МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное

учреждение высшего образования

«Юго-Западный государственный университет» (ЮЗГУ)

Лабораторная работа №2 ИССЛЕДОВАНИЕ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ

Вариант №1

Выполнил: студент группы

(подпись, дата)

Проверила: Доцент кафедры КПиСС

Брежнева Е.О.

(подпись, дата)

Курск 20?? г.

Цель работы:

- Изучение приёмов и приобретение навыков исследования динамических характеристик электронных устройств в САПР *ORCAD*.

- Изучение динамических характеристик и параметров операционных усилителей.

Ход работы:

Выбрав из прошлый работы операционный усилитель, в данном случае это *LM 258*, создам в среде OrCAD схему инвертирующего усилителя, согласно методическому материалу (Рисунок 1).

Рисунок 1 - Схема инвертирующего усилителя

Следующим шагом в настройках симуляции задаём параметры режима частотного сканирования представленном на рисунке 2.

General Analysis Include Files	s Libraries Stimulus	Options Data Collectio	n Probe Window
Analysis type: AC Sweep/Noise	AC Sweep Type –	Start Frequenc	y: 0.1
Options: Monte Carlo/Worst Case Parametric Sweep Temperature (Sweep) Save Bias Point Load Bias Point	Decade	Points/Decade	»: 10
	Noise Analysis Enabled	Output Voltage:	
		I/V Source:	
	Output File Option	Interval:	
	controlled so	urces and semiconductors	(.OP)

Рисунок 2 - Режим частотного сканирования.

Произведя все необходимые настройки, запускаем симуляцию амплитудно-частотной характеристики на выходе операционного усилителя *LM 258* (Рисунок 3).

Рисунок 3 - График АЧХ

На данном графике АЧХ видим, что с увеличением частоты напряжение на выходе падает, от сюда следует что график построен правильно.

Чтобы получить логарифмический масштаб, мы выбираем выходное напряжение, а затем делитель в виде напряжения на инвертирующем входе операционного усилителя (Рисунок 4).

Рисунок 4 - Настройка графика ЛАЧХ

После того как мы применили необходимые настройки, запускаем логарифмический масштаб и по оси амплитуд получаем логарифмическую амплитудно-частотную характеристику (Рисунок 5).

Рисунок 5 – Диаграмма ЛАЧХ

Разделив выходное напряжение на входное, получаем коэффициент усиления, который определили с помощью ЛАЧХ (Рисунок 6).

Рисунок 6 - Коэффициент усиления

Благодаря логарифмической амплитудно-частотной характеристике наблюдаем, что коэффициент усиления операционного усилителя равен 95800.

Частота, при которой коэффициент усиления операционного равен единице, называется частотой единичного усиления. И на данной диаграмме видим, что частота единичного усиления равна 955.32 КГц (Рисунок 7).

Рисунок 7 - Частота единичного усиления

Частотой среза операционного усилителя называется частота, при которой коэффициент усиления операционного усилителя уменьшается в √2 раз.

$$K_{\rm cp} = \frac{95800}{\sqrt{2}} = 67.740$$

Находим полученный коэффициент на диаграмме и узнаём частоту среза. При вычисленном коэффициенте усиления равном 67.740, находим частоту среза операционного усилителя, она равна $F_{cp} = 10.125$ Гц (Рисунок 8).

Рисунок 8 - Частота среза

Вывод

В ходе работы мы изучили приёмы и приобрели навыки исследования динамических характеристик электронных устройств в САПР ORCAD. А также изучили динамические характеристики и параметры операционных усилителей.