуживания и ремонта энергетического оборудования», М.: НЦ ЭНАС, 2012.
- 6. Сборник технологических карт на работы по текущему ремонту оборудования тяговых подстанций электрифицированных железных дорог.
- 7. *Кисаримов Р. А.* Наладка электрооборудования [Текст]: Справочник/ Р. А. Кисаримов М.: ИП РадиоСофт, 2012.

Дополнительные источники

- 1. Инструкция ОАО «РЖД» от 14.03.2003 г. № ЦЭ-936 «Инструкция по техническому обслуживанию и ремонту оборудования тяговых подстанций электрифицированных железных дорог».
- 2. Инструкция ОАО «РЖД» от 18.03.2008 г. № 4054 «Инструкция по безопасности при эксплуатации электроустановок тяговых подстанций и районов электроснабжения железных дорог».
- 3. Правила устройства электроустановок. Разделы 1, 6, 7.— 7-е изд. СПб.: ЦОТПБСП, 2003.
- 4. Правила технической эксплуатации электроустановок потребителей. Госэнергонадзор Минэнерго России. СПб.: ООО «БАРС», 2003.
- 5. Приказ Министерства транспорта РФ от 21.12.2010 г. № 286 «Об утверждении Правил технической эксплуатации железных дорог Российской Федерации».
- 6. Профилактические испытания электрооборудования и проверка релейных защит тяговых подстанций: Сборник справочных материалов. ЦЭ МПС РФ. М.: Трансиздат, 2001.

- 7. Силовое оборудование тяговых подстанций железных дорог. OAO «РЖД». М.: Трансиздат, 2004.
- 8. Технологические карты на межремонтные испытания оборудования тяговых и трансформаторных подстанций железных дорог. Департамент электрификации и электроснабжения ОАО «РЖД». М.: Трансиздат, 2005.
- 9. Типовые нормы времени на текущий ремонт, профилактические испытания оборудования тяговых подстанций и постов секционирования электрифицированных железных дорог. ЦЭ МПС РФ. М.: Трансиздат, 2001.
- 10. Типовые нормы времени на техническое обслуживание устройств релейной защиты и электроавтоматики тяговых подстанций, постов секционирования и линий 110—220 кВ электрифицированных железных дорог. М.: Транс-издат, 2001.
- 11. *Петров Е. Б.* Электрические подстанции: Методическое пособие по дипломному и курсовому проектированию. М.: ГОУ «УМЦ ЖДТ», 2004.
- 12. *Почаевец В. С.* Автоматизированные системы управления устройствами электроснабжения железных дорог: Учебник для техникумов и колледжей ж.— д. транспорта. М.: ГОУ «УМЦ ЖДТ», 2003.
- 13. Почаевец В. С. Электрические подстанции. М.: Желдориздат, 2001.
- 14. Сибикин Ю. Д., Сибикин М. Ю. Монтаж, эксплуатация и ремонт электрооборудования промышленных предприятий и установок. М.: Высшая школа, 2003.
- 15. Почаевец В. С. Электрооборудование и аппаратура электрических подстанций: Иллюстрированное учебное пособие. М.: УМК МПС России, 2002.
- 16. Φ игурнов Е. П. Релейная защита: Учебник для вузов ж. д. трансп. М.: Желдориздат, 2002.
- 17. *Южаков Б. Г.* Технология и организация обслуживания и ремонта устройств электроснабжения. М.: ГОУ «УМЦ ЖДТ», 2004.
- 18. Акимова Н.А., Котеленец Н.Ф. Монтаж, техническая эксплуатация и ремонт электрического и электромеханического оборудования [Текст]: Учебное пособие для студенческих учреждений СПО / Н.А. Акимова, Н.Ф. Котеленец -М.: Издательский центр «Академия», 2012.

Содержание

Введение
Обеспечение безопасности при проведении лабораторных работ и практических занятий
Раздел 1. Планирование, организация и проведение ремонтных работ. МДК 02.01. Ремонт и наладка устройств электроснабжения 6
Тема 1.4 Ремонт электрооборудования электрических подстанций 6
Лабораторная работа № 1 Текущий ремонт привода высоковольтного выключателя 6
<i>Лабораторная работа № 2</i> Текущий ремонт высоковольтного выключателя переменного тока 9
Лабораторная работа № 3 Текущий ремонт трансформатора тока
<i>Лабораторная работа № 4</i> Текущий ремонт трансформатора напряжения
<i>Лабораторная работа № 5</i> Текущий ремонт разъединителя
Лабораторная работа № 6 Текущий ремонт привода разъединителя
<i>Лабораторная работа № 7</i> Выполнение ремонта разрядника (ограничителя перенапряжения) 18
Лабораторная работа № 8 Текущий ремонт аккумуляторной батареи
Тема 1.5. Организация работ по ремонту оборудования электрических сетей
Практическое занятие № 1 Выполнение текущего ремонта воздушной линии напряжением до $1000~\mathrm{B}$
Практическое занятие № 2 Выполнение текущего ремонта кабельной линии напряжением до $1000~\mathrm{B}$

Практическое занятие № 3
Выполнение текущего ремонта воздушной линии
напряжением выше 1000 В
Практическое занятие № 4
Выполнение текущего ремонта кабельных линий напряжением
выше 1000 В
Практическое занятие № 5
Выполнение ремонта железобетонной опоры
Практическое занятие № 6
Проверка состояния осветительного устройства
Практическое занятие № 7
Проверка состояния ограничителя перенапряжений (разрядника) 32
Практическое занятие № 8
Выполнение ремонта комплектной трансформаторной подстанции 33
Практическое занятие № 9
Составление дефектной ведомости и сметы на капитальный ремонт
воздушной линии передачи. Составление сметы на монтаж ВЛ . 35
ПРИЛОЖЕНИЯ
Перечень рекомендуемой литературы

Ответственная за выпуск *С.А. Овсянникова* Редактор *О.П. Иванова* Компьютерная верстка *О.П. Ивановой*

Подписано в печать 16.08.2013 Формат 60×90/16. Печ. л. 2,75 ФГБОУ «Учебно-методический центр по образованию на железнодорожном транспорте» 105082, Москва, ул. Бакунинская, 71 Тел.: (495) 739-00-30, e-mail: info@umczdt.ru http://www.umczdt.ru

Для заметок