Курсовой проект

Исследование параметров радиотехнических цепей с использованием современных прикладных программных пакетов

Задание 1. Провести исследование электрических параметров простейшей резистивной цепи (рис. 22).

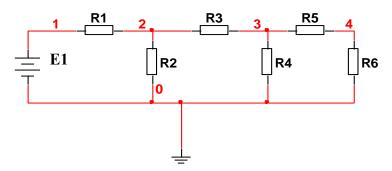


Рис. 22. Схема для расчета и исследования резистивной цепи

1.1. В соответствии с законами Ома и Кирхгофа провести теоретический расчет параметров простейшей электрической цепи (определить силу тока в цепи и падение напряжения на каждом элементе схемы) в соответствии с Вашим вариантом (номер варианта N задается преподавателем).

 $E = 10 \div 20 B - произвольно;$

R1 = N + 3 Om;

R2 = 2N Om:

 $R3 = 2N + 1 O_{M}$;

 $R4 = 2N + 5 O_{M}$;

 $R5 = N + 2 O_{M}$;

 $R6 = N O_M$.

Результаты расчетов оформить в виде таблицы (табл. 6).

Таблица 6

Параметры схемы		Результаты расчетов	Результаты измерений				
			Измерения амперметром и вольтметром	Измерения динамическими пробниками	Измерения мультиметрами		
R1 =	U_{R1} , B						
K1 =	I_{R1} , A						
R2 =	U_{R2} , B						
KZ –	I_{R2} , A						
R6=	U_{R6} , B						
	I_{R6} , A						

- 1.2. Провести моделирование процесса работы схемы в програм-мном пакете Multisim. Собрать схему исследования в соответствии с Вашим вариантом, подключить измерительные приборы.
- 1.2.1. Определить силу тока на каждом участке схемы с по-мощью амперметров. Результаты моделирования занести в табл. 6.
- 1.2.2. Определить величину и полярность напряжения на каж-дом элементе схемы с помощью вольтметров. Результаты модели-рования занести в табл. 6.
- 1.2.3. Определить силу тока на каждом участке схемы, вели-чину и полярность напряжения на каждом элементе с помощью динамических пробников. Результаты моделирования занести в табл. 6.
- 1.2.4. Определить силу тока на двух произвольных участках схемы и величину напряжения на двух произвольных элементах схемы с помощью мультиметров.

Использовать два виртуальных и два аналога реальных мульти-метров. Каждый тип прибора использовать для измерения тока и напряжения, подключая соответствующим образом. Результаты моделирования занести в табл. 6.

1.2.5. Все результаты расчетов и измерений свести в табл. 6. Провести сравнительный анализ результатов теоретического рас-чета и компьютерного моделирования. Письменно сделать выводы по всему заданию.

Задание 2. Провести исследование параметров напряжения в схемах с дискретными полупроводниковыми элементами (рис. 23) в программном пакете Multisim.

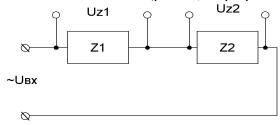


Рис. 23. Схема исследования

2.1. Собрать схему исследования с полупроводниковым диодом, подключить измерительные приборы. Провести исследование пара-метров напряжений в схеме в соответствии с Вашим вариантом (табл. 7). Величина сопротивления $R1=1~kOm,\,R2=2~kOm,\,UBx=50B$.

Таблица 7

Номер вари- анта	Элементы схемы		Результаты измерений напряжений осциллографами					
			2-х лучевой	4-х лучевой	Agilent	Tektronix		
	UBX							
1, 6	Z1	VD1						
	Z2	R2 R1						
2, 7	Z1	R2						
	Z2	VD1						

Окончание табл. 7

Номер	Элементы схемы		Результаты измерений напряжений осциллографами			
вари- анта			2-х лучевой	4-х лучевой	Agilent	Tektronix
	UBX					
3, 8	Z1	VD1 R1				

	Z2	R2		
4, 9	Z1	R1		
	Z2	VD2 R2		
5, 0	Z1	R2 VD2		
	Z2	R1		

- 2.1.2. С источника переменного напряжения подать на схему гармонический сигнал амплитудой 50 Вольт и частотой 100 Герц.
- 2.1.2.1. С помощью виртуального двухканального осциллографа измерить параметры напряжений на участках цепи.
- 2.1.2.2. С помощью двухканального осциллографа смешанных сигналов Agilent измерить параметры напряжений на участках цепи.
- 2.1.2.3. С помощью виртуального четырехканального осциллог-рафа измерить параметры напряжений на участках цепи.
- 2.1.2.4. С помощью четырехканального осциллографа Tektronix измерить параметры напряжений на участках цепи.
- 2.1.3. Полученные результаты моделирования занести в табл. 7. Провести сравнительный анализ результатов и письменно сделать выводы.

Задание 3. Провести исследование параметров напряжения в схемах с усилительным элементом в программном пакете Multisim.

3.1. Собрать схему исследования с усилительным каскадом в соответствии с Вашим вариантом (рис. 24), подключить измери-тельные приборы. Провести исследование параметров напряжений и амплитудно-частотных характеристик в схеме.

R1 = N + 3 кОм; R2 = 3N + 5 кОм; UBX = 1 В частотой 100 Гц.

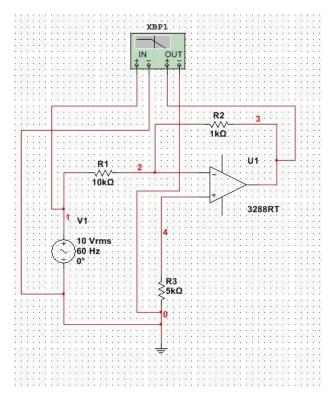


Рис. 24. Схема исследования инвертирующего усилителя

- 3.2.1. Снять осциллограммы входного и выходного напряжений с помощью любого из имеющихся осциллографов.
 - 3.2.2. Исследовать частотные характеристики цепи с помощью:
 - измерительного прибора Bode Plotter;
 - встроенной функции анализа схемы AC Analysis.
- 3.2.3. Изменить частоту источника переменного напряжения. Снять осциллограммы входного и выходного напряжений на часто-те, при которой амплитуда выходного напряжения уменьшится.
- 3.2.4. Провести сравнительный анализ полученных результатов моделирования. Письменно сделать выводы по работе схемы.

Задание 4. Провести анализ работы электрических RLC-цепей в программном пакете Multisim.

4.1. Собрать схему исследования RL- или RC-цепи в соответст-вии с Вашим вариантом, подключить измерительные приборы. Провести исследование параметров тока в цепи и напряжений на элементах схемы. Четный вариант – схема рис. 25*a*, нечётный вариант – схема рис. 25*b*.

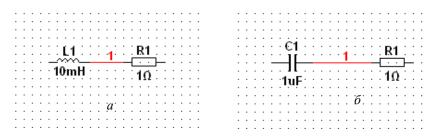
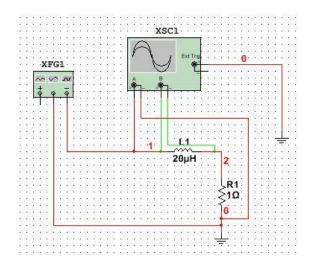


Рис. 25. Варианты цепей для исследования


Анализ радиотехнической схемы с индуктивностью

Индуктивность – идеализированный элемент, способный запа-сать энергию *магнитного* поля. Ток в индуктивности связан с напряжением на ее зажимах следующими соотношениями:

$$u_{L} = L \frac{di}{dt}$$
 или $i(t_{2}) = i(t_{1}) + \frac{1}{L} \int_{t_{1}}^{t_{2}} u \ dt$.

Количественно индуктивность L выражается в Генри.

4.2. Собрать схему, представленную на рис. 26. Линии, идущие к осциллографу, сделать разного цвета, чтобы две кривые четко различать на экране (см. рис. 26).



Рис. 26. Анализ электрической схемы с индуктивностью

Дважды щелкнуть левой клавишей мыши по изображению генератора. На экране появится передняя панель генератора (см. рис. 26). Перетащить мышью панель на свободное место экрана. Выбрать вид сигнала — прямоугольные импульсы, установить частоту 5 к Γ ц, коэффициент заполнения 50% и амплитуду 10 В. Дважды щелкнуть левой клавишей мыши по изображению осциллографа. На экране появится передняя панель осциллографа (рис. 27). Перетащить мышью панель на свободное место экрана. Установить режимы AUTO, Y/T, чувствительность каналов A и B 10V/Div, длительность развертки 0.02 ms/div. При необходимости настройки разверток осциллографа и параметры генератора нужно изменять для получения полноценных характеристик переходных процессов.

4.3. Измерения.

Запустить моделирование кнопкой или другим способом. На экране осциллографа появятся две кривые (рис. 27).

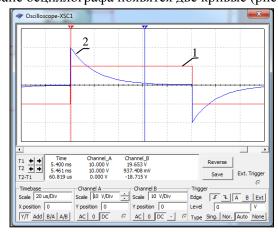


Рис. 27. Измерение параметров процессов

Первая кривая – входное напряжение на схеме (подается на канал A). Вторая кривая – напряжение на катушке индуктивности L1.

Поскольку напряжение в Вольтах на резисторе номиналом 1 Ом численно равно току через резистор в Амперах ($I_L = I_R = U_R/R$), то с экрана осциллографа можно непосредственно считывать значение тока через индуктивность. Для этого можно подключить второй осциллограф или переключить канал B для снятия напряжения на резисторе R1 (рис. 28).

Зарисовать осциллограммы, измерить параметры сигналов. Для этого за треугольные ушки (они обозначены также цифрами 1 и 2) курсором перетащить вертикальные визирные линии (синего и красного цвета) в точки начала и конца одного из импульсов (см. рис. 27). Результаты измерений представлены в окошке под экраном. Здесь:

- -(T2-T1) длительность переходного процесса (процесс считается законченным, когда сигнал перестает выходить за пределы 5% отклонения от установившегося значения);
- Cannel A (T2-T1) амплитудное значение сигнала, подаваемого на канал A между точками 1 и 2;
- Cannel B (T2-T1) амплитудное значение сигнала, подаваемого на канал В между точками 1 и 2.

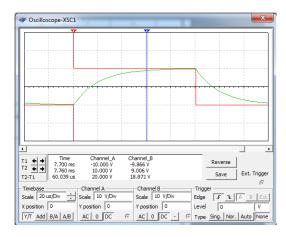


Рис. 28. Измерение времени переходного процесса

С помощью функции анализа временных характеристик выполнить измерение времени переходного процесса изменения тока в цепи с индуктивностью.

Изменяя значение индуктивности в соответствии с Вашим вариантом, провести аналогичные исследования с катушками L2 - L4.

L2 = N

L3 = 2N+5

IA = 5N-1

Для удобства наблюдения необходимо изменять чувствительность канала В. В случае, если переходный процесс не успеет завершиться, то необходимо изменить частоту тактового генератора.

Анализ результатов

Сравните расчетное значение тока через индуктивность с экспериментальными результатами.

Анализ радиотехнической схемы с емкостью

Емкость – идеализированный элемент, способный запасать энергию электрического поля. Ток в емкости связан с напряжением на ее зажимах следующими соотношениями:

$$i = C \frac{du}{dt} \quad unu \quad u(t_2) = u(t_1) + \frac{1}{C} \int_{1}^{t_2} i \ dt.$$

4.4. Собрать схему, представленную на рис. 28. Линии, идущие к осциллографу, сделать разного цвета, чтобы две кривые четко различать на экране.

Изучить влияние величины емкости на характер протекающих процессов. Для этого:

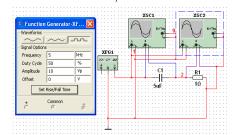


Рис. 28. Исследование электрической схемы с емкостью

- с генератора сигналов подать на вход схемы последовательность прямоугольных видеоимпульсов амплитудой 10 В и частотой 5 кГц;
- с помощью осциллографов измерить параметры входного, выходного и напряжения на конденсаторе (рис. 29);
- с помощью встроенного анализатора (Transient Analysis) провести анализ временных характеристик, определив время переходного процесса. Механизм измерения времени переходного процесса см. раздел 4.3.



Рис. 29. Результаты исследования временных характеристик в схеме с емкостью

Провести аналогичные исследования с конденсаторами С2-С4, изменяя значение емкости в соответствии с Вашим вариантом.

 $C2 = 2N_{MK}\Phi$,

 $C3 = 0.1N \text{ MK}\Phi$,

C4 = 5N н Φ .

При необходимости нужно изменить частоту тактового генератора для снятия завершенного переходного процесса.

4.5. Провести сравнительный анализ результатов и письменно сделать выводы.

Задание 5. Провести обзор существующих современных пакетов прикладных программ в радиоэлектронике.

5.1. Описать функциональные возможности современных пакетов прикладных программ в радиоэлектронике.

Задание 6. Заключение. В заключении привести обзор результатов по всей работе, перечислив приобретенные знания и умения. общие выводы по характеристикам исследованных цепей.

Требования к оформлению курсового проекта

Курсовой проект должен содержать все разделы задания:

- 1. Содержание.
- 2. Задание на проект.
- 3. Введение. Во введении содержатся общие теоретические сведения по теории исследуемых радиотехнических цепей.
 - 4. Глава 1. Исследование электрических параметров простейшей резистивной цепи.
 - 4.1. Теоретический расчет простейшей электрической цепи.
 - 4.2. Моделирование процесса работы схемы в программном пакете Multisim.
 - 4.3. Сравнительный анализ результатов теоретического расчета и компьютерного моделирования.
 - 4.4. Выводы по главе.
- 5. <u>Глава 2</u>. Исследование параметров напряжения в схемах с дискретными полупроводниковыми элементами в программном пакете Multisim.
 - 5.1. Исследование параметров напряжений в схеме.
 - 5.2. Выводы по результатам моделирования.
 - 5.3. Вывод по работе схемы.
- 6. <u>Глава 3.</u> Исследование схемы с усилительным элементом. Снятие амплитудно-частотных и фазо-частотных характеристик.
 - 6.1. Исследование параметров напряжений в схеме с помощью осциллографа.
 - 6.2. Снятие амплитудно-частотных и фазо-частотных характеристик с помощью плоттера Боде.
 - 6.3. Снятие амплитудно-частотных и фазо-частотных характеристик с помощью встроенного анализатора.
 - 6.4. Вывод по работе схемы.
 - 7. Глава 4. Анализ работы электрических RC-, RL-цепей в программном пакете Multisim.
 - 7.1. Исследование параметров напряжений на входе и выходе цепи.
 - 7.2. Выводы по результатам моделирования.
 - 7.3. Вывод по работе схемы.
 - 8. Глава 5. Исследовательская часть.

- 8.1. Описание функциональных возможностей современных пакетов прикладных программ в радиоэлектронике.
- 9. Заключение.
- В заключении приводится обзор результатов по всей работе, общие выводы по характеристикам исследованных цепей.
 - 10. Список используемой литературы.

Работа выполняется на листах формата A4. Теоретические расчеты проводятся качественно (в общем виде). Вся графическая часть выполняется в масштабе. Компьютерное моделирование (схемы, осциллограммы) приводятся в виде распечаток либо выполняются в масштабе.

Полученные результаты обязательно анализируются и на основании анализа <u>обязательно</u> письменно приводятся подробные выводы.