БИОХИМИЯ РОТОВОЙ ПОЛОСТИ

Тема №1: **БИОХИМИЯ ПУЛЬПЫ, ПЕРИОДОНТАЛЬНОЙ СВЯЗКИ И ДЕСНЫ** Тема №2: **БИОХИМИЯ МИНЕРАЛИЗОВАННЫХ ТКАНЕЙ РОТОВОЙ ПОЛОСТИ БИОХИМИЯ РОТОВОЙ ЖИДКОСТИ И ЗУБНОГО НАЛЕТА**

Тема №1: **БИОХИМИЯ ПУЛЬПЫ, ПЕРИОДОНТАЛЬНОЙ СВЯЗКИ И** ДЕСНЫ

РЫХЛАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ (мягкая неминерализованная соединительная ткань)

У многоклеточных организмов большинство клеток окружены вне-/межклеточным матриксом- это основное вещество; это комплекс связанных между собой макромолекул. Для соединительной ткани характерно наличие большого количества межклеточного вещества и небольшого количества клеток. Межклеточный матрикс содержит молекулы, которые способны путем самосборки образовывать трехмерные структуры, определяющие функции соединительной ткани.

- Основное вещество значительно преобладает над клеточной массой.
- Резидентные клетки ФИБРОБЛАСТЫ (в пульпе- дентальные стволовые клетки и одонтобласты).
- Клетки защиты: макрофаги, дендритные клетки, лимфоциты, мастоциты (тучные клетки).
- Прочие клетки: клетки сосудов, нервные окончания.

Соединительная ткань бывает двух видов: <u>минерализованная</u> и <u>неминерализованная</u>.

Зуб - это не просто костное образование, это живой орган, внутри которого есть нервы и кровеносные сосуды. Жизнь зубу придает пульпа, которая и представляет собой вариант рыхлой мягкой соединительной ткани.

- Пульпа находится в полости, окруженной дентином.
- Также рыхлой соединительной тканью представлена **периодонтальная связка**, которая заполняет пространство между цементом и альвеолярной костью.
- **Соединительная ткань десны** находится между эпителием слизистой оболочки и костью.

Пульпа - это жизнь зуба.

- В составе пульпы обнаружено около 5% неорганических веществ, 40% органических; она очень наводнена/ гидратирована благодаря особенностям строения состава органического компонента, то есть 55% воды содержится в пульпе.
- В молодой пульпе меньше волокон коллагена и больше клеточных элементов. По мере ее старения количество клеток начинает уменьшаться.
- Органические компоненты пульпы:

- 1) Основное вещество, которое состоит из **протеогликанов**, **ГАГ**, **неколлагеновых белков** гликопротеинов, которые можно разделить на <u>адгезивные и антиадгезивные</u>.
- 2) **Коллагеновые волокна I, III типов**: они погружены в основное вещество пульпы
- 3) Эластические волокна: находятся только в стенках артериол и не являются частью межклеточного матрикса.

• Для пульпы характерно:

- 1. высокое потребление 0_2 , необходимого для аэробного гликолиза, окислительно-восстановительных реакций общего пути катаболизма (окисление пировиноградной кислоты, ЦТК);
- 2. синтетические процессы: синтез ДНК, РНК, белков;
- 3. присутствие ферментов (щелочной и кислой фосфатаз, трансаминаз и пептидаз);
- 4. наличие макрофагов, обеспечивающих защиту полости зуба и периодонта от инфекций.

Клеточный состав пульпы зуба.

Такой же как и в любой рыхлой соединительной ткани, но со своими особенностями.

В межклеточном веществе пульпы располагается множество различных клеток: одонтобласты, фибробласты, макрофаги, лимфоциты, гистиоциты, тучные клетки, которые снабжаются питательными веществами по кровеносным сосудам.

В **одонтобластах** различают тело и отростки. Тела одонтобластов выполняют барьерную функцию. Через отростки одонтобластов осуществляется доставка питательных и минеральных веществ к твердым тканям зуба- эмали и дентину. Зрелые одонтобласты образуют вторичный дентин. С возрастом количество клеток в ткани снижается, что приводит к уменьшению репарационной способности пульпы.

Клетки фибробласты синтезируют компоненты межклеточного матрикса: гликопротеина, ГАГ и коллагеновые белки самой ткани пульпы. Выявлены клетки, обладающие высокой пролиферативной активностью- стволовые клетки, которые могут превращаться в одонтобластоподобные клетки. Являются преобладающими в количественном соотношении, роль у них репаративная, они участвуют в синтезе компонентов внеклеточного матрикса.

Содержащиеся в пульпе макрофаги и дендритные клетки обеспечивают защиту полости зуба и периодонта от инфекций.

Функции пульпы:

- <u>пластическая</u> (образование дентина);
- трофическая (доставка питательных веществ дентину и эмали);
- защитная (барьерная) препятствует проникновению микроорганизмов;
- <u>регенеративная</u> (при наличии значительных травм способна оставаться жизнеспособной и образовывать рубец на месте травмы; участвует в образовании репаративного дентина).

Пульпа осуществляет взаимосвязь организма и тканей зуба, поэтому различные заболевания человека (особенно продолжительные, тяжелые) снижают способности тканей зуба противостоять внешним повреждающим факторам, и наоборот, заболевания зубов (особенно пульпы) могут вызвать патологические процессы в организме.

При кариесе происходят деструктивные изменения в одонтобластах, разрушаются коллагеновые волокна, появляются кровоизлияния, снижается активность ферментов и обмена веществ в пульпе.

КЛЕТКИ "ОБЩАЮТСЯ" ДРУГ С ДРУГОМ С ПОМОЩЬЮ ЦИТОКИНОВ.

ЦИТОКИНЫ (ЦК)- это в основном гликопротеины, сигнальные молекулы белковой природы (низкая молекулярная масса: 5-20 кДа), секретируемые клетками и регулируют активность "соседних" и собственных клеток (то есть у них ауто-/паракринный эффект).

ЦК присутствуют в крови незначительном количестве, являясь очень активными молекулами.

ЦК $(10^{-9}-10^{-12}\text{M})$ взаимодействуют с клетками-мишенями, имеющими специфические рецепторы (\mathbf{R}) в своей мембране. Образование такого комплекса ЦК-ЦК \mathbf{R} ведет к инициации каскада, с помощью которого передается сигнал в клетке; ЦК, являясь маленькими белками, не могут проникать в клетки, поэтому осуществляется свой эффект в клетках-мишенях с помощью вторичных посредников (цАМФ, кальций, инозитол-1,4,5-трифосфат), как некоторые истинные гормоны. В результате появления таких вторичных посредников, передачи гормонального сигнала активируются соответствующие внутриклеточные протеинкиназы, что приводит к фосфорилированию белков, в т. ч. факторов транскрипции.

<u>Результат</u>- индукция или репрессия синтеза определенных белков в клетке-мишени.

Группы цитокинов:

- Факторы роста. Например, факторы роста фибробластов (FGF2), трансформирующий фактор роста β(TGFβ), эпидермальный фактор роста (EGF), ВМР2 (костный морфогенетический протеин-2), М-СSF (миелоцитарный колониетсимулирующий фактор). Факторы роста так называются, поскольку стимулируют или ингибируют пролиферацию определенных типов клеток.
- 2. Белки семейства некроза опухоли (TNF или ФНО; RANKL).
- 3. Интерлейкины (IL или ИЛ) и интерфероны (IF или ИФ).
- 4. Хемокины (CCL2- миграция моноцитов в периодонт).

Пролиферация и активация фибробластов.

На фибробластах есть рецепторы к TGF β , FGF2, EGF, IL 1, IL6, IL8, IL10, TNF/

Результатом образования комплекса сигнальная молекула ЦК-ЦКR-индукция синтеза и секреции компонентов внеклеточного матрикса (ВКМ, основного вещества), то есть активация фибробластов, которая проявляется в активации синтеза компонентов ВКМ.

Продукты, секретируемые фибробластами рыхлой волокнистой соединительной ткани.

- Коллаген I типа [$\alpha 1(I)_2 \alpha 2(I)$] (70%)- основной коллаген в неминерализованных и минерализованной ткани зуба, III типа [$\alpha (III)_3$] (25%) и минорные коллагены (V, VI типа).
- Гиалуроновая кислота,
- Протеогликаны,
- Гликопротеины,
- Цитокины (главные- FGF),
- Ферменты обмена (при синтезе и распаде) ВКМ: лизилоксидаза (фермент синтеза), проколлагенпептидазы (N- и C-) (ферменты синтеза коллагена), матриксные металлопротеиназы (ММР) (фермент катаболизма), гликозидазы (фермент катаболизма), сульфатазы (фермент катаболизма) и другие.

Одни и те же клетки в пульпе осуществляют как синтезирующую функцию, так и функцию катаболизма внеклеточного матрикса.

Основное вещество рыхлой соединительной ткани.

Преобладающий неорганический компонент - **вода** (H_2O) (55%);

Преобладающий органический компонент - **коллаген I типа** [$\alpha 1(I)_2 \alpha 2(I)$].

СИНТЕЗ КОЛЛАГЕНА

Это многоступенчатый процесс, в котором различают несколько стадий и этот синтез локализован, имеет внутриклеточные стадии, протекающие в фибробластах, поэтому первый этап синтеза коллагена назвали внутриклеточным.

- I этап внутриклеточный. Локализация рибосомы, ЭПР, аппарат Гольджи. Продукт проколлаген, который секретируется во внеклеточный матрикс.
- **II этап** внеклеточный. Локализация- ВКМ. Продукт- коллагеновые фибриллы.

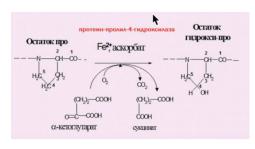
ВнутриКЛЕТОЧНЫЙ ЭТАП СИНТЕЗА КОЛЛАГЕНА І ТИПА.

В нем можно выделить 3 основных события:

<u>а) синтез полипептидных цепей про- $\alpha 1(I)$ и про- $\alpha 2(I)$ из соответствующих активных форм АК – аминоацил-тРНК.</u>

Особенности аминокислотного состава про- $\alpha 1(I)$ и про- $\alpha 2(I)$ полипептидных цепей.

Коллаген – это основной структурный белок межклеточного матрикса. Коллаген- это самый выраженный в количественном соотношении белок организма человека (25-33% от общего количества белка в организме; 6% от массы человека). Есть несколько типов коллагена, это полиморфный белок, в настоящее время известно 19 типов коллагена. В первую очередь, они отличаются друг от друга первичной структурой полипептидных цепей, по функциям, по пространственной организации и по локализации в организме.


Вариантов α -цепей около 30. Для обозначения типа коллагена используется римская цифра. В коллагене 1 типа встречаются 2 альфа-цепи, а в коллагене 3 типа- все цепи идентичны.

- Каждая про-α- цепь содержит 31-35% (⅓) остатков глицина и 14-23% (⅓) остатков пролина. Для протяженных центральных участков характерны коллагеновые триады -Гли-Х-Ү (среди X и У преобладает пролин, также достаточно много встречается лизина).
- Боковые цепи цистеина находятся только в составе концевых доменов молекул.
- N-концевой домен содержит гидрофобный сигнальный пептид (основная функция сигнального пептида- ориентация синтеза пептидных цепей в полость ЭПР, а после выполнения этой функции сигнальный пептид отщепляется).

б) посттрансляционная модификация и котрансляционный фолдинг с образование тройной спирали проколлагена (HSP47, пептидилпролил-цис-транс-изомераза)

ПОСТТРАНСЛЯЦИОННАЯ МОДИФИКАЦИЯ ПРО-α-ЦЕПЕЙ КОЛЛАГЕНА

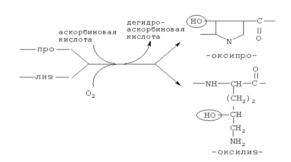
- Протеолитическое отщепление N-концевого сигнального пептида после выполнения своей функции (в реакции ограниченного протеолиза) . Фермент: сигнальная пептидаза про-α-цепей.
- 2. Гидроксилирование боковых цепей пролина с образованием 3-гидроксипролила (3-ОН-Про), 4-гидроксипролила (4-ОН-Про) и 5-гидроксилизила (5-ОН-Лиз). Ферменты: проколлаген (5-лизил, 3-пролил или 4-пролил диоксигеназы (Fe+2 и акорбат-зависимые ферменты). Эти ферменты сложные, содержат и Ко-фактор (неорганические небелковые компоненты Fe²⁺) и Ко-фермент (органические небелковые компоненты аскорбиновая кислота)

Монооксигеназы/гидроксилазы (поскольку в молекуле субстрата появляется ОН-группа). Есть 4 группы монооксигеназ в зависимости от того, какой донор водорода используется для утилизации второго атома кислорода. Один атом кислорода встраивается в субстрат и появляется ОН-группа, а второй

утилизируется.

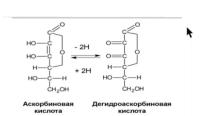
Типы монооксигеназных реакций:

- -Цитохром Р450-монооксигеназа (встречается в печени, рассматриваем в обмене холестерина);
- -Тетрагидроптериновые монооксигеназы (источник водорода- ТГБП; обмен ак);
- -Витамин C-зависимые монооксигеназы (превращение дофамина в норадреналин);


-Аскорбат-зависимые монооксигеназы, работающие в присутствии альфа-кетокислот (сопряженные с окислением альфа-кетокислот). Все эти гидроксилазы относятся к этой группе!

Гидроксилазы могут называть не только монооксигеназами, но и диоксигеназами. Классические монооксигеназы всегда сопровождаются образованием воды (один атом кислорода- в субстрат; а другой- с двумя водородами от донора=> образуется вода), то есть в молекулу субстрата встраивается ТОЛЬКО 1 АТОМ КИСЛОРОДА. А в данной реакции образованию другой карбоксильной группы.

Роль аскорбата заключается в том, чтобы поддержать Fe²⁺, который необходим для проявления каталитической активности этому ферменту в восстановленном виде. То есть в активном центре протеин-пролил-4-гидроксилазы


железо.

есть

Тут такая же реакция, как и представленная выше. Оксигруппа присоединяется к лизину в 5 положении.

Когда аскорбиновая кислота выполняет роль восстановителя железа, она

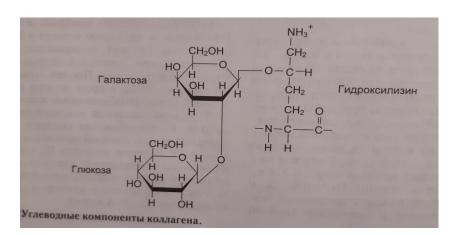
теряет свои протоны и электроны, превращаясь в **дегидроаскорбиновую кислоту**.

Обратное превращение (регенерация) дегидроаскорбиновой кислоты в аскорбиновую кислоту возможно с помощью восстановленного глутатиона

__А регенерация самого глутатиона происходит НАДФН2. Витамин С не синтезируются в организме человека, свои функции проявляет лучше всего в кислой среде.

Роль гидроксильных групп в составе лизина, пролина:

• Они необходимы для фиксации тройной спирали с помощью водородных связей. Первичная структура коллагена такова, что обычная альфа-спираль, которая характерна для всех остальных белков, не может образоваться. Водородные связи между общим фрагментом, как у других белков на уровне вторичной структуры, невозможны, потому что цепь очень вытянутая (электроотрицательные атомы находятся очень далеко друг от друга); пролина очень много, а он мешает образованию водородных связей своим общим фрагментом, потому что это, строго говоря, это


не ак, а иминокислота. Именно поэтому единственный возможный вариант высшей структуры это не одна альфа-спираль, а три; у коллагена свой облик вторичной структуры- это **ТРОЙНАЯ КОЛЛАГЕНОВАЯ СПИРАЛЬ**.

- 5-ОН-Лиз является участком гликозилирования ПРО-α-ЦЕПЕЙ.
- 5-О**H**-Лиз необходим для образования поперечных сшивок в коллагене. Поэтому так важно поддержание необходимого количества витамина C.

При дефиците витамина С нарушается гидроксилирование остатков пролина и лизина, в результате этого развивается <u>ЦИНГА</u>. Образуются менее прочные и менее стабильные коллагеновые волокна, это приводит к большой хрупкости и ломкости кровеносных сосудов. Клиническая картина цинги характеризуется возникновением множественных точечных кровоизлияний под кожу и слизистой оболочки, наблюдается кровоточивость десен, расшатывание и выпадение зубов, анемия. Витамин С выполняет антиоксидантную функцию, являясь хорошим донором атомов водорода, поэтому при недостатке может нарушаться антиокисдантная система эритроцита (он более чувствителен к АФК=> анемия)

3. Гликозилирование по 5-ОН-Лиз. Фермент: галактозил-β-О-трансфераза. После завершения гидроксилирования при участии специфических гликозил-трансфераз в состав молекул проколлагена вводятся углеводные группы. Чаще всего к таким группам относятся галактоза или дисахарид - галактозил-глюкоза. Образуется О-гликозидная связь. То есть гликозилирование происходит еще в коллагене, который не претерпел спирализации, и затем продолжается после образования тройной спирали.

Гликозилирование гидроксилизина

Число таких углеводных единиц в молекуле коллагена зависит от вида ткани. Например, в коллагене сухожилий (коллагене I типа) это число равняется 6, в коллагене капсулы хрусталика (преобладающий коллаген - IV типа) - 110.

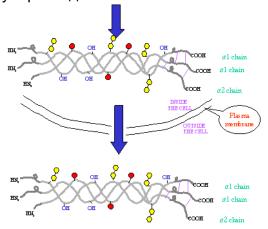
Уменьшение углеводных компонентов (если процесс гликозилирования нарушен) может быть причиной ухудшения механических свойств кожи и связок.

Галактоза, глюкоза в реакциях гликозилирования используются в активированном виде. Активированная форма углевода – УДФ-моносахарид.

Роль гликозилирования α-цепей коллагена

- Степень и характер гликозилирования отличается у разных типов коллагена.
- Моно- или олигосахаридные участки коллагена являются лигандами лектиновых рецепторов.
- Взаимодействие с рецепторами приводит к эндоцитозу и удалению не разрушаемых фрагментов коллагена → гликозилирование необходимо для обеспечения катаболизма

После того как отщепляется профрагмент (сигнальная последовательность, пропоследовательность), после гидроксилирования и гликозилирования – происходит котрансляционный фолдинг – процесс формирования высших структур на основе первичной структуры.

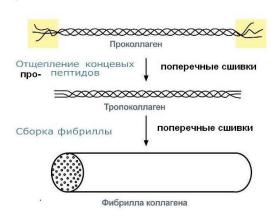

Матрицей для этого фолдинга является **первичная структура**. Вариантом вторичной структуры является тройная коллагеновая спираль. Котрансляционный фолдинг **контролируется белками**:

- 1) белками с ферментативной активностью

 Пептидилпропил-цис-транс-изомераза одна из фолдаз, то есть ферментов фолдинга)
- 2) белками, не обладающими ферментативной активностью и регулирующими процесс котрансляционного фолдинга
 Это белки-шапироны (белки теплового шока). Пример: HSP47 шапирон, участвующий в формировании тройной спирали

Образуется тройная спираль. Она (см. картинку ниже) спирализована в центральной части, где есть триады из глицина, пролина и Y (после их модификации становится возможным образование водородных связей), и достаточно длинные на концах неспирализованные участки – L- и C-концы полипептидных цепей. В области C-концов присутствуют многочисленные дисульфидные мостики.

Концевые пропептиды не образуют тройную спираль, они формируют глобулярные домены.


Такая структура называется проколлаген.

в) секреция проколлагена механизмом экзоцитоза во внеклеточный матрикс

ВнеКЛЕТОЧНЫЙ ЭТАП СИНТЕЗА КОЛЛАГЕНА (проколлаген -> коллагеновые волокна)

 Начинается с отщепления от проколлагена N-концевых (Е: проколлаген-N-пептидаза) и С-концевых (Е: проколлаген-С-пептидаза) пропептидов (то есть участков неспирализованности). Это ключевой момент в образовании коллагеновых фибрилл.

Их содержание в крови – показатель интенсивности синтеза коллагена! Продукт - молекулы тропоколлагена (ТК).

 После отщепления концевых структур формируется структура тропоколлагена. При этом освобождаются концы тропоколлагена (телопептиды) (тоже неспирализованные участки), которые инициируют самосборку микрофибрилл и коллагеновых волокон.

В результате 1 этапа (т.е. отщепление пропептидов) формируется тропоколлаген, содержащий на концах телопептиды

Существуют дефекты синтеза ферментов N- и C-пептидаз → нарушается образование тропоколлагена → нарушается образование нормальных коллагеновых фибрилл. *Клинические проявления*: маленький рост, искривление позвоночника, привычные вывихи суставов и высокая растяжимость кожи.

Недостаточность этих ферментов приводит к нарушению образования нормальных коллагеновых фибрилл.

Этот (2) процесс является спонтанным – "спонтанная самосборка микрофибрилл и коллагеновых волокон".

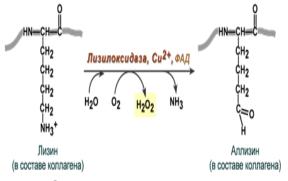
Как образуются коллагеновые волокна (картинка):

Каждый тропоколлаген будет основой для организации коллагеновых фибрилл

Последовательности молекул тропоколлагена ассоциируются в параллельные ряды, которые сдвинуты на ¼ длины молекулы тропоколлагена относительно друг друга. Такая организация коллагеновых фибрилл максимально повышает сопротивление к растягивающим нагрузкам и обеспечивает высокую механическую прочность. Наблюдается поперечная исчерченность.

Есть участки с полным перекрытием (т.е. без зазоров) в структуре коллагеновых волокон, что обеспечивает высокую механическую прочность коллагенового волокна.

Прочность укрепления этого коллагенового волокна достигается образованием ковалентных сшивок.



3) Образование ковалентных поперечных сшивок.

Происходит внутри и между цепями молекул коллагена. Спонтанно образовавшиеся коллагеновые фибриллы укрепляются внутри- и межцепочечными ковалентными сшивками → особая прочность коллагеновых фибрилл

ОБРАЗОВАНИЕ ПОПЕРЕЧНЫХ КОВАЛЕНТНЫХ СШИВОК

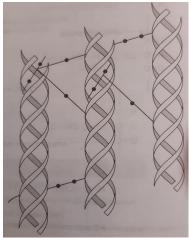
- I. Участвует фермент *лизилоксидаза*. Оксидазы относятся к металлофлавопротеинам.
- Катализирует окисление лизина (оксилизина)

• Оксидазный тип окисления

Процесс: 2 атома водорода передаются на молекулу кислорода → молекула кислорода становится перекисью – <u>двухэлектронное восстановление.</u>

Когда вместо аминогруппы появляется иминогруппа, то второй этап протекает легко и спонтанно без фермента (т.к. иминогруппа нестабильная) – это гидролитическое дезаминирование этой иминогруппы → вместо аминогруппы появляется кислород.

В целом, появляется **альдегидная группа**. Такое соединение называется **альдегид лизина**, **или аллизин** (в составе коллагена).


- → необходимы *лизилоксидаза и ионы меди* для того, чтобы образовалась прочная коллагеновая фибрилла.
 - II. Происходит спонтанная **альдиминная или кетиминная конденсация** боковых цепей лизина или ОН-лизина с боковыми цепями аллизина или ОН-аллизина.
- → т.е. аминокислота с альдегидом спонтанно связывается уже без фермента.

ВАРИАНТЫ СШИВОК БИФУНКЦИОНАЛЬНЫЕ СШИВКИ

Аллизил	Лизил	Лизиннорлейциновая
Аллизил	ОН-лизил	Гидроксилизинонорлейциновая
Он-аллизил	Лизил	Лизино-5-кетонорлейциновая
ОН-аллизил	ОН-лизил	Гидроксилизино-5-кетонорлейциновая - самая распространенная сшивка

Количество таких поперечных связей (сшивок фибриллов коллагена) зависит от функций и возраста тканей. Например, между молекулами коллагена ахиллова сухожилия особенно много, так как для этой структуры особенно важна большая прочность. С возрастом количество поперечных связей в фибриллах коллагена возрастает→ замедление скорости метаболизма коллагена у пожилых людей

Картинка: ковалентные сшивки могут быть внутри тропоколлагена либо межцепочечные связи между разными остатками тропоколлагена.

Образовавшиеся реактивные альдегиды (аллиз и ОН-аллиз) участвуют в образовании ковалентных сшивок с остатками лизина или ОН-лизина стабилизируя фибриллы коллагена

Самая распространенная сшивка (учить):

$$H-N$$
 $H-N$
 $H-N$

Гидроксилизино-5-кетонорлейциновая сшивка образуется между гидроксилизином и 5-гидроксиаллизином.

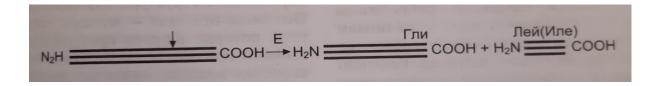
Процесс: аминокислота и альдегид образуют шиффово основание за счет отнятия воды, затем происходит перераспределение электронной плотности за счет того что один из водородов переходит к азоту, а второй водород – к углероду. Образуется ковалентная сшивка.

Бифункциональные связки наиболее присущи фибриллообразующим коллагенам типа I, II и III, причём в зависимости от вида ткани преобладает какой-либо определённый вид сшивки.

По мере созревания ткани возникают перемычки и между микрофибриллами. В бифункциональных сшивках сохраняются реакционноспособные атомы, которые постепенно вступают в реакции дополнительной конденсации с образованием трифункциональных сшивок, имеющих в центре гетероцикл – пиридиниевое или пиррольное кольцо Эти реакции протекают также неферментативно (так же как и бифункциональные сшивки) путём спонтанного взаимодействия кетоиминной двойной сшивки одной микрофибриллы с альдегидным радикалом другой микрофибриллы.

Если в реакции участвуют 5-гидроксиаллизин и уже сформированная сшивка гидроксилизино-5-кетонорлейцина, то продукт – гидроксилизил-пиридинолин. В большинстве тканей это главная трифункциональная сшивка коллагенов. Дополнительные перемычки циклического характера нужны для повышения механической прочности волокон коллагена.

ТРИФУНКЦИОНАЛЬНЫЕ СШИВКИ


- Гидроксилизил-пиридинолиновая самый распространенный вариант
- Гидроксилизил-пиррольная
- Лизил-пиридинолиновая второй самый распространенный вариант
- Лизил-пиррольная

КАТАБОЛИЗМ белков ВКМ

Коллаген существует определенное время. Его относят к медленно обновляющимся белкам. Период полураспада – недели или месяцы.

Разрушение коллагеновых волокон осуществляется либо активными формами кислорода либо активными формами кислорода и ферментативным способом, т.е. ферментами гидролиза. Такие ферменты, катализирующие катаболизм компонентов рыхлой соединительной ткани, синтезируются фибробластами. То есть фибробласты рыхлой соединительной ткани секретируют в ВКМ протеиназы, гидролизующие белки ВКМ, в.т.ч. коллаген.

Ключевой фермент – матриксная металлопротеиназа-1 (ММР-1 или коллагеназа) обладает высокой специфичностью, расщепляет тройную коллагеновую спираль в определенном месте примерно на ¼ расстояния от С-конца - между остатками глицина и лейцина или изолейцина:

Дальше такие образующиеся фрагменты коллагена уже растворимы в воде. Они спонтанно денатурируют, то есть цепь разворачивается и становится доступными для действия других протеолитических ферментов. После чего структура коллагена разрушается.

- MMP Zn зависимые внеклеточные эндопептидазы.
- Фибробласты здоровой пульпы секретируют MMP-1 (коллагеназа), MMP-2 (стромелизин A), MMP-9 (стромелизин B) и MMP-14 (мембранно-связанная протеиназа).
- Нарушение катаболизма коллагена ведет к фиброзу органов и тканей (в основном, в печени и легких)
- Усиление распада коллагена и увеличение активности ММР диагностический маркер аутоиммунных заболеваний (ревматоидный артрит, системная красная волчанка, в результате избыточного синтеза коллагеназы при иммунном ответе)
- При воспалении происходит индукция синтеза ММР в фибробластах и клетках крови и выделение лизосомальных катепсинов.
- У молодых людей обмен коллагена протекает интенсивно. С возрастом, особенно в старости, обмен коллагена снижается, так как у пожилых людей увеличивается количество поперечных сшивок в структуре коллагеновых фибрилл → затрудняется доступность коллагена для действия коллагеназы.
- В некоторых случаях синтез коллагена заметно увеличивается. Например, фибробласты мигрируют в заживающую рану и начинают активно синтезировать в этой области основные компоненты межклеточного матрикса → усиление синтеза коллагена при заживлении ран

МАРКЕРЫ КАТАБОЛИЗМА КОЛЛАГЕНА

Коллагены расщепляются не полностью. Часть «недоразрушенных» продуктов попадает в кровь и мочу.

При усилении катаболизма коллагена повышается концентрация:

- а) телопептидов (N- и C-концевых) тропоколлагена,
- б) пептидов, содержащих оксипролин и оксилизин,
- в) фрагментов трифункциональных сшивок.

Следующий компонент - ГАГ и ПГ

- ГАГ или гликозаминогликаны это линейные гетерополисахариды, содержащие кислые компоненты (Преобладающий ГАГ гиалуроновая кислота).
- ПГ или протеогликаны это соединения белка (коровый белок, 5-10%) с одним или несколькими ГАГ (90-95%).
- Протеогликаны это больше углеводы.

ГАГ и ПГ являются обязательным компонентом межклеточного матрикса.

► Играют большую роль в межклеточных взаимодействиях, формировании и поддержании формы клеток и органов, образовании каркасов при формировании тканей.

Благодаря своим физико-хим свойствам они выполняют следующие функции:

- 1. Являются структурными компонентами межклет матрикса
- 2. Специфически взаимодействуют с коллагеном, эластином, фибронектином и др компонентами межкл матрикса
- 3. Все ГАГ и ПГ могут взаимодействовать с водой, в результате чего межкл вещ=во приобретает желеобразный характер
- 4. Являются полианионами, содержат большое кол-во отрицательных зарядов, поэтому могут присоединять большое кол-во катионов
- 5. Удерживая воду они обеспечивают тургор упругость ткани
- 6. Играют роль молекулярного сита в межкл матриксе препятствуют распространению патогенных микроорганизмов
- 7. Гиалуроновая к-та выполняет рессорную функцию в суставных хрящах
- 8. Гепарин защитная антикоагулянт
- ▶ Мономер гомополисахарида моносахарид глюкоза
- ▶ Мономер гетерополисахарида дисахарид
- ▶ Формула гетерополисахарида многократно повторяющийся дисахарид (x-y)n

Особенности:

- Х окисленная производная моносахарида
- У аминопроизводные моносахаридов
- Большинство ГАГов сульфатированные

► Гиалуроновая кислота встречается в свободном виде, единственный не сульфатированный, кол-но преобладает над другими.

НЕЙТРАЛЬНЫЕ КОМПОНЕНТЫ ГАГ и ПГ

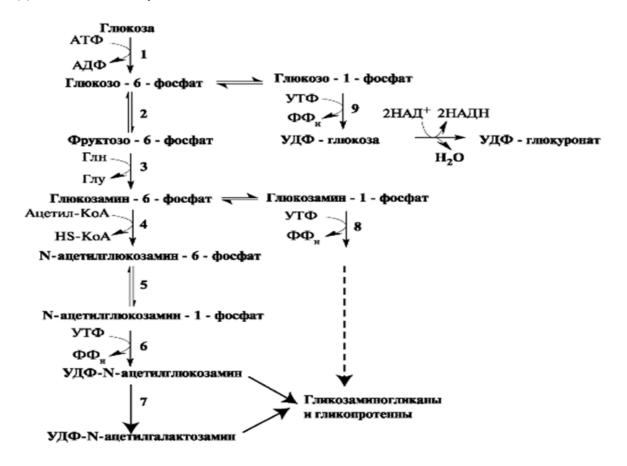
Аминосахара: глюкозамин (Глю-NH2), галактозамин(Гал-NH2).

Ацетиламиносахара: N-ацетилглюкозамин, N-ацетилгалактозамин.

КИСЛОТНЫЕ КОМПОНЕНТЫ ГАГ и ПГ

- 1. Уроновые кислоты:
- А) глюкуроновая кислота (глюук),
- Б) галактуроновая кислота (галук),
- В) идуроновая кислота (Иду)
- 2. Сульфатные остатки (-SO3H)

ГИАЛУРОНОВАЯ КИСЛОТА (гиалуронан)


- Субстраты: УДФ-глюук и УДФ-N-ацетилглюкозамин.
- Фермент: *мембранная гиалуронансинтетаза* локализован на ЦП мембраны
- Биологическая роль:
 - А) удержание воды
 - Б) связывание катионов (Na+, K+, Ca++)
 - В) барьер для микроорганизмов
 - Г) регуляторная
- ► Синтез происходит не на белковом матриксе. У ее фермента есть 2 центра связывания с различными субстратами (активированная форма производных моносахаридов). Субстраты передаются на центры фермента и затем с участием каталитических центров образуется либо 1,3 гликозид связь между моносахаридами внутри мономера, либо бета-1,4 между остатками дисахаридов. Затем происходит высвобождение гиалуроновой к-ты в межклеточный матрикс.

СИНТЕЗ СУБСТРАТОВ

- → Глюкоза фосфорилируется
- → Глюкоза-6-фосфат превращается в глюкозо-1-фосфат
- → Активируется с участием УТФ
- → Образуется УДФ-глюкоза

- → Глюкоза в его составе дважды окисляется
- → Образуется УДФ-глюкуроновая кислота (первый субстрат)
 - Функции УДФ-глюкуроновой кислоты:
 - 1. Образование гагов
 - 2. Обезвреживание токсинов (билирубина)
- → Глюкозо-6-фосфат изомеризуется во фруктозо-6-фосфат
- → Фруктозо-6-фосфат аминируется с участием амидной группы глутамина
- → Превращается в глюкозамин-6-фосфат (далее 2 пути)
 - ◆ 1 фосфоглюкомутазная реакция глюкозамин-1-фосфат(субстрат) - образование ГАГ и ГП
 - 2 ацетилированная форма глюкозамин-6-фосфата образуется N-ацетилглюкозамин-6-фосфат - N-ацетилглюкозамин-1-фосфат активируется с участием УТФ - УДФ-N-ацетилглюкозамин - УДФ-N-ацетилгалкатозамин(субстрат) - образование ГАГ и ГП

Ферменты: 1 - гексокиназа; 2 - фосфоглюкоизомераза; 3 - аминотрансфераза; 4 - ацетилтрансфераза; 5 - N-ацетилглюкозаминфосфомутаза; 6 - УДФ-N-ацетилглюкозаминпирофосфорилаза; 7 - эпимераза; 8 - УДФ-глюкозаминпирофосфорилаза; 9 - УДФ-глюкопирофосфорилаза; 10 - УДФглюкозо-дегидрогеназа.

Другие ГАГ рыхлой соединительной ткани

- Хондроитинсульфат (ХС, компонент ПГ)
- Кератансульфат (КС, компонент ПГ),
- Гепарансульфат (ГС, компонент ПГ),
- Тучные клетки выделяют свободный сульфатированный ГАГгепарин(антикоагулянт)

Формулы знать хондроитинсульфата и гиалурон к-ты

Реакция эпимеризации знать

Для сульфатирования гагов используется ФАФС (органическая форма серной кислоты)

Несульфатированный остаток N-ацетилгалактозамина Сульфатированный остаток N-ацетилгалактозамина

ФАФС образуется из эндогенной серной кислоты - ее источник таурин - из цистеина

Распад гликозаминогликанов

- Гликозаминогликаны отличаются высокой скоростью обмена: период полужизни (T1/2) многих из них составляет от 3 до 10 сут и только для кератансульфата T1/2 «120 сут. В разрушении полисахаридных цепей участвуют экзо- и эндогликозидазы (гиалуронидаза, (3-глюку- ронидаза, (3-галактозидаза, (3-идуронидаза) и сульфатазы.
- Из внеклеточного пространства по механизму эндоцитоза гликозаминогликаны поступают в клетку, где эндоцитозные пузырьки сливаются с лизосомами. Активные лизосомальные ферменты

обеспечивают полный постепенный гидролиз гликозаминогликанов до мономеров.

Мукополисахаридозы

- Мукополисахаридозы тяжёлые наследственные заболевания, обусловленые дефектами гидролаз, участвующих в катаболизме гликозаминогликанов. В лизосомах тканей, для которых характерен синтез наибольшего количества гликозаминогликанов, накапливаются не полностью разрушенные гликозаминогликаны и с мочой выделяются их олигосахаридные фрагменты. Существует несколько типов мукополисахаридозов, вызванных дефектами разных ферментов, участвующих в расщеплении гликозаминогликанов.
- Мукополисахаридозы проявляются нарушениями умственного развития у детей, поражениями сердечно-сосудистой системы, деформациями костного скелета, значительно выраженными в челюстнолицевой области, гипоплазией твёрдых тканей зубов, помутнением роговицы глаз, снижением продолжительности жизни.
- В настоящее время эти болезни не поддаются лечению, поэтому при подозрении на носительство дефектных генов необходимо проводить пренатальную диагностику. В этих случаях определяют активность лизосомальных гидролаз.

ПГ пульпы, периодонта и рыхлой соединительной ткани десны (2 группы)

- Версикан (из группы больших агрегирующих ПГ), содержит 16 цепей хондроитинсульфата (ХС).
- Декорин (из группы малых, богатых лейцином ПГ), содержат одну цепь ХС
- Бигликан (из группы малых, богатых лейцином ПГ) содержит по одной цепи ХС и кератансульфата (КС).
- Фибромодулин и люмикан (из группы малых, богатых лейцином ПГ), содержат по несколько цепей КС.

НЕКОЛЛАГЕНОВЫЕ БЕЛКИ СО СПЕЦИАЛЬНЫМИ СВОЙСТВАМИ

Адгезивные и антиадгезивные белки

Белки межклеточного матрикса выполняют самые разные функции. Часть из них обладает способностью склеивать компоненты межклеточного вещества и клеток, и эти белки получили название адгезивных.

ФИБРОНЕКТИН - адгезивный ГП, котрый соединяет все компоненты межклеточного матрикса.

Крупный мультидоменный гликопротеин (470 кда), состоит из двух субъединиц, соединенных дисульфидными связями.

Содержит участки связывания для

- А) коллагена,
- Б) гиалуронана,
- В) клеточных мембран (RGD или Арг-Гли-Асп-).

Служит молекулярным клеем, связывающим компоненты ВМК.

Особенности тканей пульпы и пародонта

Пульпарные фибробласты – уникальная популяция фибробластов, синтезирующая все белки системы комплемента. Продукты активации комплемента С3а и С5а вызывают пролиферацию и мобилизацию стволовых клеток и фибробластов, а мембранно-атакующий комплекс разрушает бактерии. Цитокин FGF2 путем индукции синтеза комплемента является главным фактором репарации пульпарно-дентинного комплекса.

Фибробласты периодонта характеризуются высокой активностью щелочной фосфатазы и способностью к дифференцировки в остеобласты и цементобласты. Связь с цементом осуществляется коллагеновыми волокнами и протеогликанами. Скорость обновления периодонтального коллагена в 4 раза выше, чем в коже.

Тема №2: БИОХИМИЯ МИНЕРАЛИЗОВАННЫХ ТКАНЕЙ РОТОВОЙ ПОЛОСТИ

Состояние ротовой полости взаимосвязано с состоянием всего организма, поэтому длительные патологические процессы, протекающие в организме человека, могут сказываться на состоянии тканей зуба. Главная функция зуба - механическое измельчение пищи, попадающей в организм.

МИНЕРАЛИЗОВАННЫЕ ТКАНИ

- В основном веществе содержится большое количество КРИСТАЛЛИЗОВАННЫХ СОЛЕЙ КАЛЬЦИЯ
- Твердые ткани зуба характеризуются высоким содержанием минерального компонента:
 - Кость (образуют лунки) 60-70%
 - Цемент (клеточный и бесклеточный) 68 70%
 - Дентин 71- 72%
 - Эмаль 95% (на нее приходится бОльшая нагрузка)

Особенность всех минерализованных тканей:

- малое кол-во клеток с отростками
- большое кол-во матрикса с минералами (в связи с этим органический компонент матрикса имеет особое строение он представлен белками, которые являются центрами кристаллизации для формирования кристаллов минерального компонента)

ХИМИЧЕСКИЙ СОСТАВ КРИСТАЛЛОВ МИНЕРАЛИЗОВАННЫХ ТКАНЕЙ

В минерализованных тканях животного мира преобладают апатиты. Общая формула апатитов: **Ca10(PO4)6(X)2**, где X представлен гидроксильной группой.

- Преобладает гидроксиапатит (ГАП) Ca10(PO4)6(OH)2H2O
- Другие соли кальция:

карбонатапатит - Ca10(PO4)6CO3 хлорапатит - Ca10(PO4)6Cl2 фторапатит - Ca10(PO4)6F2 аморфный кальций в виде Ca3(PO4)2, CaCO3, цитрат кальция

Больший процент приходится на Са2+, достаточно большой процент РО4(2-)

Количественный состав макроэлементов в минерализованных тканях г/на 100 г ткани (грамм-проценты) Кость Эмаль Дентин Цемент Ca 2+ 32-39 26-28 21-24 24 PO 4 3-16-18 12-13 10-12 11 CO 3 2-1,9-3,6 3,0-3,5 2,0-4,3 3,9 0,25-0,9 Na + 0,6-0,8 0.8 Mg 2+ 0,25-0,56 0,8-1,0 0,4-0,7 0,3 Cl -0,19-0,3 0,3-0,5 0,01 K + 0,05-0,3 0,02-0,04 0,2 0,5 0,1 0,5 фториды Ca/P 1,5-1,68 1,6-1,7 1,6-1,7 1,6-1,7

ВКМ (внеклеточный матрикс) минерализованных тканей

- Кристаллы солей кальция (преобладает гидроксиапатит)
- Другие неорганические соли
- Органические вещества (преобладают специализированные белки)
- Вода (4-15%)

Замещаемые и замещающие ионы и молекулы в составе апатитов (изоморфное замещение)

Замещаемые ионы	Замещающие ионы
PO4(2-)	AsO3(2-) HPO4(2-) CO2
Ca2+	Sr2+ Ba2+ Pb2+ Na+ K+ Mg2+ H2O
OH-	F- Cl- Br- l- H2O
2OH	CO2(2-) O2(-)

Гидроксиапатиты (ГАП)

- имеют *гексагональную структуру,* которая обусловливает высокую прочность
- молярное соотношение *кальций:фосфат=1:67* (очень устойчивая структура, *стабильная ионная решетка*, в которой плотно упакованы *ионы*, удерживаемые за счет *электростатических сил*)
- стабильны, НО легко обмениваются ионами с окружающей средой, благодаря чему в их составе могут появляться другие ионы (*изоморфное замещение*)
 - о размер атома фактор, определяющий возможность замены

Элементы кристаллической решетки апатитов могут обмениваться с ионами раствора, окружающего кристалл и изменяться за счет ионов, находящихся в этом растворе. В живых системах способность к изоморфному замещению делает апатиты высокочувствительными к ионному составу крови, межклеточной жидкости, слюны (зависит от характера пищи и потребляемой воды).

• изоморфное замещение влияет на прочность и размеры кристаллов ГАП (т. е. изменяет свойства)

Наиболее распространенные реакции изоморфного замещения

- В кислой среде ионы кальция замещаются протонами, что приводит к разрушению кристалла ГАП. Реакция деминерализации костной ткани в кислой среде (1).
- **Фторапатиты** наиболее стабильные апатиты. Две реакции изоморфного замещения с участием фтора (3, 4).
 - Если концентрация фтора в норме, то образуются кристаллы фторапатитов (рекомендуется *временное* применение фтор-содержащих паст для того, чтобы некоторое количество ГАП в эмали замещалось на кристаллы фторапатитов. Фторапатиты уменьшают растворимость ГАП в кислой среде) - р. 3
 - Если концентрация фтора высока, реакция изоморфного замещения происходит по другому типу - кристаллы не образуются (р. 4). Заболевание, которое развивается при избыточной концентрации фтора в воде, почве, зубах, костях в период формирования костного скелета и зубных зачатков - ФЛЮОРОЗ (размягчение тканей зуба)

$$Ca_{9}2H^{-}(PO_{4})_{6}(OH)_{2} + 6H^{+} \rightarrow 9 Ca^{2+} + 6HPO_{4}^{2-} + 2H_{2}O$$

$$Ca_{10}(PO_{4})_{6}(OH)_{2} + Sr^{2+} \rightarrow Ca_{9}Sr^{2+}(PO_{4})_{6}(OH)_{2} + Ca^{2+}Ca_{10}(PO_{4})_{6}OH) + 2F \rightarrow Ca_{10}(PO_{4})_{6}F_{2} + 2HO^{-}$$

$$Ca_{10}(PO_{4})_{6}(OH)_{2} + 20F \rightarrow 10 CaF_{2} + 6PO_{4}^{3-} + 2HO^{-}$$

Карбонатный апатит

- содержит карбонат или гидрокарбонат
- накопление карбоната повышает кариесвосприимчивость эмали
- с возрастом увеличивается

Стронциевый апатит

- образуется в результате замещения кальция
- замещение происходит при накоплении радионуклидов в потребляемов воде
- уменьшает механическую прочность зуба

У изоморфного замещения могут быть положительные эффекты (р. 3), но в основном он имеет негативный характер.

КЛЕТКИ МИНЕРАЛИЗОВАННЫХ ТКАНЕЙ

- Остеобласты (костьобразующие) и остеокласты (костьрастворяющие)
- Цементобласты (цемент)
- Одонтобласты (дентин)
- Амелобласты (эмаль)

Все клетки участвуют в формировании ВКМ, что способствует минерализации твердых тканей зуба.

БИОХИМИЯ КОСТНОЙ ТКАНИ

- Зубы располагаются в костных лунках отдельных ячейках альвеолярных отростков верхней и нижней челюстей. Костная ткань разновидность соединительной ткани, развивающаяся из мезодермы и состоящая из клеток, межклеточного неминерализованного органического матрикса (остеоид) и основного минерализованного межклеточного вещества.
- Поверхность кости альвеолярного отростка покрыта надкостицей (периост), образованной преимущественно плотной волокнистой соединительной тканью. Из остеогенного слоя надкостницы в кость проходят сосуды и нервы.
- Надкостница осуществляет не только трофическую функцию, но и участвует в росте и регенерации кости. Вследствие этого костная ткань альвеолярных отростков обладает высокой регенеративной способностью не только в физиологических условиях, при ортодонтических воздействиях, но и после повреждения (переломы).
- Минерализованный матрикс организован в **трабекулы** структурно-функциональные единицы губчатой костной ткани.
- В организме постоянно происходят процессы обновления костной ткани путём сопряженного по времени костеобразования и рассасывания (резорбция) кости. В этих процессах активно участвуют различные клетки костной ткани.

КЛЕТОЧНЫЙ СОСТАВ КОСТНОЙ ТКАНИ

- Клетки занимают всего лишь 1-5% общего объёма костной ткани скелета взрослого человека. Различают 4 типа клеток костной ткани.
- Мезенхимальные недифференцированные клетки кости находятся главным образом в составе внутреннего слоя надкостицы, покрывающей поверхность кости снаружи периоста, Из этих клеток могут образовываться новые клетки кости остеобласты и остеокласты. В соответствии с этой их функцией их также называют остеогенными клетками.
- Остеобласты клетки, находящиеся в зонах костеобразования на внешних и внутренних поверхностях кости. Остеобласты синтезируют и выделяют в окружающую среду фибриллы коллагена, протеогликаны и гликозаминогликаны. Они также обеспечивают непрерывный рост кристаллов гидроксиапатитов и выступают в качестве посредников при

- связывании минеральных кристаллов с белковой матрицей. По мере старения остеобласты превращаются в остеоциты.
- Остеокласты клетки, выполняющие функцию разрушения кости, образуются из макрофагов. Они осуществляют непрерывный управляемый процесс реконструкции и обновления костной ткани, обеспечивая необходимый рост и развитие скелета, структуру прочность и упругость костей.

МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО

- **Межклеточное вещество** представлено *органическим межклеточным матриксом,* построенным из коллагеновых волокон и основным минерализованным веществом.
- Основное вещество межклеточного матрикса состоит главным образом из внеклеточной жидкости, гликопротеинов и протеогликанов, участвующих в перемещении и распределении неорганических ионов. Минеральные вещества, размещенные в составе основного вещества в органическом матриксе кости представлены кристаллами, главным образом гидроксиапатитом. Основными белками внеклеточного матрикса костной ткани являются коллагеновые белки I типа, которые составляют около 90% органического матрикса кости. Наряду с коллагеном типа присутствуют следы других типов коллагена, таких как V, XI, XII.
- Неколлагеновые белки костной ткани представлены гликопротеинами и протеогликанами.
- Гликопротеины синтезируются остеобластами и способны связывать фосфаты или кальций; таким образом они принимают участие в формировании минерализованного матрикса. Связываясь с клетками, коллагенами и протеогликанами, они обеспечивают образование надмолекулярных комплексов матрикса костной ткани.

ОСТЕОБЛАСТ (ОБ) – костеобразующая клетка

- Формируется из ПРЕостеобласта (этот процесс индуцируется цитокинами)
- Цитокины **BMP7** и **BMP2** (костные морфогенетические белки) взаимодействуют с рецепторами и через фосфорилирование факторов транскрипции индуцируют дифференцировку ОБ из клеток-предшественников (преостеобластов ПОБ).

Коллагеновая губка, содержащая **ВМР2**, применяется для заполнения костных дефектов.

РЕМОДЕЛИРОВАНИЕ КОСТНОЙ ТКАНИ

В процессе жизнедеятельности костная ткань постоянно обновляется. При этом в костной ткани происходят два противоположно направленных процесса - резорбция и восстановление. Соотношение этих процессов называется ремоделированием костной ткани.

• Остеокласты "присасываются" к кости и осуществляют растворение старой костной ткани. Остеобласты формируют новую костную ткань с участием органического остеоида.

Известно, что каждые 30 лет костная ткань изменяется почти полностью. в норме кость растет до 20 лет, достигая пика костной массы. В этот период прирост костной массы составляет до 8% в год, затем до 30 лет - период устойчивого состояния. После этого начинается естественное снижение костной массы. После наступления менопаузы у женщин наблюдается максимальная скорость потери костной ткани, т. к. эстрогены влияют на резорбция кости, продолжается этот процесс до 60 лет.

Женщины теряют 30-50% костной ткани. Мужчины в меньшем количестве 15-30%.

- Костная ткань является депо кальция и фосфата.
- Протекание процессов костеобразования и резорбции кости позволяет поддерживать постоянную концентрацию Ca2+ в крови (2,2-2,8 мМ).

КОСТЕОБРАЗОВАНИЕ

• 1 этап – активные секретирующие остеобласты создают слои остеоида - неминерализованного матрикса кости, который медленно восполняет полость резорбции. Компоненты органического остеоида (необходимы для 1 этапа): коллаген I типа, BSP-II, остеонектин, остеокальцин, щелочная фосфатаза, протеогликаны.

Когда образующийся остеоид достигает определенного размера, он начинает минерализоваться:

• **2 этап** – минерализация остеоида, т.е формирование кристаллов ГАП в многочисленных центрах нуклеации. Скорость минерализации зависит от содержания кальция, фосфора и ряда микроэлементов.

Таким образом, процесс минерализации управляется остеобластами, которые образуют остеоид, и тормозится **пирофосфатом** - *природный ингибитор минерализации*.

1 этап: СИНТЕЗ КОЛЛАГЕНА (преобладающий компонент) и ДРУГИХ БЕЛКОВ ОСТЕОИДА

- Коллаген I типа (90%), минорные коллагены V и XII типа.
 - Коллаген I типа состоит из двух альфа-цепей. Характеризуется наличием триад: 33% глицин, 20% пролин, лизин (участвует в образовании ковалентных сшивок)
- В коллагене бифункциональные сшивки преобладают над трифункциональными сшивками. Среди трифункциональных сшивок преобладают перемычки пиррольного типа.
- Существуют *«зазоры»* между тропоколлагеновыми единицами, являющиеся *центрами нуклеации* здесь начинается рост кристаллов ГАП. Размер "зазора" 35-40 нм.
 - Молекулы тропоколлагена выстраиваются в параллельные ряды (20-100 рядов), располагаются со смещением на ¼ длины молекулы тропоколлагена - вид поперечной исчерченности. Наблюдаются участки полного перекрытия, что придает коллагеновому волокну большую механическую прочность.

BSP-II (костный сиалопротеин 2)

- Молекулярная масса 70 кДа (низкомолекулярный).
- На 50% состоит из углеводов.
- В количественном отношении на втором месте после коллагена. Преобладающий гликопротеин ВКМ.
- Обладает очень кислыми свойствами (pI = 3,9) за счет большого количества остатков глутамата (22%), фосфорилированных (на этапе посттрансляционной модификации с уч-ем АТФ) остатков серина и треонина, сульфатированных (с участием ФАФС) остатков тирозина и сиаловой кислоты, принадлежащей олигосахаридным фрагментам.
- За счет отрицательного заряда может присоединять ионы кальция.
- Участвует в прикреплении клеток.
- Участвует в минерализации матрикса.
- Имеет мультидоменную структуру, 3 домена:
 - о гидрофобный домен для связывания коллагена
 - RGD-домен (аргинин, глицин, аспарагин) для связывания с мембранными интегринами (белками) клеток
 - центр нуклеации для образования первых кристаллов ГАП.

Домен - СФЕ белка.

OCTEOHEKTИH (ON)

- Кислый, богатый цистеином гликопротеин
- Белок синтезируется остеобластами, одонтобластами
- Содержит большое количество отрицательно заряженных АК, поэтому обладает способностью связывать ионы кальция
- Через углеводный компонент связывается с коллагеном І типа
- Обеспечивает взаимодействие компонентов матрикса
- Является инициатором минерализации кости, хряща, цемента

ОСТЕОКАЛЬЦИН

- Витамин К-зависимый Гла-протеин
- Отличительная особенность семейства Гла-белков присутствие в структуре остатка гамма-карбокси-глутаминовой кислоты (Гла)
 - Образование Гла происходит на этапе посттрансляционной модификации (см. реакцию ниже)
- Синтезируется только в остеобластах
- Молекулярная масса 6 кДа
- Состоит из 49 АК, из них три представлены еамма-карбокси-елутаминовой кислотой
- Маркер костеобразования
- Гормональное действие: мишенью является поджелудочная железа и половые железы
 - а) усиление выделения инсулина
 - о б) усиление синтеза тестостерона

Реакция посттрансляционной модификации остатков глутаминовой кислоты в молекуле про-остеокальцина (предшественника остеокальцина)

В пре-остеокальцине есть несколько остатков глутаминовой кислоты, которые на этапе посттрансляционной модификации карбоксилируются (Е: глутаматкарбоксилаза). Этот фермент сложный, содержит в своей структуре вит. К. Это единственный случай, когда жирорастворимый витамин выполняет коферментную функцию!
Жирорастворимые витамины обычно являются антиоксидантами (вит. A, E, D).

Модификация: вместо одной карбоксильной группы в структуре глутамата появляется вторая (*отрицательно заряженная клешня* в составе остеокальцина). Клешня взаимодействует с ионами кальция.

Какие белки, кроме белков костной ткани, относятся к Гла-протеинам? *Белки системы свертывания крови* (они тоже работают в присутствии ионов кальция).

Свойство связывать кальций обеспечивается посттрансляционной модификацией остатка глутаминовой кислоты.

ЩЕЛОЧНАЯ ФОСФАТАЗА (ЩФ)

- Фермент
- Катализирует реакцию: S-OPO3H2 + H2O = S + H3PO4 (высвобождается фосфат, необходимый для образования кристаллов ГАП)
- Относится к белкам органического остеиода
- Обладает относительной субстратной специфичностью
- Субстраты:
 - пирофосфат (природный ингибитор минерализации)
 - о фосфорилированные белки (ВSP-II)
 - нуклеотиды (АТФ, АДФ)
 - низкомолекулярные органические фосфаты (глицеро-3-фосфат)
- **рН оптимум** = 9-10

Гидролиз пирофосфата снимает его ингибирующее действие на процесс минерализации и снабжает ткань фосфатами.

2 этап: МИНЕРАЛИЗАЦИЯ ОСТЕОИДА

Освобожденные под действием **щелочной фосфатазы,** фосфатные остатки кристаллизуются с **ионами Са**, используя **коллагеновые волокна** и **BSPII**, в качестве каркаса.

<u>Факторы, необходимые для формирования кристаллов правильной</u> формы (только такие кристаллы обладают высокой механической прочностью): Для ограничения роста кристаллов **в ширину** - вещества, обладающие способностью связывать излишки Са:

- 1. **ЦИТРАТ-ИОНЫ**, адсорбируемые на поверхности кристаллов (3 заряженные отрицательно гидроксильные группировки, обладающие способностью связывать Ca);
- 2. **Матриксный ГЛА** протеин, синтезируемый с участием витамина К остеобластами (обладает способностью связывать аморфный Са, который есть на поверхности кристаллов).

Протеогликаны - органический компонент костной ткани, являются компонентом органического остеоида.

- Остеобласты выделяются во внеклеточный матрикс, главным образом, малые протеогликаны богатые лейцином (декорин, бигликан, фибромодулин, люмикан);
 - *к их **особенностям** относится:
 - 1. их поровый белок обладает значительной молекулярной массой;
 - 2. они содержат 1-2 цепи ГАГ.
- В ходе минерализации **лизосомальные ферменты** (протеиназы и гликозидазы) остеобласта гидролизуют:
 - 1. компоненты протеогликанов,
 - 2. другие компоненты органического матрикса

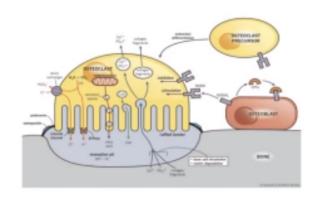
и идет <u>замещение органического матрикса минеральным</u> компонентом.

Маркеры усиления костеобразования:

- Повышение активности **щелочной фосфатазы** (костного изофермента) в крови;
- Повышение концентрации остеокальцина в крови;
- Повышение концентрации пропептидов коллагена і типа

Например:

- 1. Измерение количества сывороточного остеокальцина позволяет определить риск развития **остеопороза** у женщин;
- 2. **Рахит** у детей в раннем возрасте сопровождается снижением содержания остеокальцина (степень снижения концентрации остеокальцина зависит от выраженности рахитического процесса)


^{*}такие пропептиды отщепляются в процессе посттрансляционной модификации синтеза коллагена.

<u>Ремоделирование (обновление) костной ткани</u> - сопряжение 2х процессов:

- Процесса костеобразования;
- Процесса резорбции кости.
- □ Костная ткань депо Са и фосфата;
- □ протекание процессов костеобразования и резорбции кости позволяет поддерживать **постоянную концентрацию ионов Са** в крови (2,2-2,8 мМ).

Сигналы резорбции кости:

- Остеобласты выделяют **остеопонтин**, который образует "мостик" между кристаллом ГАП и остеокластом;
- Остеобласты секретируют цитокины RANKL (лиганд рецептора активации нуклеарного фактора каппа-В (карра-В)) и M-CSF (цитокин макрофагальный колониестимулирующий фактор), которые взаимодействуют со своими рецепторами на преостеокластах. В результате взаимодействия RANKL-RANK и M-CSF рецептор M-CSF происходит процесс пролиферации, дифференцировки и активации остеокластов.

- *Описание к картинке активация остеокласта:
 - Остеобласт секретирует 2 цитокина, здесь показан 1-РАНКЛ (СИРЕНЕВЫЙ ПРЯМОУГОЛЬНИК, СВЯЗАННЫЙ С КРАСНЫМ ОВАЛОМ), он длительное время может находиться в связанном состоянии с остеобластом (КРАСНЫЙ ОВАЛ).
 - Из стволовой клетки костного мозга образуются преостеокласты (ЖЕЛТЫЙ ОВАЛ), они имеют РАНК-рецепторы (СИРЕНЕВАЯ ФИГУРА, СВЯЗАННАЯ С ЖЕЛТЫМ ОВАЛОМ).
 - Взаимодействия РАНКЛ с РАНК стимулируют процесс слияния нескольких преостеокластов в 1 многоядерную крупную структуру и происходит образование зрелого остеокласта (БОЛЬШАЯ ЖЕЛТАЯ СТРУКТУРА), который создает на своей поверхности гофрированный край (ЖЕЛТЫЕ ВЫПЯЧИВАНИЯ) и с его

участием зрелый остеокласт начинает резорбировать, т.е растворять костную ткань.

Активация остеокласта заключается в 2х процессах:

1. В таком активированном остеокласте активируется карбоангидраза. Этот фермент катализирует реакцию взаимодействия воды с углекислым газом с образованием угольной кислоты. Угольная кислота диссоциирует на бикарбонат ионы и протоны. Кислота растворяет кристаллы ГАП, фосфат ионы и ионы кальция поступают в ВКМ и кровь. Ионы бикарбоната обмениваются на хлорид ионы, которые с участием хлоридного канала попадают в область гофрированного края и сюда же относятся протоны. Поток протонов осуществляется с помощью протон калиевой-АТФазы. И в области гофрированного края создается кислая среда, развивается ацидоз, это способствует:

Активации лизосомальных ферментов, которые
попадают сюда из лизосом;
Разрушению минерального компонента костной
ткани.

Затем кальций и фосфаты попадают в кровеносное русло.

2. Освобождение лизосомальных ферментов, которые разрушают компоненты межклеточного матрикса минерализованных тканей зуба и кости (катепсин К, D, B, тартарат-резистентная кислая фосфатаза, эстераза др.). Катепсин К активирует матриксную металлпротеиназу 9, участвующую в деградации коллагена и протеогликанов межклеточного матрикса.

Саморегуляция ремоделирования костной ткани:

- Остеобласты могут остановить активацию остеокластов, выделяя белок остеопротегрин (OPG)-белок из семейства рецепторов факторов некроза опухоли, который перехватывает цитокинин RANKL;
- Отношение RANKL/OPG характеризует <u>соотношение процессов резорбции кости и костеобразования.</u>

Маркеры усиления резорбции костной ткани:

- Повышение активности в крови кислой тартарат-резистентной фосфатазы;
- Повышение почечной экскреции:
 - 1. пептидов, содержащих гидроксилизин и гидроксипролин;
 - 2. фрагментов ковалентных сшивок (пирролы);
 - 3. С- и N- телопептидов;
- Повышение соотношения RANKL/OPG в крови.

<u>Увеличение в крови концентрации маркеров усиления резорбции</u> костной ткани имеет прогностическое значение, например:

1. позволяет определить пациентов с высоким развитием остеопороза;

- 2. позволяет определить увеличение риска переломов;
- 3. при костных патологиях;
- 4. при **онкологических заболеваниях**, которые сопровождаются разрушением костной ткани.

Костная ткань - депо кальция для организма человека.

Функции кальция:

- участие в свертывании крови;
- транспорт веществ через мембраны;
- регуляция активности ферментов;
- передачи сигналов внутри клетки;
- межклеточные взаимодействия.

<u>Процессы ремоделирования кости влияют на</u> концентрацию кальция.

Гормональная регуляция ремоделирования кости:

- Паратгормон (белково-пептидная природа, передает свой сигнал с участием вторичных посредников (цАМФ)) взаимодействует с рецептором остеобластов и вызывает индукцию синтеза RANKL и репрессию синтеза остеопротегрина. **Результат** активация остеокластов;
- **Кальцитриол (1, 25-дигидрокси-витамин D3)** вызывает индукцию в остеобластах синтеза остеокальцина и репрессию синтеза коллагена I. *Результа*т усиление минерализации;
- **Кальцитонин** (пептид из 32 АК, не может проникать внутрь клетки, оказывает свой эффект через вторичные посредники (цАМФ), секретируется в парафолликулярных клетках щитовидной железы) взаимодействует с рецепторами на остеокластах и подавляет их активность. **Результат** подавление функции остеокластов. Задержка, снижение концентрации кальция в кости.
- **Эстрогены** усиливают апоптоз остеокластов. **Результат** подавление функции остеокластов.

Синтез витамина D3 (в организме человека):

1 этап - фотолиз.

В коже под действием УФ-лучей происходит реакция разрушения второго цикла в структуре холестерина, образуется холекальциферол - неактивная форма витамина.

2 этап - в печени.

Печеночная цитохром Р450 монооксигеназа катализирует реакцию гидроксилирования холекальциферола в 25 положении, появляется еще одна ОН-группа

3 этап - в почках.

Почечная цитохром Р450 монооксигеназа катализирует реакцию гидроксилирования холекальциферола в 1 положении, появляется еще одна ОН-группа - образуется витамин D3.

<u>Регуляция фосфорно-кальциевого обмена в почках и кишечнике:</u>

- Паратгормон стимулирует реабсорбцию кальция и тормозит реабсорбцию фосфата. *Результат* повышение концентрации кальция и снижение фосфата в крови.
- Кальцитриол (1, 25-дигидрокси-витамин D3) стимулирует реабсорбцию и кальция, и фосфата. Стимулирует всасывание кальция в кишечнике. Необходим для всасывания кальция в кишечнике, поэтому при недостатке витамина у детей рахит, у взрослых -остеопороз, остеомаляция. Результат-повышение концентрации кальция и фосфата в крови.
- **Кальцитонин** ингибирует реабсорбцию кальция в почках и всасывание кальция в кишечнике. **Результат** снижение концентрации кальция и фосфата в крови.
- **Гормон кости FGF-23** ингибирует реабсорбцию фосфата. **Результат** снижение концентрации фосфата в крови.

Одонтогенез

- **цитокины FGF-8, BMP-2, BMP-4** являются сигнальными молекулами дифференцировки цементобластов, одонтобластов и амелобластов;
- **Клетки зачатков зуба** сами выделяют цитокины. Например, пептидные фрагменты амелогенина (LRAP, TRAP белки богатые лизином) регулируют пролиферацию и дифференцировку остеобластов и цементобластов.

<u>ЦЕМЕНТ</u>

- Вместе с периодонтальными волокнами альвеолы и десной формирует опорно-удерживающий аппарат зуба;
- Обызвествленная часть зуба, сходная по структуре с костной тканью, но лишена сосудов и не подвержен постоянной перестройке, т.е нет процесса ремоделирования;
- Выполняет ряд функций:
 - 1. входит в состав поддерживающего связочного аппарата зуба;
 - 2. обеспечивает прикрепление к зубу волокон периодонта;
 - 3. защищает ткань дентина от повреждений;
 - 4. репаративная функция.
- неорганические соединения **68-70%**, представлены кристаллами гидроксиапатитов
- органические вещества 17-20% (коллаген I типа; из протеогликанов малые, богатые лейцином декорин, бигликан, фибромодулин, люмикан; из гликопротеинов BSP-II, остеонектин, остеокальцин, щелочная фосфатаза);
- 10-15 % вода;
- Специфические белки(относятся к гликопротеинам): CEMP-1 и CAP (cementum attachment protein).

Дентин – основная составляющая часть зуба

Содержит до 70% минерального компонента, 17% органического веществ и 13% воды.

Граничит с эмалью в области коронки зуба и с цементом в корне зуба.

Неорганическая его часть представлена кристаллами гидроксиапатитов, фторапатитов и аморфный фосфат кальция.

Одонтобласты осуществляют дентиногенез (образование минерализованного ВКМ).

В ВКМ преобладают: ГАП, коллаген 1 типа

Из числа ПГ – декорин и бигликан;

Из числа гликопроетинов – дентинный фосфопротеин (фосфорин), дентинный сиалопротеиин, дентинный матриксный протеин, остеонектин, остеокальцин, щелочная фосфатаза.

Дентинный фосфопротеин (фосфорин)

- маркерный белок дентина

Фосфорин синтезируется в виде своего предшественника – дентинного сиалофосфопротеина, который подвергается реакции ограниченного протеолиза под д-ем ВМР-1, он обладает функцией протеазы и при этом обр-ся 2 белка: фосфорин и дентинный сиалопротеин, у этих белков есть общие св-ва: они явл-ся кислыми гликопротеинами; в большей степени обр-ся фосфорин. Особенности фосфорина:

- на его долю приходится 50% от всех белков дентина
- высокая молекулярная масса 50 <mark>кД</mark>
- содержится очень много аспарагиновой к-ты, фосфосерина => очень низкой значение изоэлектрической точки (самый кислый белок орг-ма; pl=1.1)
- обладает спос-ью связывать кальций, у него есть несколько центров связывания коллагена

Главная роль фосфорина: инициатор и промотор нейтрализации дентина.

Эмаль – твердая ткань зуба, которая взаимодействует с внешней средой (со слюной, пищей), по твердости близка к кварцу, процент минерализации 95%, уникальный материал, самая твердая ткань человеческого организма, в отличие от других твердых тканей эмаль не обладает клеточной структурой.

Состав:

- гидроксиапатиты 75%
- карбонатный апатит 12%
- фторапатит 1% и др формы апатитов
- также имеются участки аморфного кальция

Основная ф-ия эмали: защита дентина и пульпы зуба от внешних раздражителей в окружении большого кол-ва бактерий.

В зрелой эмали – 3.8% воды, в незрелой примерно 20% воды.

Органические компоненты эмали (мало):

- специфические белки в эмали:

<u>амелогенин</u> (приобщающий белок) и похожий на амелогенин по строению <u>энамелин</u> - они являются <u>гликофосфопротеинами</u>;

они содержат большое кол-во аспарагин к-ты, глутаминовой к-ты, также содержат пролин, глицин;

они обладают способностью связывать кальций.

- амелобластин, мактриксная металлопротеиназа-20 (только в эмали), калликреин-4 (приним уч в метаболизме эмали)

- нет коллагена 1 типа и любого другого коллагена, доля органических веществ в зрелой эмали составляет 1-2%

Амелогенез – обр-ие эмали зуба

Инициаторы: предентин и цитокин TGF- В

Состоит из 2х этапов:

- 1) этап обр-ия органического остеоида
- 2) секреторная фаза

В секреторную фазу амелобласты выделяют компоненты ВКМ (содержание белка – 20%).

В фазу минерализации при участии амелоганина обр-ся кристаллы гидроксиапатита и процент органического компонента при этом снижается. Первичная минерализация происходит во внутри челюстной период развития зуба, вторичная – созревание эмали, происходит в течение 2-5 лет после прорезывания зуба.

<u>Несовершенный амелогенез (последствия связ-ые с мутациями белков):</u>

- 1) амелогенин мягкая и тонкая эмаль коричнево-желтого цвета
- 2) энамелин локальные участки мягкой и тонкой эмали
- 3) МММ-20 мягкая эмаль нормальной толщины
- 4) KLK-4 мягкая эмаль нормальной толщины

Состояние зубов и эмали зависит от состава слюны. Компонент рот жидкости – **слюна**, экскрет слюнных желез. <u>Состав слюны:</u> клетки слущенного эпителия, микроорг-мы и продукты их жизнедеят, компоненты пищи

Ф-ии слюны:

- пищеварительная (смягчает и смачивает твердую пищу и обеспечивает форм-ие пищевого комка, что облегчает проглатывание пищи), после пропитывания слюной пищеварительные компоненты подверг частичному протеолизу, в рот полости раб фермент альфаамилаза которая расщепляет углеводы и липазы которые расщепляют триацилглицеролы; липазы выделяются слюнными железами распол-ми в корне языка
- защитная (очищает зубы и слизистую оболочку полости рта от бактерий и продуктов их метаболизма, от ост пищи; это делают белки слюны)
- минерализующая ф-ия (основной источник кальция и фосфора для эмали зуба)

Состав слюны:

- · Смешанная слюна (представляет собой вязкую в связи с присутствием гликопротеинов жидкость с относительной плотностью 1.001-1.017)
- pH слюны от 5.7 до 7.2, зависит от характера пищи, гигиенического состояния полости рта, скорости секреции (при низкой скорости секреции pH слюны сдвигается в низкую сторону, особенно в ночной период, что способ обр-ию кариеса, при стимуляции слюноотд-ия pH слюны сдвиг в щелочную сторону
- 98% воды

- много электролитов, ионная сила некоторых электролитов выше чем в плазме крови (K,Mg)
- белки 0,2-0,4% или 2-4 г/л
- низкомолекулярные в-ва (АК, мочевина, мочевая к-та, моносахариды и др органические кислоты лактат, пируват; пептиды)

Электролиты слюны:

- бикарбонат главный компонент буферной сис-мы слюны, чем выше буферная емкость, тем больше устойчивость к кариесу
- кальций и фосфат участвуют в обновлении и реминерализации эмали
- фториды участвуют в изоморфном замещении ОН группы с обр-ем кристаллов гидроксиапатитов и фторапатитов (более уст в кислой среде, обл бактерицидным д-м; есть безопасный диапазон 0.7-1.5 мг/сутки)
- нитрат ион который поглощает из крови и выдел слюной и используется для производства бактерицидных акт-х форм кислорода

<u> Главный орган комп слюны – белки, их много:</u>

- экскретируемые мукоцитами муцины
- экскретируемые сероцитами белки богатые пролином (ББП), альфаамилаза, статерин, цистацин, гистатин, лактоферрин, секреторный иммуноглобулин А, лизоцим, калликреины, пероксидаза, липаза, карбоангидраза и др.

Бол-во белков слюны обладают мультифункциональностью, то есть проявляют несколько функций.

Главные ф-ии белков слюны:

- защитная (защита зуба от инфекционных поражений)
- участие в процессе минерализации
- пищеварительная ф-ия

То, что она говорила в комментариях к картинке круга ниже:

- переваривание амилаза, липаза, калликреин
- густин одна из изоформ карбоангидразы, участвует во вкусовом восприятии пищи
- муцин создает пищевой комок, защита от деминерализации, роль смазки, антивирусная ф-ия (для IMg тоже)
- буферная ф-ия бикарбонаты и фосфаты слюны
- участие в реминерализации, обновлении белки богатые пролином, статерины
- противогрибковые ф-ии гистатины и IMg
- функция защиты лизоцим (обл ф-ей фермента гликозидазы и разрушает липополисахариды клеточной стенки бактерий), лактопероксидаза (уч в обр-ии бактерицидного гипотиоцианата), гистатины, IMg, цистатины, амилаза и белки богатые пролином

ПРОЛИСТАННЫЕ СЛАЙДЫ

МУЦИНЫ

- **Гликопротеины**. Углеводные компоненты составляют 50-90% массы и представлены олигосахаридами (нет ГАГ).
- Белковая часть (апомуцин) богата остатками серина и треонина (-Cep-Tpe-), на которых строятся олигосахаридные «веточки».
- За счет концевых негликозилированных доменов образуются димеры и мультимеры, стабилизированные **дисульфидными** связями.
- Роль: смазка зуба, образование пищевого комка, гидратация, защита от деминерализации, барьер для микроорганизмов.
- Апомуцины продукты двух генов: MUC5B (3 гликоформы) и MUC7 (2 гликоформы).
- Среди олигосахаридных компонентов белковых продуктов гена MUC5B имеются антигены групп крови ABO.

БЕЛКИ, СЕКРЕТИРУЕМЫЕ СЕРОЦИТАМИ (1) ББП

- Преобладающий белок экскрета ББП. Составляют около 70% от массы белков, секретируемых сероцитами.
- Молекулярные формы продукты 6 генов.
- Молекулярные формы ББП подразделяются на а) щелочные, б) кислые и в) гликозилированные.
- Компоненты пелликулы зуба, препятствующие избыточному росту кристаллов ГАП и способствующие созданию в пелликуле микробного содружества.
- Участники реминерализации зуба. Препятствуют образованию камней в слюнных протоках.

АМИЛАЗА

- Кальций-зависимая гидролаза.
- Субстраты: крахмал, гликоген, декстрины.
- Аллостерический активатор Cl⁻.
- В слюнных железах экспрессирован только 1 из двух генов, кодирующих альфа-амилазу АМҮ1А.
- Множество молекулярных форм результат ограниченного протеолиза и разных вариантов гликозилирования.

ФУНКЦИИ АМИЛАЗЫ

- Пищеварительная: гидролизует пищевые полисахариды до ди- и трисахаридов.
- Бактериостатическая: связывает микроорганизмы.
- Является компонентом зубного налета.

СТАТЕРИН

- Кислый фосфопротеин.
- Обладает высоким сродством к ионам кальция и ГАП.
- В составе пелликулы препятствует осаждению солей кальция.
- Участник процесса реминерализации эмали.

ЦИСТАТИНЫ

- Противомикробное действие основано на ингибиторовании микробных цистеиновых протеиназ.
- Противовоспалительное действие основано на ингибировании лизосомальным катепсинов, выделяемых из лейкоцитов в ходе воспалительной реакции

ГИСТАТИНЫ

- Пептиды, богатые гистидином. Например, гистатин-5: Асп-Сер-**Гис**-Ала-Лиз-Арг-**Гис**-Гли-Тир-Лиз-Арг-Лиз-Фен-**Гис**-Глу-Лиз-**Гис-Гис**-Сер-**Гис**-Арг-Гли-Тир
- Обладают (особенно гистатин-5) мощным фунгицидным действием.
- Стимулируют пролиферецию эпителиальных и других клеток.
- Участвуют в образовании пелликулы зуба.

КАЛЛИКРЕИНЫ (КЛК)

- У человека 15 генов калликреина.
- Слюнные железы экскретируют несколько изоформ.
- Фермент относитися к сериновым протеиназам.
- Активность фермента в слюне повышается при раке ротовой полости раке других локализаций.

КАРБОАНГИДРАЗА VI (густин)

- Цинк-зависимый фермент (как и все молекулярные формы карбоангидразы).
- Катализирует реакцию (обратимую): **CO₂+H₂O=H₂CO₃**.
- Является участником бикарбонатной буферной системы слюны.
- Участвует в восприятии вкусовых ощущений. Стимулирует развитие вкусовых сосочков. Молекулярный дефект фермента или дефицит цинка гипогевзия.

Неспецифический иммунитет

ПЕРОКСИДАЗА (лактопероксидаза; КФ 1.11.1.4)

- Гемопротеин. Катализирует окисление веществ с использованием пероксида водорода: **A + H₂O₂ = AO + H₂O**.
- Субстраты: йодид, бромид, тиоцианат (роданид).
- $SCN^{-} + H_2O_2 = SCNO^{-} + H_2O$.
- SCNO (гипоцианит) сильный бактерицидный агент.
- Бактерицидное действие.

Неспецифический иммунитет ЛАКТОФЕРРИН

- Способен связывать железо и тем самым лишать бактериальную микрофлору необходимого для ее роста и жизнедеятельности микроэлемента.
- Связывается с липополисахаридами (ЛПС) бактериальных стенок, и входящая в состав белка окисленная форма железа инициирует их перекисное окисление и лизис.

НЕСПЕЦИФИЧЕСКИЙ ИММУНИТЕТ (лизоцим, или мурамидаза, дефенсины)

- Лизоцим катализирует реакцию гидролиза 1,4 b-гликозидных связей полисахарида клеточной стенки бактерий. Обладает бактерицидными свойствами.
- Дефенсины катионные пептиды, обладающие антибиотическим действием.

Специфический иммунитет – иммуноглобулины А, G, M, E

- Преобладает секреторный иммуноглобулин (slgA)
- 1. тяжелая цепь
- 2. легкая цепь
- 3. **пептид J**
- 4. секреторный компонент

ЗАЛИЗЫВАНИЕ РАН

- Слюна грызунов содержит высокие концентрации цитокинов EGF и NGF, стимулирующих пролиферацию клеток и т.о. ускоряющих заживление ран.
- У человека и других млекопитающих эту же роль выполняют гистатины.
- Пептид **опиорфин** (Глн-Арг-Фен-Сер-Арг) обладает обезболивающим эффектом.

ЗУБНОЙ НАЛЕТ (ПЕЛЛИКУЛА)

- Образуется путем избирательной адсорбции белков слюны и бактерий на поверхности зуба.
- Постепенно образуются ковалентные связи, формируется биопленка, происходит вторичная колонизация.
- Минерализация зубного налета образование зубного камня.

ПЕРВИЧНАЯ ПЕЛЛИКУЛА

- Пелликула формируется в течение 20-30 мин после прорезывания зубов.
- Её образование начинается с адсорбции специфических белков слюны на апатитах эмали. Между поверхностью эмали и осаждающимися белками образуются ионные связи и гидрофобные взаимодействия.
- В образовании пелликулы участвуют ББП, амилаза, лактоферрин, статерин, гистатины, и другие белки.
- Пелликула обладает избирательной проницаемостью и обеспечивает процессы диффузии ионов в поверхностный слой эмали, а также защищает эмаль зубов от воздействия химических агентов.
- После механической очистки пелликула восстанавливается на поверхности эмали в течение нескольких часов.

НЕМИНЕРАЛИЗОВАННАЯ зубная бляшка

• **Состав.** 80% воды, 20% массы включает клетки (35% сухого веса) и компоненты межклеточного матрикса (65% сухого веса).

- **Клетки.** Бактерии, микоплазмы, дрожжи, простейшие, вирусы; эпителиальные клетки, лейкоциты и макрофаги хозяина.
- Межклеточный матрикс зубной бляшки содержит органические и неорганические компоненты.
- Органические компоненты межклеточного матрикса. Углеводы: декстран (95%), леван 5%, сиаловая кислота, фруктоза. Белки: альбумин, гликопротеины слюны. Липиды в виде фрагментов клеточных мембран.
- **Неорганические компоненты межклеточного матрикса.** Преимущественно ионы кальция и фосфатов. Следы натрия калия, фторид- ионов.

ПРОДУКТЫ МИКРОБНОГО МЕТАБОЛИЗМА

ДЕКСТРАН

- Субстрат сахароза.
- Фермент декстрансахараза (КФ. 2.4.1.5.). Разветвления 1,2a, 1,3 a, 1,4 a в зависимости от конкретного изомера фермента.
- Леван левансахараза (КФ. 2.4.1.10.).
- «Запас» глюкозы, «посадочные места» для адгезии, механический барьер.

Проба Шиллера-Писарева

- В основе реакция йода с декстраном. Окраска при смазывании видоизмененным раствором Люголя (йодид калия 2,0; йод кристаллический 1,0; вода дистиллированная 40,0) изменяется до светло-коричневого или темно-бурого.
- Другие пробы: Адсорбционныее: фуксин, эритрозин, метиленовый синий, флуоресцеин. Регистрация собственной флуоресценции биопленки при освещении ее лазерным лучом (633 нм).

ЗУБНОЙ КАМЕНЬ

- Апатиты
- брушит (СаНРО_{4*}2H₂O)
- октакальциум фосфат (Ca₈H₂(PO₄)_{6*}5H₂O)
- Аморфный фосфат кальция