ИСПОЛЬЗОВАНИЕ СИСТЕМ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ В НЕФТЕГАЗОВОЙ ОТРАСЛИ.

Нигамедьянов А.Я.

Нижневартовский нефтяной техникум (филиал) ФГБОУ ВОЮГУ Югорский государственный университет

Нижневартовск, Россия

THE USE OF CAD SYSTEMS IN THE OIL AND GAS INDUSTRY.

Nigamedyanov A.Ya.

Nizhnevartovsk oil College (branch) of Federal STATE budgetary educational institution VOUGE of Ugra state University

Nizhnevartovsk, Russia

Направления применения САПР в нефтегазовой отрасли.

Ни одна из множества прикладных задач, связанных с разведкой и освоением месторождений, добычей, транспортом, переработкой, хранением и реализацией нефти и газа, не может быть решена без тщательного планирования, подготовки и контроля выполняемых работ, которым предшествует проведение научно-исследовательских, опытно-конструкторских (НИОКР) и проектно-изыскательских (ПИР) работ.

В табл. 1 приведены основные составляющие комплекса НИОКР и ПИР на примере типичного вертикально интегрированного предприятия нефтегазовой отрасли. Из таблицы 1 видно, что деятельность вертикально интегрированного предприятия связана со значительным объемом технической документации. Большая часть работы касается потенциально опасных промышленных объектов и требования контролирующих государственных органов к соответствующей документации очень высоки.

Таблица 1 - Основные составляющие НИОКР и ПИР на примере ВИНК

Задачи	Основные	Исполнитель	Техническая
	инженерные работы		документация
Разведка и освоение месторождений	Изыскания, научные исследования	Научно- исследовательский проектный институт	Проектно-сметная до- кументация, отчеты ПИР и научно- исследовательских ра- бот (НИР), технологи- ческие регламенты
	Проектирование тех- нологии добычи и обустройства место- рождения	Проектный институт	Проектно-сметная до- кументация
	Проектирование спе- циализированного оборудования	Конструкторское бю- ро машиностроитель- ного предприятия, проектно- конструкторский ин- ститут	1,5151 51
	Подготовка производ- ства специализиро- ванного оборудования	Технологические бю- ро машиностроитель- ного предприятия	Техническая документация
Транспорт и перера- ботка продукта	Проектирование неф- те- и газопроводов, компрессорных стан- ций, технологии пере- работки и соответ- ствующих предприя- тий	Проектный институт	Проектно-сметная до-кументация
	Проектирование спе- циализированного оборудования	Конструкторское бю- ро машиностроитель- ного предприятия, проектно- конструкторский ин- ститут	1,71,71

Таким образом, можно выделить несколько <u>направлений применения САПР в</u> нефтегазовой отрасли:

- ✓ Проектирование технологического оборудования месторождений и процессов переработки нефтепродуктов (технологическое проектирование, проектирование АСУТП)
- ✓ Проектирование объектов инфраструктуры и обустройство месторождений (дорожное, электротехническое, архитектурно-строительное проектирование)
- ✓ Подготовка производства технологического оборудования
- ✓ Проектирование трубопроводного транспорта и вспомогательного оборудования (компрессорные, дожимные станции)
- ✓ Обеспечение строительно-монтажных и производственных служб рабочей и эксплуатационной документацией; обеспечение производственных служб ремонтной документацией
- Инженерное сопровождение строительно-монтажных и ремонтных работ
- ✓ Поддержка научно-изыскательных и исследовательских работ (анализ, моделирование, прогнозирование).

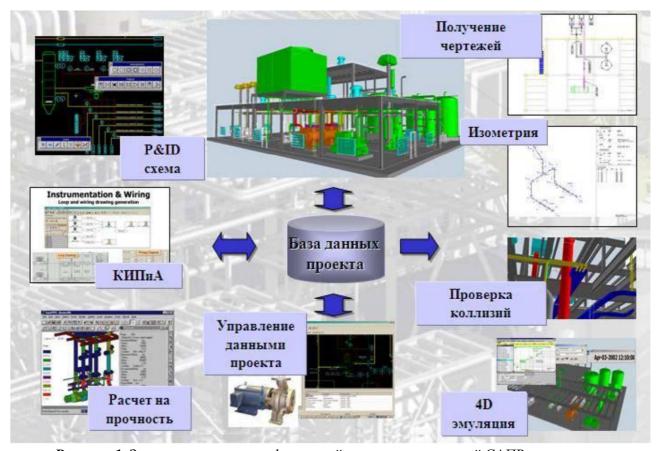


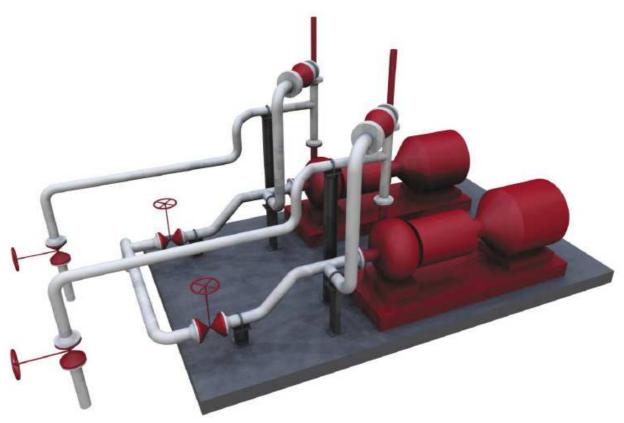
Рисунок 1. Задачи, решаемые в нефтегазовой отрасли комплексной САПР Проще говоря, проектные подразделения идут по пути внедрения и использования САПР, единой для всех частей проекта, включающей в себя расчет потоков, построение PFD- и Р&ID-диаграмм, модели, трехмерной получение монтажно-компоновочных чертежей, трубопроводов на прочность, а также части КИПиА и электрическую часть. Однако вопрос о выборе такой комплексной САПР и удовлетворении ею всем условиям всегда остается открытым. Поэтому часто идут по другому пути – использованию системы, позволяющей создать единую информационную модель проекта, с которой работали бы различные специализированные САПР. Причем такая система должна не только обеспечивать передачу инженерной информации, но и быть хранилищем данных с возможностью организации документооборота проектной, конструкторской, эксплуатационной и исполнительной документации. Это позволит сопровождать объект проектирования на протяжении всего жизненного цикла, начиная со стадии проекта и заканчивая эксплуатацией.

AUTODESK

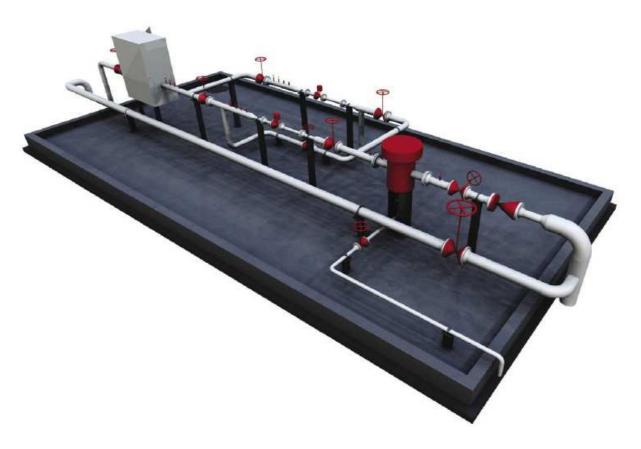
Компания Autodesk (США) была основана в 1982 году. Сегодня это один из крупнейших в мире производителей программного обеспечения систем автоматизированного проектирования для промышленного и гражданского строительства, машиностроения, дизайна, визуализации, анимации, геоинформатики, цифровых средств передачи информации и беспроводной связи. Autodesk является разработчиком популярной САПР AutoCAD.

Autodesk предлагает полнофункциональный комплекс решений для автоматизированного проектирования — от систем для черчения и двухмерного конструирования до трехмерных САПР с поддержкой цифровых прототипов. Компания активно развивает передовые 2D- и 3D-технологии для визуализации, моделирования и анализа поведения разрабатываемых конструкций на ранних стадиях проектирования.

Autodesk – это примерно 6 тыс. сотрудников, работающих в 106 странах мира. Программными продуктами компании пользуются более 8 млн. человек.


AutoCAD – двух- и трехмерная система автоматизированного проектирования и черчения, разработанная компанией Autodesk. Имеет облегченную версию AUTOCAD LT с рядом ограничений.

Текущая версия программы (AutoCAD 2012) включает в себя полный набор инструментов для комплексного трехмерного моделирования (поддерживается твердотельное, поверхностное и полигональное моделирование). AutoCAD позволяет получить высококачественную визуализацию моделей с помощью системы рендеринга mental ray. Также в программе реализовано управление трехмерной печатью (результат моделирования можно отправить на 3D-принтер) и поддержка облаков точек (позволяет работать с результатами 3D-сканирования). Тем не менее, следует отметить, что отсутствие трехмерной параметризации не позволяет AutoCAD напрямую конкурировать с машиностроительными САПР среднего класса, такими как Inventor, SolidWorks и другими.


AUTOCAD Plant 3D, Bentley AutoPLANT

AutoCAD Plant 3D – инструмент для технологического проектирования и создания цифровых прототипов (цифрового моделирования промышленных объектов), а также создания технической документации. Данный продукт построен на самой распространенной в России платформе AutoCAD, файлы имеют формат DWG, поэтому специалисты могут с легкостью освоить функционал программы и обмениваться проектной информацией со смежными группами разработчиков.

Линейка Plant Design-решений Autodesk объединяет в себе AutoCAD P&ID, AutoCAD Plant 3D и семейство продуктов Navisworks. В AutoCAD Plant 3D полностью интегрирован функ- ционал AutoCAD P&ID – приложения для выполнения технологических, монтажно- технологических схем и схем КИПиА, – что позволяет согласовывать данные схем и трехмерной модели. Autodesk Navisworks в данном решении предназначен для обнаружения коллизий и для получения более качественной визуализации проекта. Благодаря гибким инструментам 3D-моделирования, возможности быстрой генерации двухмерных и изометрических чертежей и различных отчетов пользователи AutoCAD Plant 3D могут заметно увеличить производительность, а наличие инструмента проверки согласованности данных и динамическая связь трехмерной модели с получаемой документацией позволяют повысить точность проектирования.

Рисунок 2. 3D-модель площадки насосов, полученная в AutoCAD Plant 3D

Рисунок 3. 3D-модель узла учета нефти, полученная в AutoCAD Plant 3D AutoCAD Plant 3D уже содержит стандартный функционал и AutoCAD, и AutoCAD P&ID, поэтому не нужно приобретать данные продукты дополнительно. Русская версия AutoCAD Plant 13

3D включает в себя полностью переведенные на русский язык: меню, ленту, диалоговые окна, руководство пользователя, справочник команд, пошаговое руководство. Стоимость AutoCAD Plant 3D составляет 6490€ (для сравнения AutoCAD — мощный инструмент для 3D проектирова-ния — 3068€,а AutoCAD P&ID — программа для создания и редактирования схем трубопроводов и КИП, а также для управления ими — 3894€).

Естественно, AutoCAD Plant 3D является не единственным продуктом в данном сегменте. В нефтяной, газовой, химической и пищевой промышленности России успешно используется программное обеспечение Bentley PLANT.

Система Bentley Plant включает модули разработки схем, 3D-моделирования, расчеты, генерацию чертежей, спецификаций и изометрических схем. Она интегрирована с системой управления инженерным документооборотом и архивом Bentley ProjectWise. В линейке Bentley Plant представлены 2 семейства продуктов – AutoPLANT, использующее в качестве графической платформы AutoCAD, и PlantSpace на платформе MicroStation. Эти продукты являются взаимоза-меняемыми. Компания взяла курс на объединение двух линеек на основе AutoPLANT. В свою очередь, в состав линейки AutoPLANT входят также решения для разнообразных расчетов: НДСТ – AutoPIPE, гидравлических расчетов – PlantFlow, расчет на прочность узлов врезки штуце-ров/патрубков сосудов и аппаратов – WinNOZL, расчет пульсаций потоков в трубопроводах – PULS. Продукты AutoPIPE и AutoPLANT имеют двунаправленный интерфейс передачи данных, что ускоряет итерационный процесс «проектирование – расчет».

Линейка AutoPlant включает несколько программных продуктов (см. некоторые из них пред. абзац). Они имеют русифицированный интерфейс и документацию. Стоимость различных продуктов рознится от, например, 360\$ для Bentley AutoPLANT Isometrics до 4800\$ для AutoPLANT ISOGEN Server. В Bentley Plant может использоваться MSDE (ядро системы MS SQL Server), что не требует оплаты дополнительных лицензий для СУБД.

Крупным заказчиком систем Bentley Plant в России является ОАО «ГАЗПРОМ».

Помимо линейки Bentley Plant Bentley Systems Inc. предлагает решения для всех задач проектирования в промышленном и гражданском строительстве — архитектурных, задач изыска-ний и генплана, проектирования инженерных сетей и т. д., а также задач проектного документо-оборота — с помощью системы управления проектными данными и инженерным документообо-ротом ProjectWise. Модуль Bentley ProjectWise обеспечивает возможность распределять проекты и выполнять их администрирование.

И Bentley AutoPLANT, и AutoCAD Plant 3D позволяют выполнять следующие функции:

- ✓ управление проектными документами;
- ✓ настройка проекта;
- ✓ создание технологических, функциональных схем процессов;
- моделирование и размещение оборудования;
- ✓ трассировка трубопроводов;
- ✓ расстановка трубопроводных опор;
- ✓ создание модели металлоконструкций;
- ✓ получение изометрических схем;
- ✓ формирование 2D-чертежей;
- ✓ получение отчетов и ведомостей;
- ✓ работа с проектными данными;
- ✓ работа с базами элементов;
- ✓ организация совместной работы сотрудников проектных подразделений.

Учитывая, что основной функционал наиболее передовых САПР схож, а отличаются они в основном стоимостью, технической реализацией и наличием дополнительных возможностей