Дистанционное зондирование Земли

- 1. Пассивный источник энергии:
 - а. Солнце
 - b. лазер
 - с. лампа
- 2. Оптический диапазон включает:
 - а. видимую зону спектра
 - видимую и инфракрасную зоны спектра
 - с. видимую, ультрафиолетовую и инфракрасную зоны спектра
- 3. На ближнюю, среднюю и дальнюю зоны делятся:
 - а. инфракрасная область спектра
 - b. видимая область спектра
 - с. ультрафиолетовая и инфракрасная области спектра
- 4. На синюю, зеленую и красную зоны делится ... область спектра:
 - а. инфракрасная
 - b. видимая
 - с. ультрафиолетовая
- 5. Виды взаимодействия излучения с атмосферой:
 - а. поглощение и отражение
 - b. отражение и рассеивание
 - с. поглощение, отражение и рассеивание
- 6. «Окна прозрачности атмосферы» это
 - а. диапазоны спектра, которые атмосфера пропускает
 - b. диапазоны спектра, которые атмосфера не пропускает
 - с. диапазоны спектра, которые атмосфера отражает
- 7. Видимая область спектра $\lambda = \dots$
 - а. 0,40-0,75мкм
 - b. 0,10-0,40мкм
 - с. 0,75-1000мкм
- 8. Спектральная отражательная способность это...:
 - а. функция, характеризующая отражательные свойства земной поверхности
 - b. яркость
 - с. график, характеризующий отражательные свойства земной поверхности
- 9. Преимущество данных дистанционного зондирования:
 - а. эффективны при исследовании небольших территорий
 - b. возможность получить данные о труднодоступных областях
 - с. возможность сразу получить трехмерную информацию об объекте
- 10. Пассивные съемочные системы:
 - а. сканерные
 - b. радиолокационные
 - с. лазерные

- 11. Пространственное разрешение это ...:
 - а. минимальная ширина спектральной зоны, в которой проводят съемку
 - b. чувствительность сенсора к вариациям интенсивности электромагнитного излучения
 - с. возможность раздельно воспроизводить на снимке мелкие детали снимаемого объекта
- 12. При уменьшении количества диапазонов и увеличении каждого из них спектральная разрешающая способность ...:
 - а. уменьшится
 - b. увеличится
 - с. не изменится
- 13. Радиометрическое разрешение определяет ...:
 - а. число уровней квантования
 - b. параметры дискретизации
- 14. Основные характеристики объектива:
 - а. фокусное расстояние
 - в. дисторсия и разрешающая способность
 - с. фокусное расстояние и разрешающая способность
- 15. Находятся в плоскости прикладной рамки:
 - а. координатные метки
 - b. фокусное расстояние
 - с. точка фотографирования
- 16. Недостатки фотографических съемочных систем (несколько вариантов)
 - а. ограничение спектральной зоны съемки
 - b. низкая разрешающая способность
 - с. зависимость от погодных условий
 - d. неоперативность доставки получаемой информации
- 17. Основные параметры аэрофотосъемки:
 - а. высота фотографирования, продольное и поперечное перекрытия, базис фотографирования, количество требуемых фотоматериалов
 - b. масштаб фотографирования, фокусное расстояние $A\Phi A$, высота фотографирования, продольное и поперечное перекрытия, базис фотографирования, расстояние между маршрутами
 - с. масштаб фотографирования, фокусное расстояние АФА, высота фотографирования, продольное и поперечное перекрытия, количество требуемых фотоматериалов
- 18. Особенность сканерного изображения:
 - а. каждая строка формируется по законам центральной проекции
 - изображение формируется по законам центральной проекции
 - с. изображение состоит из строк
- 19. Достоинства сканерных съемочных систем (несколько вариантов)
 - а. широкий спектральной диапазон съемки
 - b. независимость от погодных условий
 - с. оперативность доставки получаемой информации
 - d. высокая периодичность получения информации
- 20. Преимущество тепловой сканерной съемки

- а. высокого разрешения на местности при больших высотах фотографирования
- b. возможность выполнять съемку, как в дневное, так и в ночное время
- с. высокое качество изображения
- 21. Измеряется во время радиолокационной съемки:
 - а. расстояние от объекта до спутника
 - b. время прохождения сигнала от радиолокатора до объекта и обратно
 - с. координаты точек местности
- 22. Достоинство радиолокационных съемочных систем
 - а. всепогодность
 - b. стоимость
 - с. высокая разрешающая способность
- 23. Элементы съемочной аппаратуры при воздушном лазерном сканировании:
 - а. лазерный сканер, навигационная система (GPS/IMU), сеть наземных базовых станций
 - b. лазерный сканер, цифровой аэрофотоаппарат и сеть наземных базовых станций
 - с. лазерный сканер, навигационная система (GPS/IMU), цифровой аэрофотоаппарат и сеть наземных базовых станций
- 24. Инерциальные системы IMU используются для определния
 - а. элементов внешнего ориентирования
 - b. линейных элементов внешнего ориентирования
 - с. угловых элементов внешнего ориентирования
- 25. Недостатки воздушного лазерного сканирования
 - а. неоперативность сбора данных
 - b. зависит от сезонных ограничений
 - с. зависимость от состояния атмосферы

Анализ олиночного снимка

- 26. Строит изображение в фотокамере:
 - d. объектив
 - е. прикладная рамка
 - f. затвор
- 27. Проектирующий луч это луч, проходящий через:
 - d. точку на снимке, точку на местности, точку фотографирования
 - е. соответствующие точки снимка и местности
 - f. главную точку снимка и точку фотографирования
- 28. Фокусное расстояние фотокамеры это расстояние от:
 - d. задней узловой точки объектива до прикладной рамки
 - е. задней узловой точки объектива до точки на снимке
 - f. точки фотографирования до точки надира
- 29. Масштаб снимка это отношение:
 - d. фокусного расстояния к превышению на местности
 - е. превышения точки местности к высоте фотографирования
 - f. размера изображения на снимке к размеру объекта на местности

30. Центральная проекция — это способ построения изображения: d. прямолинейными лучами e. прямолинейными лучами, проходящими через одну точку f. ортогональными лучами
31. Центр проекции — это:
32. Предметная плоскость – это плоскость, в которой находится: <i>d. объект</i> е. изображение f. проектирующий луч
33. Изображение объекта подобно самому объекту, если: <i>d. снимок и предметная плоскость параллельны, а объект плоский</i> е. плоскость картины и предметная плоскость параллельны f. снимок горизонтальный
34. Линии на снимке не исказятся, если пройдут через точку:d. ne. cf. o
35. Линии перпендикулярные предметной плоскости изобразятся сходящимися в точке: a. n b. c c. o
36. Линии параллельные направлению съемки изобразятся сходящимися в точке: $a.\ I$ $b.\ c$ $c.\ o$
37. Максимальные смещения за угол наклона снимка происходят на: d. линии истинного горизонта e. главной вертикали f. основании картины
38. Линия неискаженных масштабов проходит перпендикулярно главной вертикали черекточку: а. п $b.\ c$ с. о
39. Основные точки центральной проекции можно нанести на снимок, если известны: $d.$ α_0, f, κ е. f, x_0, y_0 f. α, ω, κ

 40. Ошибка за рельеф местности зависит от: d. положения точки на снимке, её превышения и высоты фотографирования е. превышения, угла наклона и высоты фотографирования f. превышения, угла наклона и положения точки на снимке
41. Как сместится изображение угла крыши дома по отношению к точке надира? е. от точки надира f. к точке надира g. останется на месте
42. При вычислении смещения точки за рельеф, r — это расстояние между точкой, для которой вычисляется смещение, и точкой: $a.\ n$ b. c c. o
43. Искажения за угол наклона равны нулю на: d. главной вертикали e. линии нулевых искажений f. основании картины
44. Системы координат связанные со снимком: <i>е. плоская, фотограмметрическая</i> f. плоская, геодезическая g. фотограмметрическая, геодезическая
45. Направление осей плоской системы координат задают: d. оси фотограмметрической системы координат е. элементы внутреннего ориентирования снимка f. координатные метки
 46. Причина несовпадения положения главной точки снимка с началом плоской системы координат? d. искажения объектива e. ошибки при нанесении координатных меток в плоскости прикладной рамки f. фокусное расстояние не перпендикулярно плоскости прикладной рамки
47. Как правило, начало фотограмметрической системы координат в точке: d . S

48. Элементы внутреннего ориентирования снимка –

d. $x_0 y_0 \alpha$

e. o f.I

e. $x_0 y_0 f$

f. $\alpha\omega\kappa$

49. Элементы внутреннего ориентирования снимка определяют ...

d. положение главной точки снимка

е. положение плоской системы координат

f. положение точки фотографирования относительно плоской системы координат

- 50. Угловые элементы внешнего ориентирования снимка задают положение ...
 - d. плоской системы координат относительно внешней
 - е. точки на снимке относительно внешней системы координат
 - f. фотограмметрической системы координат относительно геодезической
- 51. Элементы внешнего ориентирования снимка
 - a. $\alpha \omega \kappa X_S Y_S Z_S$
 - b. $\alpha \omega \kappa f x_0 y_0$
 - c. $x_0 y_0 f X_s Y_s Z_s$
- 52. Направляющие косинусы зависят от ...
 - а. угловых элементов внешнего ориентирования снимка
 - b. элементов внутреннего ориентирования снимка
 - с. элементов внешнего ориентирования снимка
- 53. Направляющие косинусы задают положение ...
 - а. снимка относительно внешней системы координат
 - b. одной системы координат относительно другой
 - с. плоской системы координат относительно геодезической
- 54. Пространственные координаты точки снимка это координаты точки ...
 - а. снимка в фотограмметрической системе координат
 - в. местности в фотограмметрической системе координат
 - с. снимка в плоской системе координат
- 55. Для вычисления пространственных координат точек снимка необходимо знать ...
 - a. $\alpha\omega\kappa X_sY_sZ_s$
 - b. $\alpha \omega \kappa f x_0 y_0$
 - c. $x_0 y_0 f X_s Y_s Z_s$
- 56. Точность вычисления X,Y по формулам $X = X_S + (Z Z_S) \frac{X'}{Z'}; Y = Y_S + (Z Z_S) \frac{Y'}{Z'}$ зависит от ...
 - а. точности измерения ху и ошибок определения Z
 - b. ошибок определения Z
 - с. точности вычисления X'Y'Z'
- 57. Для вычисления координат точки на снимке по её координатам на местности необходимо знать ...
 - a. $\alpha \omega \kappa XYZfx_0 y_0$
 - b. $abcXYZfx_0y_0$
 - c. $x_0 y_0 fX^*Y^*Z^*$
- 58. Плоские координаты точки снимка равны пространственным если...
 - а. снимок горизонтален
 - b. снимок получен по законам центральной проекции
 - c. $x_0 = 0, y_0 = 0$

- 59. Для вычисления трансформированных координат точки снимка нужно знать...
 - а. угловых элементов внешнего ориентирования снимка, координаты точки в плоской системе координат на наклонном снимке
 - b. элементов внутреннего и внешнего ориентирования снимка, координаты точки в плоской системе координат на наклонном снимке
 - с. элементов внешнего ориентирования снимка, элементы внутреннего ориентирования снимка
- 60. Опорные точки это ...
 - а. точки, координаты которых определены в фотограмметрической системе координат
 - b. соответственные точки на снимке и местности
 - с. точки, координаты которых определены в геодезической системе координат
- 61. Для одной опорной точки можно составить два уравнения связи координат точек снимка и местности. Сколько в этих уравнениях будет неизвестных?
 - a. 6
 - b. 7
 - c. 9
- 62. Минимальное число опорных точек для вычисления элементов внешнего ориентирования снимка...
 - a. 3
 - b. 4
 - c. 5
- 63. Элементы внешнего ориентирования снимка можно определить с помощью...
 - а. опорных точек
 - b. GPS и инерциальных систем
 - с. опорных точек, GPS и инерциальных систем
- 64. Формулы для вычисления элементов внешнего ориентирования снимка:
 - а. связи координат точек снимка и местности
 - b. связи плоских координат точек снимка и пространственных
 - с. связи координат точек горизонтального и наклонного снимков

Трансформирование

- 65. Поправка за угол наклона снимка вводится при:
 - д. трансформировании
 - h. ортотрансформировании
 - і. трансформировании и ортотрансформировании
- 66. При ортотрансформировании снимка вводят поправку за:
 - g. рельеф
 - h. угол наклона
 - і. рельеф и угол наклона
- 67. Методы цифрового трансформирования:
 - g. прямое
 - h. обратное
 - і. прямое и обратное

- 68. Причины возникновения пропусков и наложений пикселей при прямом трансформировании:
 - д. ошибки распознавания опорных точек
 - h. ошибки округления
 - і. ошибки распознавания соответственных точек
- 69. Исходные данные для создания ЦМР:
 - д. карты, снимки, результаты лазерного сканирования
 - h. карты, снимки, геодезические измерения
 - і. карты, снимки, результаты лазерного сканирования, геодезические измерения
- 70. Преимущества геодезических методов при создании ЦМР:
 - д. высокая точность, актуальность
 - h. высокая производительность
 - і. низкая стоимость
- 71. Преимущества фотограмметрических методов при создании ЦМР:
 - д. высокая точность, оптимально для больших территорий
 - h. высокая точность, оптимально для небольших территорий
 - і. низкая стоимость
- 72. Преимущества лазерного сканирования при создании ЦМР:
 - д. высокая точность, актуальность
 - h. низкая стоимость
 - і. высокая точность, низкая стоимость
- 73. Расставьте по порядку технологические процессы при создании ЦМР: fagbhcedi
 - g. аэрофотосъемка
 - h. загрузка исходных данных в программу
 - і. взаимное ориентирование снимков
 - ј. сбор информации о рельефе
 - k. внешнее ориентирование модели
 - 1. подготовительные работы
 - т. оценка фотографического и фотограмметрического качества
 - п. внутреннее ориентирование снимков
 - о. создание ЦМР
- 74. ЦМР используются ... (несколько вариантов):
 - d. для создания ортофотопланов
 - е. при проектировании дорог
 - f. при трансформировании
 - g. для создания трехмерных моделей
- 75. Ортотрансформирование выполняют, если:
 - d. ошибки за рельеф превышают допуск
 - е. угла наклона снимка превышают 3⁰
 - f. используются аэроснимки
- 76. Для цифрового трансформирования нужно знать (несколько вариантов):
 - g. элементы внутреннего ориентирования снимков, элементы внешнего ориентирования снимков

- h. элементы внутреннего ориентирования снимков, координаты опорных точек
- і. координаты опорных точек, элементы внешнего ориентирования снимков
- 77. Можно ли создать ЦМР не используя стереорежим?
 - $c. \partial a$
 - d. нет
- 78. Точность ЦМР не зависит от:
 - g. опорных точек
 - h. работы оператора
 - і. ортофотоплана
- 79. Ошибка за рельеф местности зависит от:
 - д. положения точки на снимке, её превышения и высоты фотографирования
 - h. превышения, угла наклона и высоты фотографирования
 - і. превышения, угла наклона и положения точки на снимке
- 80. Как сместится изображение угла крыши дома по отношению к точке надира?
 - h. от точки надира
 - і. к точке надира
- 81. На горизонтальном снимке главная точка снимка и точка надира ...:
 - d. останутся на своих местах
 - е. совпадут
 - f. сместится главная точка снимка
- 82. Недостатки создания ЦМР на основе картографического материала:
 - д. низкая точность
 - h. трудоемкость
 - і. неоперативность
- 83. При трансформировании снимки исправляются...:
 - h. за угол наклона и приводятся к заданному масштабу
 - і. за рельеф и приводятся к заданному масштабу
 - і. за угол наклона и за рельеф, а также приводятся к заданному масштабу
- 84. Опорные точки необходимы при создании:
 - g. фотосхемы
 - h. фотоплана
 - і. фотосхемы и фотоплана

4. Теория стереопары снимков

- 85. Элементы взаимного ориентирования снимков в базисной системе координат:
 - *j.* $\alpha'_1, \kappa'_1, \alpha'_2, \omega'_2, \kappa'_2$
 - k. $\alpha'_1, \omega'_1, \kappa'_1, \alpha'_2, \alpha'_2, \kappa'_2$
 - 1. $X_0, Y_0, Z_0, \varepsilon, \eta, \theta, t$
- 86. Поперечный параллакс это:
 - р. разница абсцисс координат соответственных точек
 - *q. разница ординат координат соответственных точек*
 - г. разница координат соответственных точек

- 87. После взаимного ориентирования, модель находится в системе координат:
 - d. фотограмметрической
 - е. геодезической
 - f. плоской
- 88. Для вычисления элементов внешнего ориентирования модели необходимы ...:
 - d. опорные точки
 - е. связующие точки
 - f. контрольные точки
- 89. Элементы внешнего ориентирования модели:
 - i. $\alpha'_1, \kappa'_1, \alpha'_2, \omega'_2, \kappa'_2$
 - k_1 , $\alpha'_1, \omega'_1, \kappa'_1, \alpha'_2, \omega'_2, \kappa'_2$
 - $X_0, Y_0, Z_0, \varepsilon, \eta, \theta, t$
- 90. Минимальное число опорных точек для внешнего ориентирования модели:
 - d. 5
 - e. 3
 - f. 4
 - 7. Для создания трехмерной модели необходимо:
 - а. стереопара снимков
 - b. одиночный снимок
 - с. много снимков
 - 8. Базис фотографирования это расстояние между:
 - а. соседними точками фотографирования
 - b. соответствующими точками снимка и местности
 - с. одноименными точками
 - 9. Соответственные точки это точки:
 - а. на левом и правом снимке одной и той же точки местности
 - b. на снимке и местности
 - с. на левом и правом снимке
 - 10. Условие наблюдения стереомодели-
 - а. наличие стереопары снимков
 - b. левым глазом видно только левое изображение, а правым оба
 - с. левым глазом видно только левое изображение, а правым правое
- 11. Способ получения наиболее качественной стереомодели и с минимальной утомляемостью глаз оператора:
 - а. анаглифический
 - b. *поляроидов*
 - с. миганий
- 12. Способ построения модели, когда элементы внешнего ориентирования снимков неизвестны :
 - а. по установочным элементам
 - b. по условию коллинеарности

- с. по условию компланарности
- 13. Взаимное ориентирование снимков :
- а. проектирующим камерам задается положение, которое было в момент съемки
- b. восстановление связок проектирующих лучей
- с. пересчет модели в произвольной системе координат в геодезическую систему координат
 - 14. Для вычисления элементов внешнего ориентирования модели необходимы ...:
 - а. опорные точки
 - b. связующие точки
 - с. контрольные точки

5. Пространственная фототриангуляция

- 1. Связующие точки необходимы для
 - а) подсоединения одиночных моделей
 - б) вычисления элементов взаимного ориентирования снимков
 - в) вычисления элементов внешнего ориентирования снимков
- 2. Связующие точки располагаются в
 - а) зоне тройного перекрытия
 - б) зоне поперечного перекрытия
 - в) шести стандартных зонах
- 3. Основное назначение пространственной фототриангуляции:
 - 1) уменьшение систематических ошибок;
 - 2) повышение точности;
 - 3) уменьшение объема полевых работ.
- 4. В чем сущность ПФТ?
 - а) в построении модели по паре снимков.
 - б) в построении модели по снимкам одного или нескольких маршрутов.
 - в) в трансформировании снимков.
- 5. Что является результатом ПФТ?
 - а) координаты точек снимка.
 - б) топографическая карта.
 - в) координаты точек местности и элементы внешнего ориентирования снимков.
- 6. Какие основные этапы построения маршрутной сети по методу независимых моделей?
 - а) внутреннее ориентирование снимков, взаимное ориентирование снимков, определение геодезических координат точек сети.
 - б) внутреннее ориентирование снимков, взаимное ориентирование снимков, определение фотограмметрических координат точек одиночных моделей, подсоединение одиночных моделей, геодезическое ориентирование сети, исключение деформации сети.
 - в) внутреннее ориентирование снимков, взаимное ориентирование снимков, определение фотограмметрических координат точек одиночных моделей, подсоединение одиночных моделей, геодезическое ориентирование сети, исключение деформации сети, создание оригинала карты.
- 7. Основное достоинство построения сетей фототриангуляции по методу связок:

- а) высокая степень автоматизации;
- б) уравниваются непосредственно измеренные величины;
- в) обеспечение высокой точности при наличии систематических погрешностей в координатах точек снимков.
- 8. Какое условие положено в основе построения сетей фототриангуляции по методу связок?
 - а) условие компланарности соответствующих лучей;
 - б) условие коллиниарности проектирующих лучей;
 - в) расположение точек сети в одной плоскости.
- 9. От чего зависит выбор типа полиномов для исключения деформации сети?
 - а) от количества опорных точек;
 - б) от точности определения геодезических координат опорных точек и их расположения;
 - в) от числа секций в сети.
- 10. Основные этапы построения сети фототриангуляции аналитическим способом в их технологической последовательности:
 - а) подбор и оценка качества материалов, составление рабочего проекта, измерение координат точек снимков, подготовка и ввод данных для построения сети на компьютере, построение сети, оценка точности, контроль качества и анализ результатов;
 - б) измерение координат точек снимков, подбор и оценка качества материалов, составление рабочего проекта, подготовка и ввод данных для построения сети на компьютере, построение сети, оценка точности, контроль качества и анализ результатов;
 - в) построение сети, подбор и оценка качества материалов, составление рабочего проекта, измерение координат точек снимков подготовка и ввод данных для построения сети на компьютере, оценка точности, контроль качества и анализ результатов.
- 11. Главное достоинство физических измерений, выполненных при аэрофотосъемке:
 - а) ошибки определения элементов внешнего ориентирования снимков независимы;
 - б) высокая производительность аэрофотосъемки;
 - в) уменьшение финансовых затрат на аэрофотосъемку.
- 12. Какие величины определяются при аэрофотосъемке с помощью спутниковых навигационных систем?
 - а) угловые элементы внешнего ориентирования снимков;
 - б) линейные элементы внешнего ориентирования снимков;
 - в) координаты точек местности.
- 13. Какие величины определяются при аэрофотосъемке с помощью инерциальных систем?
 - а) угловые элементы внешнего ориентирования снимков;
 - б) линейные элементы внешнего ориентирования снимков;
 - в) координаты точек местности.
- 14. На каком этапе фототриангуляции используются формулы аффинных преобразований?
 - а) при подсоединении модели;
 - б) при внутреннем ориентировании снимков;
 - в) при взаимном ориентировании снимков.
- 15. Для чего создается планово-высотное обоснование фототриангуляции?
 - а) для определения фотограмметрических точек местности;
 - б) для определения геодезических координат опознаков;

- в) для создания стереомодели.
- 16. Для чего часть плановых и высотных опознаков совмещают?
 - а) для повышения точности;
 - б) для сокращения объема полевых работ;
 - в) для исключения полевых работ.
- 17. Для чего рассчитывают расстояние между опознаками?
 - а) для уменьшения объема работ при фототриангуляции;
 - б) для уменьшения финансовых затрат;
 - в) для обеспечения заданной точности фототриангуляции.

6. Универсальные стереофотограмметрические системы

- 1. На чем основана идея универсального метода построения модели?
 - а) на условии геометрической обратимости фотографического процесса;
 - б) на трансформировании снимков;
 - в) на построении ЦМР.
- 2. Какие системы содержит универсальный прибор?
 - а) наблюдательную, ориентирующую, проектирующую, сканирующую;
 - б) наблюдательную, ориентирующую, проектирующую, координатную, измерительную, отображательную;
 - в) наблюдательную, ориентирующую, проектирующую, координатную, измерительную, отображательную, фотографическую.
- 3. Для наблюдения стереомодели на цифровом стереоплоттере могут быть использованы (несколько вариантов):
 - а) анаглифические очки, жидкокристаллические очки, поляризационные очки
 - б) стереонасадка
 - в) быстрое моргание глазами
 - г) голография
- 4. При выполнении внутреннего ориентирования снимков на аналитических универсальных приборах и цифровых стереоплоттерах необходимо измерить координаты:
 - а) координатных меток
 - б) соответственных точек
 - в) опорных точек
 - г) координатных меток и опорных точек
- 5. Какие основные процессы построения модели на аналитических универсальных приборах и цифровых стереоплоттерах по условию компланарности соответствующих лучей?
 - а) внутреннее ориентирование снимков, взаимное ориентирование снимков, внешнее ориентирование модели, внешнее ориентирование снимков, работа с моделью;
 - б) масштабирование и горизонтирование модели, центрирование снимков, взаимное ориентирование снимков, работа с моделью;
 - в) масштабирование модели, работа с моделью, центрирование снимков, взаимное ориентирование снимков
- 6. Процесс перехода от непрерывного аналогового изображения к функции заданной в отдельных узлах
 - а) дискретизация

- б) квантование;
- в) трансформирование
- 7. Процесс деления непрерывного распределения яркости на уровни
 - а) дискретизация
 - б) квантование;
 - в) трансформирование
- 8. Способ получения стереоэффекта, когда совмещаются изображения окрашенные в разные пвета
 - а) анаглифов
 - б) стереоскопа;
 - в) поляроидов
- 9. Способ получения наиболее качественного стереоэффекта
 - а) поляроидов
 - б) анаглифов;
 - в) миганий
- 10. Способ получения стереоэффекта, когда нужны специальные очки
 - а) поляроидов, миганий, анаглифов
 - б) анаглифов, стереоскопа, поляроидов, миганий;
 - в) анаглифов, стереоскопа, поляроидов
- 11. Задают направление осей системы координат цифрового изображения
 - а) направляющие сканера
 - б) координатные метки
 - в) оси фотограмметрической системы координат
- 12. Параметры связи между системой координат цифрового изображения и плоской системой координат снимка определяются на этапе
 - а) внутреннего ориентирования снимков
 - б) взаимного ориентирования снимков
 - в) подсоединения моделей
- 13. Параметры связи между системой координат цифрового изображения и плоской системой координат снимка определяются по формулам
 - а) аффинного преобразования
 - б) перспективного преобразования
 - в) эффективного преобразования
- 14. После внутреннего ориентирования координаты точек снимка будут в
 - а) плоской системе координат
 - б) системе координат цифрового изображения
 - в) фотограмметрической системе координат
- 15. Соответственные точки в 6 стандартных зонах нужны для
 - а) определения элементов взаимного ориентирования снимков
 - б) подсоединения одиночных моделей
 - в) определения элементов внешнего ориентирования снимков
- 16. Что используют для вычисления элементов внешнего ориентирования модели

- а) фотограмметрические и геодезические координаты опорных точек
- б) геодезические координаты опорных точек
- в) координаты связующих точек

17. Физические тест-объекты

- а) контрольные сетки, контрольные снимки
- б) контрольные сетки, дискретные и непрерывные
- в) дискретные и непрерывные
- 18. Назначение макетных снимков
 - а) оценка правильности работы алгоритмов Ц ΦC
 - б) определение элементов внешнего ориентирования
 - в) данные для примера

7. Цифровое ортотрансформирование

- 1. Поправка за угол наклона снимка вводится при:
 - ј. трансформировании
 - к. ортотрансформировании
 - 1. трансформировании и ортотрансформировании
- 2. При ортотрансформировании снимка вводят поправку за:
 - ј. рельеф
 - k. угол наклона
 - І. рельеф и угол наклона
- 3. Методы цифрового трансформирования:
 - ј. прямое
 - k. обратное
 - *l. прямое и обратное*
- 4. Причины возникновения пропусков и наложений пикселей при прямом трансформировании:
 - ј. ошибки распознавания опорных точек
 - k. ошибки округления
 - 1. ошибки распознавания соответственных точек
- 5. Исходные данные для создания ЦМР:
 - ј. карты, снимки, результаты лазерного сканирования
 - к. карты, снимки, геодезические измерения
 - l. карты, снимки, результаты лазерного сканирования, геодезические измерения
- 6. Преимущества геодезических методов при создании ЦМР:
 - ј. высокая точность, актуальность
 - к. высокая производительность
 - 1. низкая стоимость
- 7. Преимущества фотограмметрических методов при создании ЦМР:
 - і. высокая точность, оптимально для больших территорий
 - к. высокая точность, оптимально для небольших территорий
 - 1. низкая стоимость
- 8. Преимущества лазерного сканирования при создании ЦМР:
 - т. высокая точность, актуальность

- п. низкая стоимость
- о. высокая точность, низкая стоимость
- 9. Расставьте по порядку технологические процессы при создании ЦМР: fagbhcedi
 - s. аэрофотосъемка
 - t. загрузка исходных данных в программу
 - и. взаимное ориентирование снимков
 - v. сбор информации о рельефе
 - w. внешнее ориентирование модели
 - х. подготовительные работы
 - у. оценка фотографического и фотограмметрического качества
 - z. внутреннее ориентирование снимков
 - аа. создание ЦМР
- 10. ЦМР используются ... (несколько вариантов):
 - h. для создания ортофотопланов
 - і. при проектировании дорог
 - ј. при трансформировании
 - к. для создания трехмерных моделей
- 11. Ортотрансформирование выполняют, если:
 - g. ошибки за рельеф превышают допуск
 - h. угла наклона снимка превышают 3⁰
 - і. используются аэроснимки
- 12. Для цифрового трансформирования нужно знать (несколько вариантов):
 - т. элементы внутреннего ориентирования снимков, элементы внешнего ориентирования снимков
 - п. элементы внутреннего ориентирования снимков, координаты опорных точек
 - о. координаты опорных точек, элементы внешнего ориентирования снимков
- 13. Можно ли создать ЦМР не используя стереорежим?
 - е. да
 - f. нет
- 14. Точность ЦМР не зависит от:
 - і. опорных точек
 - к. работы оператора
 - *l. ортофотоплана*
- 15. Ошибка за рельеф местности зависит от:
 - ј. положения точки на снимке, её превышения и высоты фотографирования
 - к. превышения, угла наклона и высоты фотографирования
 - 1. превышения, угла наклона и положения точки на снимке
- 16. Как сместится изображение угла крыши дома по отношению к точке надира?
 - ј. от точки надира
 - k. к точке надира
- 17. На горизонтальном снимке главная точка снимка и точка надира ...:
 - g. останутся на своих местах
 - h. совпадут

- і. сместится главная точка снимка
- 18. Недостатки создания ЦМР на основе картографического материала:
 - ј. низкая точность
 - k. трудоемкость
 - 1. неоперативность
- 19. При трансформировании снимки исправляются...:
 - к. за угол наклона и приводятся к заданному масштабу
 - 1. за рельеф и приводятся к заданному масштабу
 - т. за угол наклона и за рельеф, а также приводятся к заданному масштабу
- 20. Опорные точки необходимы при создании:
 - ј. фотосхемы
 - к. фотоплана
 - 1. фотосхемы и фотоплана

8. Технологии создания карт

- 1. Какая технология создания карт применяется, если равнинный рельеф и значительное количество контуров?
 - а. стереотопографический метод создания карт на чистой основе
 - б. стереотопографическая съемка на фотопланах
 - в. комбинированный метод создания карт на фотопланах
 - г. комбинированный метод создания карт на чистой основе
- 2. Какая технология создания карт применяется, при любом рельефе и малом количестве контуров?
 - а. стереотопографический метод создания карт на чистой основе
 - б. стереотопографическая съемка на фотопланах
 - в. комбинированный метод создания карт на фотопланах
 - г. комбинированный метод создания карт на чистой основе
- 3. Какой процесс выполняется перед аэрофотосъемкой?
 - а. планово-высотное обоснование
 - б. фотограмметрическое сгущение
 - в. дешифрирование
 - г. маркировка
- 4. В каком методе используется аэрофотосъемка с разными фокусными расстояниями?
 - а. стереотопографический метод создания карт на чистой основе
 - б. стереотопографическая съемка на фотопланах
 - в. комбинированный метод создания карт на фотопланах
 - г. комбинированный метод создания карт на чистой основе
- 5. Что необходимо выполнить перед началом работы на ЦФС?
 - а. дешифрирование
 - б. фотографическую и фотограмметрическую оценки качества фотоматериалов
 - в. создание ортофотоплана
- 6. Какие точки необходимы для внешнего ориентирования модели?
 - а. контрольные
 - б. связующие
 - в. опорные
 - г. определяемые
- 7. Какие точки необходимы для объединения стереопар в блок?

- а. контрольные
- б. связующие
- в. опорные
- г. определяемые
- 8. Минимальное количество опорных точек для уравнивания сети?
 - a. 5
 - б. 3
 - в. 4
 - г. 6
- 9. Минимальное количество связующих точек?
 - a. 5
 - б. 3
 - в. 4
 - г. 6
- 10. Какого метода уравнивания не существует?
 - а. связок
 - б. независимых маршрутов
 - в. независимых снимков
 - г. независимых моделей
- 11. Количество элементов внешнего ориентирования модели?
 - a. 5
 - б. 3
 - в. 7
 - г 6
- 12. Показатель качества на этапе взаимного ориентирования?
 - а. расхождение координат связующих точек
 - б. остаточный поперечный параллакс
 - в. остаточный продольный параллакс
 - г. расхождение координат опорных точек
- 13. Влияние, каких ошибок исключается при трансформировании снимков?
 - а. за угол наклона снимка
 - б. за угол наклона снимка и за рельеф
 - в. за рельеф местности

Наземная фотограмметрия

- 1. Откуда производится наземная съемка?
 - а) с самолета.
 - б) со спутника.
 - в) с точек земной поверхности.
- 2. Какие съемочные системы используются для наземной съемки?
 - а) аэрофотоаппараты.
 - б) электронные тахеометры
 - в) фотографические и цифровые камеры.
- 3. Что является параметрами наземной съемки?
 - а) максимальное отстояние до точек снимаемых объектов, максимальная и минимальная величина базиса фотографирования.
 - б) максимальное отстояние до точек снимаемых объектов, превышение точек снимаемых объектов.
 - в) высота съемочной камеры над поверхностью земли.

- 4. Укажите процессы наземной стереофотограмметрической съемки в их технологической последовательности:
 - а) составление проекта, рекогносцировка местности, геодезические работы, фотографирование объекта, оценка качества материалов съемки, фотограмметрическая обработка материалов съемки.
 - б) оценка качества материалов съемки, фотограмметрическая обработка материалов съемки, составление проекта, рекогносцировка местности, геодезические работы, фотографирование объекта.
 - в) геодезические работы, фотографирование объекта, фотограмметрическая обработка материалов съемки, составление проекта, рекогносцировка местности, оценка качества материалов съемки.
 - 5.Перечислите основные виды наземной стереофотограмметрической съемки.
 - а) горизонтальная съемка, гиростабилизированная съемка.
 - б) нормальный, параллельный, конвергентный, общий случай съемки.
 - в) горизонтальный вид съемки, параллельный, гиростабилизированный.

 Γ

6. По какой формуле определяется максимальное отстояние до объекта при наземной съемке.

a)
$$Y = \frac{m_{Y\partial on}}{m_p} p$$

$$6) Y = \frac{B}{p^o} f$$

B)
$$Y = Y_S + (Z - Z_S) \frac{b_1(x - x_0) + b_2(y - y_0) - b_3 f}{c_1(x - x_0) + c_2(y - y_0) f - c_3 f}$$

7. По какой формуле вычисляется минимальная величина базиса фотографирования при наземной съемке?

a)
$$B = \frac{Y_{\text{max}}^2 m_p}{f m_{Y \partial on}}$$

$$6) \quad B = X_{S_2} - X_{S_1}$$

B)
$$B = \frac{Y_{\min}}{4}$$

8. Какая формула используется для вычисления максимальной величины базиса фотографирования при наземной съемке?

a)
$$B = \frac{Y_{\min}}{4}$$

$$\delta) \quad B = \frac{Y_{\text{max}}^2 m_p}{f m_{Y_{\partial Q}}}$$

B)
$$B = X_{S_2} - X_{S_1}$$

- 9. Какова последовательность выполнения фотограмметрических процессов при обработке снимков фототеодолитной съемки?
 - а) составление рабочего проекта, измерение координат запроектированных точек снимков, внутреннее ориентирование снимков, учет неприжима фотоматериала, учет

ошибок угловых элементов внешнего ориентирования снимков, определение фотограмметрических координат точек модели, внешнее ориентирование модели.

- б) внутреннее ориентирование снимков, учет неприжима фотоматериала, определение фотограмметрических координат точек модели, внешнее ориентирование модели, составление рабочего проекта, измерение координат запроектированных точек снимков, учет ошибок угловых элементов внешнего ориентирования снимков.
- в) составление рабочего проекта, измерение координат запроектированных точек снимков, внутреннее ориентирование снимков, учет неприжима фотоматериала, учет ошибок угловых элементов внешнего ориентирования снимков, определение фотограмметрических координат точек модели.
- 10. Элементами внутреннего ориентирования снимков наземной съемки являются:
 - a) f, x_0, y_0
 - 6) f, x_0, z_0
 - B) $X_S, Y_S, Z_S, \alpha, \omega, \kappa$
 - Γ) X_S, Y_S, Z_S, x_0, y_0
- 11. Количество элементов внешнего ориентирования одиночного наземного снимка
 - a) 4
 - б) 5
 - *в*) 6
 - r) 7

Цифровая обработка и дешифрирование аэрокосмических снимков

- 91. При формировании цифрового изображения происходят два процесса
 - а. дискретизация и квантование
 - геометрическая и радиометрическая коррекция
 - с. геометрическая привязка и дешифрирование
- 92. Возможность раздельно воспроизводить на снимке мелкие детали снимаемого объекта
 - а. временная разрешающая способность
 - b. спектральная разрешающая способность
 - с. линейная разрешающая способность
- 93. Изображение, в котором объединены разные каналы разновременных снимков
 - а. мультивременной композит
 - b. Pan-sharpening
 - с. индексное изображение
- 94. Цвет, форма, размер дешифровочные признаки
 - а. косвенные
 - b. прямые
- 95. Что такое дешифрирование?
- а. Теория получения информации об внутренних и внешних элементах местности по их изображениям
- Теория получения информации об элементах местности по их изображениям
- с. Теория и способы получения информации об элементах местности

- 96. Что положено в основу дешифрирования?
- а. Географические и физико-математические факторы
- b. Географические и фотограмметрические факторы
- с. Астрономо-геодезические и географические факторы
- 97. Логическая структура дешифрирования
- а. Обнаружение, распознавание, определение
- b. Обнаружение, определение, распознавание
- с. Распознавание, обнаружение, определение
- 98. От чего зависит в первую очередь этап распознавания?
- а. От фотографических свойств аэрофотоснимка
- b. От геометрических свойств аэрофотоснимка
- с. От физико-математических факторов
- 99. Методы дешифрирования
- а. Полевое, камеральное, аэровизуальное, комбинированное
- b. Полевое, полное, неполное, камеральное, аэровизуальное
- с. Полевое, камеральное, аэровизуальное, полное, неполное
- 100.Основной прямой признак
- а. Форма
- **b.** Размер
- с. Тон
- 101. Что такое генерализация?
- а. Исключение избыточной информации
- Исключение бесполезной информации
- с. Исключение условно-полезной информации
- 102. Что такое текстура изображения?
- а. Связь рисунка изображения объекта с его формой
- Связь зернистости изображения и формы
- с. Связь тона изображения и его рисунка
- 103. Алгоритм классификации с обучением
- a. K-Means
- b. ISODATA
- с. расстояние Махалонобиса
- 104. Параметрические методы классификации
- а. параллелепипедов
- b. ISODATA
- с. дерево решений
- 105. Метод главных компонент исключает ...
- а. корреляцию между каналами
- b. ошибки распознавания
- с. шумы