Лабораторная работа № 2

«Оценка вероятности безотказной работы изделий из композиционных материалов»

**Цель лабораторной работы:** Освоение методов оценки надёжности композиционных конструкций, как вероятностной прочности с учётом влияния разброса прочностных свойств композиционных материалов.

#### Задачи:

- 1. Экспериментальное определение несущей способности образцов из композиционных материалов.
- 2. Экспериментальное определение модуля упругости композиционного материала.
- 3. Расчётно-экспериментальное определение вероятности безотказной работы образцов из композиционных материалов.
- 4. Определение корреляции свойств композиционного материала и несущей способности образцов.

#### 1. Теоретические положения

В самом общем случае при расчёте инженерно-технических систем на прочность необходимо выполнение неравенства:

$$R > N$$
,

где R, N — соответственно несущая способность конструкции или изделия и внешняя нагрузка, либо выполнения условия:

$$\eta = \frac{R}{N} > 1$$
,

где  $\eta$  коэффициент запаса прочности. В качестве несущей способности здесь могут выступать максимальная разрушающая нагрузка  $P_{pазр.}$ , разрушающие  $\sigma_{e}$  или допускаемые  $[\sigma]$  напряжения или любой другой критерий прочности. В качестве нагрузки могут выступать тот или иной тип нагружения.

В данном случае речь идёт о детерминированной постановке, когда точно известны значения несущей способности и внешней нагрузки и можно с помощью простых формул проверить выполнение условия прочности.

При изготовлении композиционных материалов углы укладки волокон, объёмное содержание волокон, количество и качество связующего, степень пропитки материала и многие другие параметры технологического процесса трудно поддаются контролю. Поэтому физико-механические свойства изделий из таких материалов являются случайными величинами. Следует также отметить, что в реальных условиях эксплуатации любых инженерно-технических систем на них действуют нагрузки, имеющие случайный характер. Учитывая всё вышесказанное воспользоваться ранее приведёнными формулами уже нельзя. В данном случае в качестве критерия оценки работоспособности конструкций следует понимать вероятность такого события, когда действующая нагрузка не превышает несущей способности, т.е.выполняется неравенство:

$$R > N$$
.

Вероятность такого события принято называть вероятностью безотказной работы.

Зная законы распределения несущей способности и внешней нагрузки вероятность безотказной работы (H) можно определить с использованием выражения:

$$H = \int_{0}^{\infty} f_{R}(R) F_{N}(R) dR,$$

либо

$$H = \int_{0}^{\infty} f_{N}(N) \cdot [1 - F_{R}(N)] dN.$$

Геометрически вероятность отказа будет численно равна заштрихованной площади на рисунке 3.

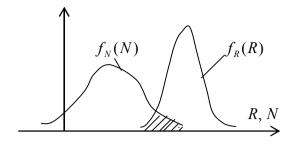



Рисунок 3 – Вероятность отказа

Если теоретические законы распределения случайных величин R и N неизвестны, то приближенный расчет надежности можно проводить по результатам экспериментальных исследований, используя следующую зависимость:

$$H = \int_{0}^{1} G \ dJ.$$

Здесь 
$$G = 1 - F_R(N); dJ = f_N(N)dN; J = F_N(N).$$

Таким образом, численное значение надежности определяется как площадь под кривой G = G(J).

Приближенные оценки значений функций распределения  $\tilde{F}_R(N)$  и  $\tilde{F}_N(N)$  строятся по результатам обработки экспериментальных исследований несущей способности и нагрузки с использованием методов математической статистики.

Пусть проведено  $n_R$  опытов по определению несущей способности, в результате которых получено  $n_R$  значений  $R_i$ ,  $i=1,\ldots,n_R$ . Строится ряд распределения случайной величины R, как это показано в таблице 1 (при этом подразумевается, что в данной таблице значения R расположены в порядке возрастания).

Таблица 1 Ряд распределения экспериментальных значений R

| i                         | 1                 | 2                 | •••   | i                 |     | $n_R$               |
|---------------------------|-------------------|-------------------|-------|-------------------|-----|---------------------|
| $R_i$                     | $R_1$             | $R_2$             | • • • | $R_i$             | ••• | $R_{n_R}$           |
| $P_i = \frac{i}{n_R + 1}$ | $\frac{1}{n_R+1}$ | $\frac{2}{n_R+1}$ |       | $\frac{i}{n_R+1}$ | ••• | $\frac{n_R}{n_R+1}$ |

Аналогичным образом строится ряд распределения случайной величины нагрузки N по  $n_N$  значениям  $N_i$ ,  $j=1,\ldots,n_N$ .

Таблица 2 Ряд распределения значений *N* 

| j                         | 1                 | 2                 | ••• | j                 | ••• | $n_N$               |
|---------------------------|-------------------|-------------------|-----|-------------------|-----|---------------------|
| $N_{j}$                   | $N_1$             | $N_2$             |     | $N_{j}$           |     | $N_{n_N}$           |
| $P_j = \frac{j}{n_N + 1}$ | $\frac{1}{n_N+1}$ | $\frac{2}{n_N+1}$ |     | $\frac{j}{n_N+1}$ |     | $\frac{n_N}{n_N+1}$ |

По данным таблиц 1 и 2 строятся оценки функций распределения несущей способности и эксплуатационной нагрузки, как это показано на рисунке 4. По графикам функций распределения определяются численные значения величин, представленных в таблице 3 и строится «экспериментальная» зависимость G = G(J) (рисунок 5). Площадь под этой кривой равна вероятности безотказной работы рассматриваемого элемента.

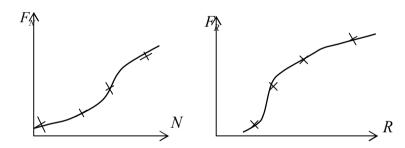



Рисунок 4 - Оценки функций распределения несущей способности и нагрузки

Таблица 3 — Построение «экспериментальной» зависимостиG = G(J)

| No  | N = R       | $F_R$    | $G=1-F_R$          | $J=F_N$        |
|-----|-------------|----------|--------------------|----------------|
| п/п |             |          |                    |                |
| 1   | $N_1 = R_1$ | $F_{R1}$ | $G_1 = 1 - F_{R1}$ | $J_1 = F_{N1}$ |
| 2   | $N_2 = R_2$ | $F_{R2}$ | $G_2 = 1 - F_{R2}$ | $J_2 = F_{N2}$ |
| ••• | •••         | •••      | •••                | •••            |
| i   | $N_i = R_i$ | $F_{Ri}$ | $G_i = 1 - F_{Ri}$ | $J_i = F_{Ni}$ |
| ••• | •••         | •••      |                    | •••            |
| n   | $N_n = R_n$ | $F_{Rn}$ | $G_n = 1 - F_{Rn}$ | $J_n = F_{Nn}$ |

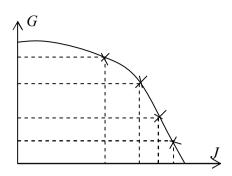



Рисунок 5 - Графическое определение надежности

## 2. Экспериментальное определение закона распределения несущей способности и расчёт вероятности безотказной работы

#### 2.1 Описание установки

Испытательная машина Shimadzu EHF-EV101k1-040 предназначена для проведения испытаний образцов с целью определения физико-механических свойств широкого круга материалов. Схема установки приведена на рисунке6. Она состоит из: 1- направляющие колонны, 2 - траверса, 3 - датчик силы, 4 - вспомогательный зажимной болт, 5 - стопорное кольцо, 6 - силовой привод, 7 - силовой стол, 8 - аварийный выключатель, 9 - контроллер перемещения траверсой, 10 - защитный кожух, 11 - стопорный механизм, 12 - сервоклапан, 13 - гидравлический аккумулятор.

#### 2.2 Схема проведения эксперимента

Для испытаний композиционных материалов в соответствии с международными стандартами ASTM и ISO должны быть изготовлены образцы специальной конфигурации. Для случая растяжения форма образцов представлена на рисунке 7.

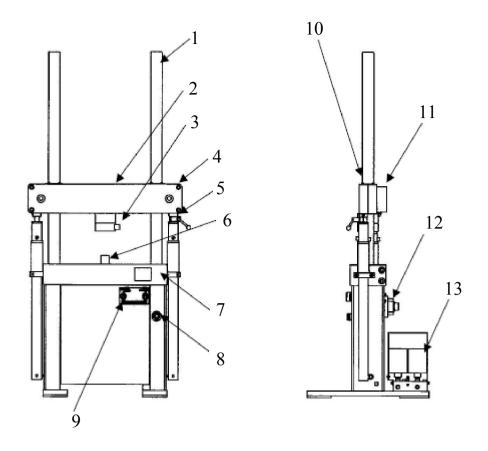



Рисунок 6 – схема испытательной установки

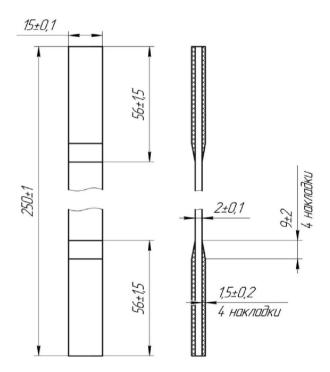



Рисунок 7 - Образец из композиционного материала

Для проведения испытания образца из композиционного материала следует выполнить следующий порядок действий:

- 1. Подготовить испытательную машину и захваты для проведения испытаний.
- 2. Произвести замеры длины, ширины и толщины испытываемого образца в трёх сечениях образца, посчитать среднее арифметическое и внести эти показания в программу для испытаний.
  - 3. Задать параметры испытания на управляющем компьютере.
- 4. Установить образец в захваты испытательной машины и произвести его фиксацию.
  - 5. Провести испытание до разрушения образца.
  - 6. Сохранить результаты испытаний.
  - 7. Изъять разрушенный образец из захватов испытательной машины.

При необходимости повторения испытания выполнить пункты 1-7 требуемое количество раз. После завершения всех проведённых испытаний сохранить все результаты и отключить испытательную машину. Типовой вид бланка отчёта об испытании представлен на рисунке 8.

| Test name          | Isp      | 3_baz_u | grad_1obr_te | ension                                    |        |  |  |
|--------------------|----------|---------|--------------|-------------------------------------------|--------|--|--|
| nformation         |          |         |              |                                           |        |  |  |
| Comment            |          |         |              |                                           |        |  |  |
| Date               |          |         | 4/3/2015     |                                           |        |  |  |
| Test type          |          |         |              |                                           |        |  |  |
| TP                 |          |         |              |                                           |        |  |  |
| Comment 1          |          |         |              |                                           |        |  |  |
| Comment 2          |          |         |              |                                           |        |  |  |
| Shape Plate        |          | Plate   |              |                                           |        |  |  |
| Width(mm)          |          | 14.89   |              |                                           |        |  |  |
| Thickness(mm)      | )        | 2.36    |              |                                           |        |  |  |
| Height(mm)         |          | 137.4   |              |                                           |        |  |  |
|                    |          | Tensile |              | Disp. TD                                  | STROKE |  |  |
| Test method        |          |         |              |                                           |        |  |  |
| Loading metho      | d        | Single  |              | Control mode                              | STROKE |  |  |
| Loading value(mm)  |          | 22      |              | Speed(mm/sec)                             | 0.02   |  |  |
| Number of pre-     |          | 0       |              | Hold time(sec)                            | 0.02   |  |  |
| ramber of pre      | toot     | · ·     |              | riola time(sec)                           | U      |  |  |
| Data sampling      |          |         |              |                                           |        |  |  |
| Sampling           |          | 0.1     |              |                                           |        |  |  |
| interval(sec)      |          |         |              |                                           |        |  |  |
| Calculation method |          | Loading |              | The range of calculation                  | STROKE |  |  |
| Upper(mm)          |          | 0.1     |              | Lower(mm)                                 | 0.05   |  |  |
|                    |          |         |              |                                           | 10.00  |  |  |
| Status log<br>Date | Tim      | 20      | Event        |                                           |        |  |  |
| 4/16/2015          |          | :49:40  |              | event<br>Zero OFF FORCE                   |        |  |  |
| 4/16/2015          |          | :49:43  |              | Zero OFF STROKE                           |        |  |  |
| 4/16/2015          |          | :14:17  |              | Zero ON STROKE 0 mm                       |        |  |  |
| 4/16/2015          |          | :14:19  |              | Zero ON FORCE 0 kN                        |        |  |  |
| 4/16/2015          |          | :14:32  |              | Start                                     |        |  |  |
| 4/16/2015          | 11:14:32 |         | - 10         | Zero shift value FORCE:2.516597kN         |        |  |  |
| 10,2010            | 11.14.52 |         |              | STROKE:0.000302mm VTD1:0N/mm2 VTD2:0%     |        |  |  |
| 4/16/2015          | 11       | :21:06  |              | Static characteristic value 6.36790 kN/mm |        |  |  |
| 4/10/2015          | 11:21:06 |         | Olullo !     | Manual stop                               |        |  |  |

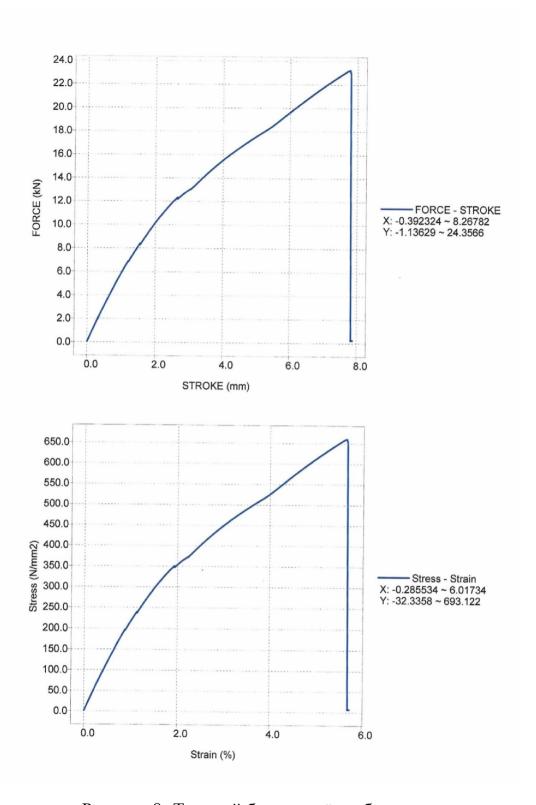



Рисунок 8- Типовой бланк отчёта об испытании

# 3. Определение закона распределения несущей способности и модуля упругости

При небольших объёмах выборки случайной величины функции распределения различных видов будут схожи. И лишь достаточно большой объём выборки будет давать возможность более достоверно определить закон распределения по виду функции распределения. Одним из наглядных и "простых" методов оценки близости распределения к какому-либо закону является так называемая «вероятностная бумага». Вид вероятностной бумаги зависит от гипотезы о законе распределения, которую необходимо проверить.

В инженерной практике распределение практически всех случайных величин можно определить как нормальное. Также практически каждый закон распределения можно свести к нормальному. Поэтому в дальнейшем речь пойдёт лишь о нормальном законе распределения.

Нормальная вероятностная бумага - специальным образом разграфленная бумага, построенная так, что график функции нормального распределения изображается на ней прямой линией. Это достигается изменением шкалы на вертикальной оси. Вероятностная бумага для проверки гипотезы о нормальном законе распределения представлена на представлена на рисунке 9.

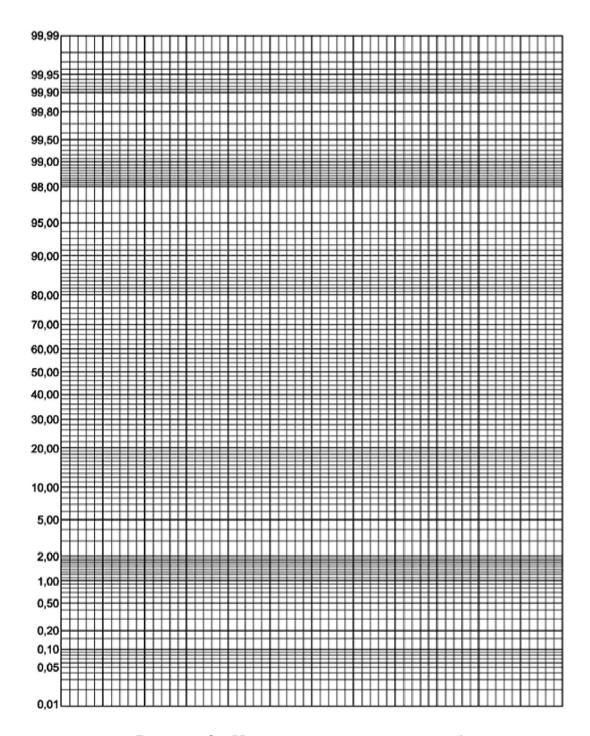



Рисунок 9 - Нормальная вероятностная бумага

Для определения модуля упругости композиционного материала по результатам испытанийнеобходимо воспользоваться следующим соотношением:

$$E = \frac{\Delta \sigma}{\Delta \varepsilon} = \frac{\sigma_{0.3\%} - \sigma_{0.1\%}}{\varepsilon_{0.3\%} - \varepsilon_{0.1\%}}$$

где  $\varepsilon_{0.3\%}$ ,  $\varepsilon_{0.1\%}$ ,  $\sigma_{0.3\%}$ ,  $\sigma_{0.1\%}$  - значения деформаций и соответствующих им напряжений на диаграмме деформирования материала.

Для построения ряда распределения и проверки гипотезы о нормальном законе распределения необходимо выполнить следующие действия:

- 1. С помощью таблицы 1 по экспериментальным данным о несущей способности образцов построить ряд распределения.
- 2. Нанести точки на вероятностную сетку нормального закона и по расположению точек на сетке принять решение о том, будет ли гипотеза о нормальном законе распределения отвергнута или принята как не противоречащая результатам наблюдений параметра
- 3. Для каждого проведённого испытания по полученным экспериментальным данным определить модуль упругости, пользуясь приведённым ранее соотношением.
- 4. С помощью таблицы 1 по экспериментальным данным о модуле упругости построить ряд распределения.
- 5. Нанести данные полученной таблицы на вероятностную нормальную бумагу и оценить будет ли гипотеза о нормальном законе распределения справедлива.
- 6. Проверить гипотезы о нормально законе распределения несущей способности и модуля упругости с помощью метода Шапиро-Уилка.

## 4. Расчётно-экспериментальное определение вероятности безотказной работы образцов из композиционных материалов

Для определения вероятности безотказной работы образцов из композиционных материалов необходимо иметь экспериментальные данные о несущей способности и внешней нагрузки. Данные о несущей способности были получены на предыдущем этапе выполнения работы. Данные о внешней нагрузке, а именно закон распределения и его числовые характеристики задаются преподавателем. Для определения вероятности безотказной работы следует выполнить следующие действия:

- 1. По имеющемуся закону распределения внешней нагрузки сгенерировать в программе Mathcad двадцать значений внешней нагрузки.
  - 2. Пользуясь таблицей 2 записать ряд распределения для внешней нагрузки.
- 3. По данным таблиц 1 и 2 построить оценки функций распределения несущей способности и эксплуатационной нагрузки.
- 4. По графикам функций распределения определить численные значения величин, представленных в таблице 3 и построить «экспериментальную» зависимость G = G(J) (рисунок 5). Площадь под этой кривой равна вероятности безотказной работы рассматриваемого элемента.

### 5. Определение корреляции свойств композиционного материала и несущей способности образцов

Для определения корреляции свойств композиционного материала и несущей способности образцов необходимо выполнить следующие действия:

1. Определить математические ожидания величин R и E по формулам:

$$\bar{R} = \sum_{i} R_i p_i.$$

$$\bar{E} = \sum_{i} E_i p_i.$$

2. Определить дисперсию и среднее квадратическое отклонение величин R и N по формулам:

$$D_R = \sum_i p_i \cdot (R_i - \bar{R})^2$$
;  $\sigma_R = \sqrt{D_R}$ ;  $D_E = \sum_i p_i \cdot (E_i - \bar{E})^2$ ;  $\sigma_E = \sqrt{D_E}$ .

3. Определить корреляционный момент по формуле:

$$K_{RE} = \sum_{i} \sum_{j} \left( (R_i - \bar{R}) \cdot (E_j - \bar{E}) \right) \cdot p_i p_j$$

4. Определить коэффициент корреляции:

$$r_{RE} = \frac{K_{RE}}{\sigma_R \sigma_E}$$

Для полученного значения коэффициента корреляции справедливы следующие положения:

- r изменяется в интервале от —1 до +1.
- Знак r означает, увеличивается ли одна переменная по мере того, как увеличивается другая (положительный r), или уменьшается ли одна переменная по мере того, как увеличивается другая (отрицательный r).
- Величина r указывает, как близко расположены точки к прямой линии. В частности, если r = +1 или r = -1, то имеется абсолютная (функциональная) корреляция по всем точкам, лежащим на линии (практически, это маловероятно); если  $r \cong 0$ , то линейной корреляции нет (хотя может быть нелинейное соотношение). Чем ближе r к крайним точкам ( $\pm 1$ ), тем больше степень линейной связи.