Лекция Л. (Вводная). Множество. Число. Функция

В предлагаемом вниманию читателя курсе математического анализа различные определения, утверждения и теоремы зачастую формулируются посредством общепринятых логических обозначений — символов (элементов, кванторов) языка раздела математики, именуемого математической логикой. Использование подобной символики не является, как известно, необходимым¹, однако имеет ряд преимуществ, в особенности в небольших по продолжительности лекционных курсах. Одно из таких преимуществ — компактность и емкость формулировок, позволяющая экономить время и место. Другое состоит в том, что применение этого языка закрепляет у изучивших его читателей навыки систематического и универсального мышления, что облегчает восприятие строгих посылок, выводов и доказательств математического анализа. Следует, впрочем, сказать, что применение упомянутых символов не является в данном курсе самоцелью, и рядом с некоторым математическим предложением, «зашифрованным» подобным образом, почти всегда можно найти его «перевод» на обычный язык. Из сравнения этих двух форм одного и того же вдумчивый студент извлечет несомненные преимущества более глубокого проникновения в суть изучаемого математического понятия и дополнительные степени интеллектуальной свободы.

Не имея целью систематическое изучение математической логики и свойств даже тех ее простейших языковых конструкций, о которых говорилось выше, приводим ниже их сокращенный перечень с необходимыми пояснениями.

СИМВОЛИКА МАТЕМАТИЧЕСКОЙ ЛОГИКИ

Символ	Смысл
«∀» – квантор всеобщности	Заменяет словосочетания: «любой», «вся- кий», «для любого» и т.п.
«Э» - квантор существования	«существует», «найдется» и т.п.
«⇒» – знак импликации	«следует», «влечет», «вытекает», «имеет

¹ Есть несколько блестящих примеров курсов математики, в которых такой подход совсем не используется. Один из них – двухтомник Н.Н.Лузина «Дифференциальное исчисление» и «Интегральное исчисление».

ЛЕКЦИЯ 1

	место», «выполняется»
« ⇔ » – знак равносильности или эквива- лентности	«тогда и только тогда, когда», «в том и только том случае, когда», «если и только если»
«:» – двоеточие	«такой, что»
« » – вертикальная черточка; сходен по смыслу и употреблению с предыдущим символом	«при условии, что»
«{ некоторые объекты }» – фигурные скобки	Знак совокупности объектов (например, чисел, геометрических фигур, функций и пр.)
« * » горизонтальная черта над некоторым утверждением	Знак отрицания. Означает, что данное утверждение не имеет места
{ условия	Знак <i>системы</i> условий
условия	Знак <i>совокупности</i> условий

Система условий выполнена \Leftrightarrow ² выполнены *все* условия системы; система не выполнена \Leftrightarrow не выполнено *хотя бы одно* из ее условий³.

Совокупность условий выполнена \Leftrightarrow выполнено *хотя бы одно* из них; совокупность не выполнена \Leftrightarrow одновременно не выполнены *все* ее условия⁴.

І. МНОЖЕСТВО

Понятие множества – первичное (элементарное) понятие математики, не сводящееся к более простым понятиям, и потому не имеющее строгого математического определения.

_ د

 $^{^{2}}$ Логическая символика изредка будет употребляться не только в определениях и других математических высказываниях, а и в обычных предложениях для сокращения записи.

³ Можно сказать, что в этом смысле условия в системе объединяются союзом «**и**». Наряду со знаком системы условий используют равносильный по смыслу логический символ « \wedge » – знак *конъюнкции*.

⁴ Часто также говорят, что условия в совокупности объединяются *неисключающим* союзом «**или**» в прямом соответствии со смыслом словосочетания «хотя бы одно». Наряду со знаком совокупности условий используют равносильный по смыслу логический символ « \vee » – знак *дизъюнкции*.

Множество понимается как *совокупность* некоторых объектов, называемых элементами данного множества.

• **Пример:** множество факультетов НФ ГУ ВШЭ; множество девушек с зелеными глазами на ЭФ, множество звезд в Галактике и т.п.

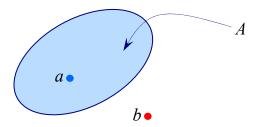
Пустое множество, обозначаемое посредством символа ϕ , есть множество, не содержащее элементов.

◆Примеры: множество действительных корней уравнения $x^2 + 1 = 0$, множество пересекающихся параллельных прямых в школьной геометрии, множество треугольников с четырьмя сторонами.

Диаграммы Эйлера – Венна

Диаграммы Эйлера — Венна — удобное графическое средство изображения множеств, их элементов и различных соотношений между ними. Множества представляются некоторыми (часто плоскими) фигурами, а их элементы — точками этих фигур. В качестве обозначений (названий, имен) множеств традиционно используют заглавные латинские буквы A, B, C, ..., X, Y, Z, а их элементы часто обозначают малыми латинскими буквами a, b, c, ..., x, y, z. Принадлежность элемента a множеству A записывают в виде $a \in A$, а если элемент b не принадлежим множеству A, то пишут $b \notin A$.

Диаграмма



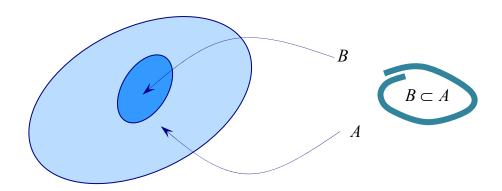
Подмножества

Понятие подмножества возникло в результате необходимости придать строгую форму тому обстоятельству, что из двух множеств одно есть в некотором смысле *часть* другого.

Определение Множество B называют подмножеством множества A (пишут $B \subset A$ или $A \supset B$), если всякий элемент множества B есть в то же время и элемент множества A: $B \subset A \Leftrightarrow \forall x \in B \Rightarrow x \in A$.

Говорят также, что множество B включено (или вложено) в множество A.

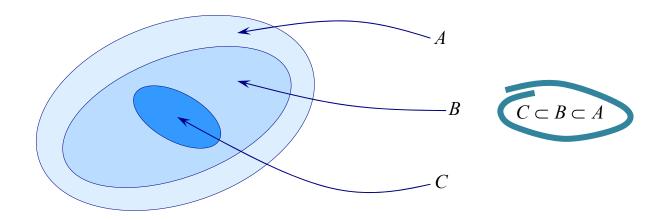
Диаграмма



В соответствии с приведенным определением для любого множества A выполняется включение $A \subset A$ (то есть любое множество включено само в себя). По определению принимают также, что $\phi \subset A$, $\forall A$ (пустое множество включено во всякое другое)⁵.

Отношение включения *транзитивно*, то есть если $C \subset B$ и $B \subset A$, то $C \subset A$.

Диаграмма

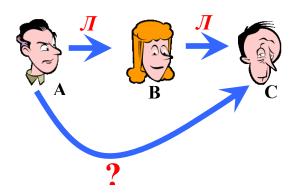


⁵ Если считать, что фраза «элемент x принадлежит множеству \varnothing », имеет смысл, то включение $\varnothing \subset A$ можно doka3amb, исходя из определения (докажите!).

ЛЕКЦИЯ 1

Не следует думать, что указанное свойство отношения включения является само собой разумеющимся, т.к. *не все отношения транзитивны* (не только в математике, но и в быту!).

◆Пример: Экономисту A нравится экономистка B, а ей нравится экономист C:



Равенство множеств

◆Определение
$$A \stackrel{\text{def}}{=} B \Leftrightarrow \begin{cases} \forall x \in A \Rightarrow x \in B \\ \forall y \in B \Rightarrow y \in A \end{cases} \Leftrightarrow \begin{cases} A \subset B \\ B \subset A \end{cases}$$
.

« def » — знак *равенства по определению* («definition»), используется для введения (определения) новых понятий, читается: «есть по определению».

При этом для обозначения равных множеств используют традиционный знак равенства «=» и пишут, как обычно: A=B .

◆Пример: пусть A — множество равносторонних треугольников, и B — множество равноугольных треугольников. Ясно, что A = B, то есть эти множества состоят из одних и тех же элементов и потому равны друг другу в соответствии с вышеприведенным определением (проведите доказательство подробно по схеме, данной ниже в замечании).

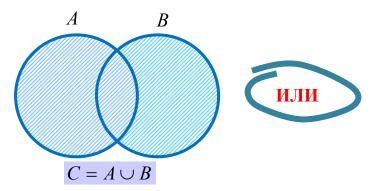
Операции над множествами

1. Объединение (аналог сложения чисел; знак операции – (()), (чашка)).

◆Определение
$$C \stackrel{\text{def}}{=} A \cup B \Leftrightarrow C = \{ c : \begin{bmatrix} c \in A \\ c \in B \end{bmatrix} \}.$$

Таким образом, объединение множеств состоит из тех и только тех элементов, которые принадлежат *хотя бы одному* из объединяемых множеств.

Диаграмма



Данное выше определение относится и к объединению *любого конечного числа* множеств.

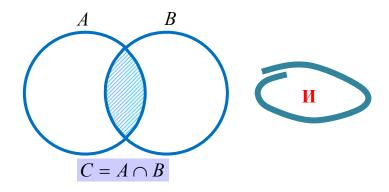
Свойства операции «∪».

- $A \cup B = B \cup A$ коммутативность; переместительный закон
- $(A \cup B) \cup C = A \cup (B \cup C)$ ассоциативность; сочетательный закон
- $\bullet \qquad A \cup A = A$
- $\bullet \qquad A \cup \varnothing = A$
- **2.** Пересечение (аналог умножения чисел; знак операции $\langle \langle \rangle \rangle$, «крышка»).

◆Определение
$$C \stackrel{\text{def}}{=} A \cap B \Leftrightarrow C = \{c : \begin{cases} c \in A \\ c \in B \end{cases} \}.$$

Таким образом, пересечение множеств состоит из тех и только тех элементов, которые *входят одновременно* в эти множества.

Диаграмма



Данное выше определение относится и к пересечению любого конечного их числа.

Свойства операции «∩».

- $A \cap B = B \cap A$ коммутативность; переместительный закон
- $(A \cap B) \cap C = A \cap (B \cap C)$ ассоциативность; сочетательный закон
- $\bullet \qquad A \cap A = A^6$
- $A \cap \emptyset = \emptyset^7$

Операции объединения и пересечения взаимно распределительны (дистрибутивны)⁸:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
 – дистрибутивность \cap относительно \cup , $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ – дистрибутивность \cup относительно \cap .

◆Замечание

Доказательство всех свойств операций над множествами, представляющих собой *ум-верждения о равенстве некоторых множеств*, производится по следующей схеме: доказывают, что всякий элемент левой части равенства является и элементом правой, а всякий элемент правой части равенства является и элементом левой, после чего используют определение равенства множеств.

Пусть, далее, $B \subset A$. Тогда $A \cup B = A$ (объединение таких множеств есть более «широкое» из них), $A \cap B = B$ (пересечение – более «узкое»).

3. Разность множеств. Дополнение (аналог числового вычитания; знак операции – «\»).

Определение
$$C \stackrel{\text{def}}{=} A \setminus B \Leftrightarrow C = \{ c : \begin{cases} c \in A \\ c \notin B \end{cases} \}$$
.

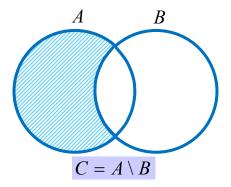
Таким образом, разность множеств A и B состоит из тех и только тех элементов множества A, которые при этом не входят в множество B.

⁶ Обратите внимание на то, что это свойство пересечения, как и свойство объединения $A \cup A = A$, отличают указанные операции над множествами от операций сложения и умножения действительных чисел.

 $^{^{7}}$ Это свойство, как и свойство объединения $A \cup \varnothing = A$, показывает, что пустое множество \varnothing играет среди множеств роль, сходную с той, которую играет число «0» в множестве действительных чисел.

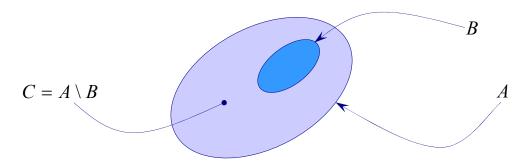
 $^{^{8}}$ В арифметике распределительно только *умножение* чисел по отношению к *сложению*.

Диаграмма



Операция «\» не является ни коммутативной, ни ассоциативной: $A \setminus B \neq B \setminus A$, $(A \setminus B) \setminus C \neq A \setminus (B \setminus C)$.

Если $B \subset A$, то разность $A \setminus B$ называется дополнением множества B в множестве A :



Пусть $U_i \subset A, \ i=1,\dots,n$ — подмножества множества A . Обозначим посредством $\bigcup_i U_i = U_1 \cup U_2 \cup \dots \cup U_n, \text{ объединение всех таких множеств } U_i \text{ и посредством}$ $\bigcap_i U_i = U_1 \cap U_2 \cap \dots \cap U_n, \text{ - их пересечение}.$

Имеют место важные соотношения, называемые *формулами де-Моргана* и выражающие так называемый *принцип двойственности* (термин «двойственность» обусловлен тем, что каждое из этих соотношений переходит во второе, если в нем поменять местами знаки операций объединения и пересечения):

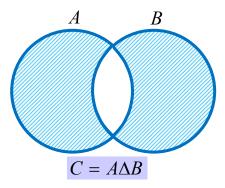
$$A \setminus \left(\bigcup_{i} U_{i}\right) = \bigcap_{i} \left(A \setminus U_{i}\right)$$
$$A \setminus \left(\bigcap_{i} U_{i}\right) = \bigcup_{i} \left(A \setminus U_{i}\right)$$

Таким образом, дополнение в множестве A объединения (пересечения) подмножеств множества A равно пересечению (объединению) дополнений этих подмножеств в A.

При помощи операций «\» и « \cup » можно образовать так называемую *симметрическую разность* (знак операции – « Δ ») множеств A и B:

◆Определение
$$C \stackrel{\text{def}}{=} A \Delta B \Leftrightarrow C = \{ c : \begin{bmatrix} c \in A \setminus B \\ c \in B \setminus A \end{bmatrix} \}.$$

Диаграмма



Операция « Δ », в отличие от « \backslash », является уже как коммутативной, так и ассоциативной (докажите!). Выполняется равенство $A \Delta B = (A \cup B) \setminus (A \cap B)$.

4. Декартово произведение множеств (знак операции – «×»).

◆Определение
$$C \stackrel{\text{def}}{=} A \times B \Leftrightarrow C = \{(x,y): \begin{cases} x \in A \\ y \in B \end{cases} \}.$$

Таким образом, декартово произведение ∂syx множеств есть совокупность *упорядоченных* 9 *пар* элементов, первый из которых принадлежит первому множеству, а второй – второму.

Известно, что операция « \times » не коммутативна, но ассоциативна: $A \times B \neq B \times A$, но $(A \times B) \times C = A \times (B \times C)$.

Аналогично вводится декартово произведение более чем двух множеств:

 $^{^{9}}$ Упорядочение означает, что числам в паре присвоены порядковые номера «1» и «2», в соответствии с которыми они перечислены внутри круглых скобок. Таким образом, пары (x, y) и (y, x) – вообще говоря, *различны*.

Определение $A_1 \times A_2 \times ... \times A_n \stackrel{\text{def}}{=} \left\{ (x_1, x_2, ..., x_n) : x_1 \in A_1, x_2 \in A_2, ..., x_n \in A_n \right\}^{10} - \textit{совокуп-}$ *ность упорядоченных наборов*, состоящих из n элементов, причем первый из них принадлежит первому из множеств, второй – второму и т.д.

Трудности теории множеств11

- •Пример: Размышляя над понятием множества, заметим, например, следующее.
- 1). Множество всех треугольников не является треугольником и поэтому не входит само в себя в качестве элемента.
- 2). Множество всех множеств тоже множество и поэтому, казалось бы, в отличие от первого случая, должно входить в себя в качестве элемента.

Обозначим теперь посредством Ω свойство множества, состоящее в том, что оно не входит в себя в качестве элемента. Как видно, множество всех треугольников обладает этим свойством, а множество всех множеств – нет. Построим, далее, множество A, включив в него те и только те множества, которые обладают свойством Ω .

Вопрос: обладает ли само множество A этим свойством Ω ?

Пусть A обладает свойством Ω . Тогда A не должно входить в A в качестве элемента. Но с другой стороны — должно входить, т.к. A состоит по построению из всех множеств, которые сами в себя в качестве элемента не входят — *противоречие*.

Пусть A не обладает свойством Ω , то есть A есть в A, что означает по признаку входящих в A элементов-множеств, что множества A в качестве элемента в A не содержится— вновь противоречие.

Итак, построенное нами множество A не может ни обладать свойством Ω , ни не обладать им.

Этот парадокс известен в теории множеств как парадокс Б.Рассела.

вий через запятую, вместо которой можно было также везде написать значок « ^ ».

ЛЕКЦИЯ 1

_

 $^{^{10}}$ Здесь употреблена несколько иная, чем в предыдущих определениях, система обозначений, более удобная для данного случая: системный знак заменен перечислением нескольких одновременно выполняющихся усло-

¹¹ Продемонстрированы на общеизвестном примере, показывающем, как отсутствие логически строгого определения некоторого понятия (в данном случае – понятия множества) может приводить к противоречиям.

Преодоление: можно, например, постулировать, что *никакая совокупность не может быть частью самой себя*. Тогда следует признать понятие «множество всех множеств» внутренне противоречивым и не использовать его в дальнейших построениях ¹².

Легко привести примеры внутренне противоречивых высказываний бытового свойства. Например, фраза «Я лжец» внутренне противоречива. Действительно, данное высказывание либо истинно, либо ложно. Если высказывание «Я лжец» истинно, то сказавший это – не солгал, то есть не является лжецом, что противоречит смыслу высказанной фразы. Если же это высказывание ложно, то сказанное есть неправда, то есть неправда, что человек – лжец. Однако это противоречит тому, что он сказал неправду. Итак, нельзя произнести «Я лжец», не впав при этом в логическое противоречие.

П. ЧИСЛО

Понятие числа — это также одно из элементарных понятий математики. Оно возникло и развивалось в результате практической потребности *выражать количественно* всевозможные соотношения между различными объектами внешнего мира.

Основные множества чисел

 $ightharpoonup \mathbb{N} = \{\ 1, 2, 3, \dots\}$ — множество *натуральных* чисел. Возникло из потребности *счета* предметов.

В результате формализации понятий «отсутствия количества» и «долга» множество № было дополнено при помощи нуля и отрицательных (противоположных натуральным) чисел до множества *целых* чисел (по некоторым данным это произошло в Древнем Вавилоне):

$$\mathbb{Z} = \{ ..., -2, -1, 0, 1, 2, ... \}.$$

Потребность оперировать с частями целого породила множество *рациональных* чисел:

¹² Вопросы о том, насколько верны теории, основанные на понятиях, таящих в себе внутренние противоречия, являются в математической логике предметом специальных глубоких исследований. Опыт учит, что несмотря на наличие парадоксов, подобных рассмотренному выше, математический анализ — весьма полезная теория, даже если смотреть на него чисто утилитарно, то есть только с точки зрения практической пригодности его результатов (в частности, в задачах экономики).

$$ho$$
 $\mathbb{Q}=igg\{rac{p}{q}igg\},\;\;p\in\mathbb{Z}\;,\;q\in\mathbb{N}\;.$ Таким образом, рациональные числа — это дроби с целым

числителем и натуральным знаменателем.

Результат любой из основных арифметических операций («+», «-», «×», «:»), выполненной над *рациональными* операндами (деление на нуль запрещено), также является *рациональным* числом (это не так для натуральных и целых чисел!).

С арифметической точки зрения рациональные числа представляют собой конечные или бесконечные периодические десятичные дроби.

◆Пример:
$$-\frac{1}{4} = -0.25$$
; $\frac{1}{3} = 0,333... = 0,(3)$; $\frac{1}{7} = 0,(142857)$ период

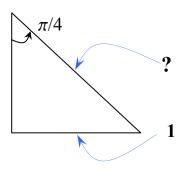
▲ Соответствуют ли каким-либо рациональным числам десятичные дроби:

0,10100100010000...; 0,123456789101112...?

▲ Выясните, от чего и как именно зависит, представляется ли рациональное число конечной или бесконечной периодической десятичной дробью.

Простейшие потребности геометрии привели к открытию в Древней Греции количеств, не выражаемых рациональными числами.

◆Пример: Если длине катета равнобедренного прямоугольного треугольника поставить в соответствие число 1, то в множестве ℚ не найдется числа, которое бы соответствовало длине его гипотенузы (докажите!). Из теоремы Пифагора следует, что квадрат этого числа равен 2.



Числа указанного вида (то есть не входящие в \mathbb{Q}), образуют множество \mathbb{I} *иррациональных* чисел (представляют собой *бесконечные десятичные непериодические дроби*).

Определение Множество $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$, то есть объединение множеств рациональных и иррациональных чисел, называется множеством *действительных* (*вещественных*) чисел.

Геометрический образ множества \mathbb{R} – *числовая прямая* (*числовая ось*, ч.о.).

Числовая ось есть непрерывная бесконечная прямая, на которой выбраны: начало отсчета (произвольная ее точка, условно соответствующая числу 0), отмечаемое стрелкой направление возрастания чисел и масштаб – единичный отрезок от начала отсчета до точки на прямой, условно соответствующей числу 1:

Между точками ч.о. и действительными числами имеется *взаимно однозначное соответствие*: каждой точке ч.о. соответствует единственное число, для каждого числа найдется соответствующая ему точка ч.о. и разным точкам ч.о. соответствуют разные числа¹³.

Действительные числа образуют *упорядоченное* множество (то есть их можно сравнивать по величине): для всяких двух чисел a, b выполнено *лишь одно* из трех возможных соотношений: a < b, a > b, a = b.

Определение *Целой частью* действительного числа x (обозначения E(x), [x]) называется наибольшее целое число, не превосходящее x.

- **Пример:** [-1,2] = -2, [0] = 0, [7,04] = 7.
- **Определение** Дробной частью действительного числа x (обозначение $\{x\}$) называется разность между ним и его целой частью: $\{x\} = x [x]$.
- **Пример:** $\{1,7\} = 1,7 [1,7] = 1,7 1 = 0,7;$ $\{-0,3\} = -0,3 [-0,3] = -0,3 (-1) = 0,7$. Ясно, что $0 \le \{x\} < 1$, $\forall x \in \mathbb{R}$.

¹³ Тем самым точки числовой прямой и действительные числа выступают в виде уникальных пар: всякая точка – в паре с ей и только ей соответствующим действительным числом и наоборот.

Определение *Абсолютной величиной* (*модулем*) действительного числа x называется действительное число |x|, вычисляемое по формуле

$$\mid x \mid \stackrel{\text{def}}{=} \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}.$$

(здесь фигурная скобка не имеет «системного смысла», т.к. не является первым символом выражения — ей предшествует знак равенства по определению; она обозначает совокупность равенств, определяющих величину |x|, а именно: модуль неотрицательного действительного числа совпадает с самим числом, тогда как модуль отрицательного числа равен противоположному действительному числу).

Основные свойства модуля

- 1°. Модуль есть величина неотрицательная: $|x| \ge 0, \forall x \in \mathbb{R}$.
- 2° . Модули противоположных величин равны: $\mid x \mid = \mid -x \mid$, $\forall x \in \mathbb{R}$.
- 3°. Модуль не меньше самой величины и ей противоположной: $|x| \ge x, |x| \ge -x, \forall x \in \mathbb{R}$.
- 4°. Геометрический смысл модуля

Число |a-b| равно *расстоянию* между точками ч.о., соответствующими числам a и b . В частности, |x| = |x-0| есть расстояние от точки x до начала отсчета на ч.о.

5°. Неравенство треугольника

Модуль суммы не превосходит суммы модулей слагаемых: $|x+y| \le |x| + |y|$, $\forall x, y \in \mathbb{R}$.

Следствия:

а).
$$|x_1 + x_2 + ... + x_n| \le |x_1| + |x_2| + ... + |x_n|$$
, или $\left| \sum_{j=1}^n x_j \right| \le \sum_{j=1}^n |x_j|$, где $\sum_{j=1}^n - 3$ нак (символ) суммирования по индексу j от 1 до n (докажите!).

b). $||x|-|y|| \le |x-y|$ — модуль разности модулей двух чисел не превосходит модуля их разности (докажите!).

6°. $|x \cdot y| = |x| \cdot |y|$ — модуль произведения равен произведению модулей сомножителей; верно для любого числа сомножителей $\Rightarrow |x^n| = |x|^n$, $\forall x \in \mathbb{R}$, $n \in \mathbb{N}$.

$$\left| \frac{x}{y} \right| = \frac{|x|}{|y|}, \ y \neq 0$$
 — модуль частного равен частному модулей делимого и делителя.

 7° . $\sqrt{x^2} = |x|$ — правило извлечения *арифметического квадратного корня* из квадрата действительного числа.

Числовые промежутки на числовой оси. Несобственные элементы

1. Отрезок $\begin{cases} x \ge a \\ x \le b \end{cases} \Leftrightarrow a \le x \le b$

2. Интервал $\begin{cases} x > a \\ x < b \end{cases} \Leftrightarrow a < x < b$

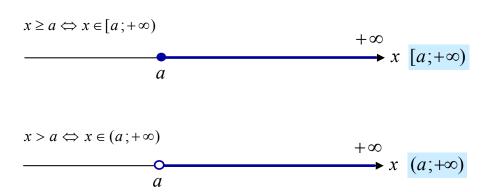
3. Полуотрезок (полуинтервал)

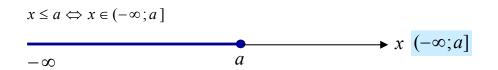
$$\begin{cases} x \ge a \\ x < b \end{cases} \Leftrightarrow a \le x < b$$

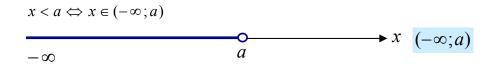
$$\begin{cases} x > a \\ x \le b \end{cases} \Leftrightarrow a < x \le b$$

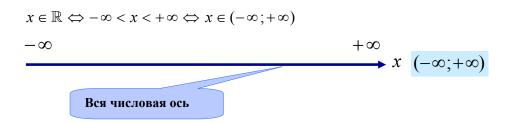
Несобственными элементами числовой оси называют символы $+\infty$ и $-\infty$. Им не соответствуют никакие точки ч.о., что обусловливает термин «несобственные» по отношению к этим символам. Выше были изображены лишь *конечные* промежутки¹⁴ ч.о., то есть такие, для которых расстояние от их точек до начала отсчета ограничено некоторой величиной R > 0 (такие промежутки имеют конечную длину). Несобственные символы $+\infty$ и $-\infty$ связаны отношениями порядка с действительными числами следующим образом: $+\infty$ ($-\infty$) больше (меньше) *любого* действительного числа. Это позволяет применить сходные с упомянутыми выше обозначения и для *бесконечных* промежутков числовой прямой.

А именно:







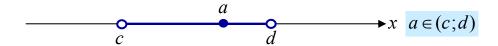


¹⁴ Объединяющий термин для отрезков и интервалов (полуинтервалов) числовой прямой.

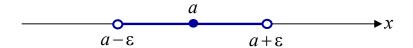
ЛЕКЦИЯ 1

Окрестности

Определение Окрестность действительного числа a есть произвольный интервал ч.о., содержащий точку a:



Важную роль в дальнейшем будут играть окрестности, для которых точка a — середина интервала (c;d). Если длину такого интервала обозначить, следуя традиции, как 2ε , $(\varepsilon$ — «эпсилон», буква греческого алфавита; ε > 0) то получим $c = a - \varepsilon$, $d = a + \varepsilon$:



Такие окрестности называют ε – *окрестностями* точки a и обозначают $U_{\varepsilon}(a)$. Таким образом, $U_{\varepsilon}(a) = \{x: |x-a| < \varepsilon \}$.

◆Пример: интервал (−1; 5) есть 3 – окрестность точки x = 2.

Если окрестность точки a не содержит самой этой точки, то она называется *проколо- той* ее окрестностью: $U_{\epsilon}(a) = \{x : 0 < |x-a| < \epsilon \}$.

Для единообразного изложения формулировок и доказательств многих теорем математического анализа удобно ввести понятие ε – окрестностей и для несобственных символов числовой оси. Это делается следующим образом.

Определение \triangleright ε – окрестностью символа +∞ называют промежуток (ε; +∞). Аналогично, ε – окрестность символа -∞ – это промежуток (-∞; -ε):

$$U_{\varepsilon}(+\infty): \xrightarrow{+\infty} x$$

$$U_{\varepsilon}(-\infty)$$
:
$$\begin{array}{c} -\infty \\ -\varepsilon \end{array}$$

Симметричное множество $(-\infty; -\epsilon) \cup (\epsilon; +\infty)$ можно рассматривать как ϵ – окрестность еще одного несобственного символа ч.о. – так называемой *беззнаковой бесконечности* ∞ , которая уже не связана отношениями «>» или «<» с действительными числами. Эта окрестность обозначается посредством $U_{\epsilon}(\infty)$:

$$U_{\varepsilon}(\infty)$$
:

Как видно, $U_{\varepsilon}(\infty) = \{x : |x| > \varepsilon \}$, то есть представляет совокупность точек ч.о., расстояние от которых до начала отсчета превосходит ε . Ясно, что $U_{\varepsilon}(\infty) = \mathbb{R} \setminus [-\varepsilon; \varepsilon]$, так что ε – окрестность символа ∞ является дополнением отрезка $[-\varepsilon; \varepsilon]$ в множестве всех действительных чисел $[-\varepsilon; \varepsilon]$.

Из множества \mathbb{R} можно при помощи операции декартова умножения образовать множества $\mathbb{R}_2 = \mathbb{R} \times \mathbb{R}$ (обозначается также \mathbb{R}^2),..., $\mathbb{R}_n = \mathbb{R} \times \mathbb{R} \times ... \times \mathbb{R}$ (n paз).

Определение Множество \mathbb{R}_n называют n – мерным координатным пространством. Оно представляет собой совокупность упорядоченных наборов $(x_1, ..., x_n)$ действительных чисел. Всякий такой набор называют точкой пространства \mathbb{R}_n , а числа $x_1, ..., x_n$ – ее координатами. Такие наборы называют также векторами пространства.

Если представить себе плоскость, в которой введена, например, декартова прямоугольная система координат Ox_1x_2 , то каждая точка плоскости однозначно определяется парой чисел (x_1, x_2) , так что между точками плоскости и точками пространства \mathbb{R}_2 возникает взаимно однозначное соответствие (рассуждение остается в силе для любого числа n).

Рассмотренные выше множества чисел находятся друг с другом в соотношении $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \dots$ можно ли продолжить этот ряд вложений?

Оказывается, что понятие числа можно расширять и дальше. Одно из таких важнейших расширений — расширение до множества так называемых *комплексных чисел* $\mathbb C$ (пред-

 $^{^{15}}$ Иногда ε — окрестности символов — ∞ , + ∞ , ∞ определяют как множества (— ∞ , — $1/\varepsilon$), ($1/\varepsilon$, + ∞) и (— ∞ , — $1/\varepsilon$) \cup ($1/\varepsilon$, + ∞) соответственно. Тогда, как и для ε — окрестностей собственных точек числовой оси,

при $0<\epsilon_1<\epsilon_2$ будет $U_{\epsilon_1}(*)\subset U_{\epsilon_2}(*)$, где «*» означает любой из этих несобственных символов.

ставляющих собой систему плоских векторов, подчиненных определенным правилам при выполнении над ними алгебраических операций).

О непрерывности множества действительных чисел

В данной лекции в ходе изложения основ математического анализа предполагается, что главные свойства действительных чисел известны читателю из курса школьной математики. О свойстве упорядоченности множества $\mathbb R$ уже упоминалось выше. Расширенная формулировка этого свойства, а также свойства, связанные с выполнением над действительными числами основных арифметических операций, еще раз перечислены в целях напоминания ниже¹⁶. Предполагается, что $a,b,c\in\mathbb R$.

▶ І. Свойства порядка

1). для любых двух действительных чисел a,b имеется единственная из трех возможностей: a=b , a < b , a > b .

2).
$$\begin{cases} a < b \\ b < c \end{cases} \Rightarrow a < c - mpанзитивность \text{ отношения "<" ("меньше").}^{17}$$

3). $\forall a,b:a < b \Rightarrow \exists c:a < c < b$ – между двумя действительными числами имеется действительное число.

▶ II. Свойства операций сложения и вычитания

1). a + b = b + a — переместительный закон (коммутативность сложения).

2).
$$(a+b)+c=a+(b+c)$$
 — сочетательный закон (ассоциативность сложения).

- 3). a + 0 = a.
- 4). a + (-a) = 0.
- 5). $a < b \Rightarrow a + c < b + c, \forall c$.

► III. Свойства операций умножения и деления

- 1). ab = ba переместительный закон (коммутативность умножения).
- 2). (ab)c = a(bc) сочетательный закон (ассоциативность умножения).

¹⁶ Эти свойства приводятся здесь без доказательств, за которыми читатель отсылается к расширенным курсам математического анализа.

¹⁷ Отношения «больше» (\ll >») и «равно» (\ll =») также транзитивны (докажите).

- 3). $a \cdot 1 = a$.
- 4). $a \cdot \frac{1}{a} = 1, a \neq 0$.
- 5). (a+b)c = ac + bc распределительный закон (дистрибутивность умножения по отношению к сложению).
 - 6). $a < b \Rightarrow ac < bc, \forall c > 0$.

В полной системе свойств действительных чисел к уже приведенным добавляются еще два.

► IV. Архимедово свойство

 $\forall c>0\ \exists n\in\mathbb{N}: n>c$ – для всякого положительного действительного числа найдется большее его натуральное число. Отсюда вытекает, что $\forall \epsilon>0\ \exists n: \frac{1}{\epsilon}< n$, или, после умножения обеих частей неравенства на $\frac{\epsilon}{n}>0$ и использования свойства III, 6), $\frac{1}{n}<\epsilon$ – для любого положительного действительного числа отыщется такое натуральное число, что обратное к нему будет меньше взятого числа.

► V. Непрерывность множества действительных чисел

Последнее пятое свойство отражает представление о действительных числах как точках непрерывной, сплошной числовой прямой. Несмотря на простоту и кажущуюся интуитивную понятность, для его строгого доказательства школьного математического аппарата уже недостаточно. В данном курсе математического анализа оно обсуждается по необходимости кратко, см. сноску 16 на стр.19.

Свойство непрерывности может быть определено несколькими различными способами в форме эквивалентных утверждений. Ниже приведены три такие формулировки.

V_I. Лемма о вложенных отрезках. Пусть задана последовательность (система) отрезков вида $s_n = [a_n, b_n], \, n = 1, 2, \ldots, \,$ вложенных друг в друга: $\forall n \in \mathbb{N} \Rightarrow s_{n+1} \subset s_n$. При этом выполнено дополнительно следующее условие: каково бы ни было положительное число ε , начиная с некоторого номера n_0 длины $l_n = b_n - a_n$ всех таких отрезков меньше ε . Это принято запи-

сывать в виде $l_n \to 0$ и говорить: «переменная l_n стремится к нулю при n , стремящемся к бесконечности». ¹⁸

Тогда существует и притом единственное число (точка), принадлежащее всем этим отрезкам: $\exists ! a : \forall n \in \mathbb{N} \implies a \in s_n$.

V_{II}. Пусть множество \mathbb{R} разбито на две непустые непересекающиеся части $A, B : \mathbb{R} = A \cup B$, $A \neq \emptyset, B \neq \emptyset$, причем любое число из множества A меньше любого числа из множества $B : \forall a \in A, \forall b \in B \Rightarrow a < b$ (докажите, что вследствие этого $A \cap B \neq \emptyset$).

Тогда либо в A есть наибольшее число, а в B нет наименьшего, либо в A нет наибольшее число, а в B есть наименьшее.

•Примеры:

1).
$$A = (-\infty; 2010], B = (2010; +\infty) \Rightarrow \exists \gamma = \max_{x \in A} x = 2010, \not \exists \min_{x \in B} x.$$

2).
$$A = (-\infty; p)$$
, $B = [p; +\infty) \Rightarrow \not\exists \max_{x \in A} x, \exists y = \min_{x \in B} x = p$.

Говорят, что множества A, B, удовлетворяющие условиям V_{II} , образуют сечение $A \mid B$ множества \mathbb{R} . Множество A называют нижним классом этого сечения, а множество B – его верхним классом.

▶О числе γ , существование которого утверждается в рассматриваемой формулировке свойства непрерывности (γ – либо наибольшее в нижнем классе сечения, либо наименьшее в его верхнем классе) говорят, что оно производит (осуществляет) данное сечение и пишут $\gamma = A \mid B$.

Таким образом, непрерывность множества действительных чисел означает, что *не существует иных сечений множества* \mathbb{R} *помимо тех, каждое из которых производится не-которым действительным числом.*

¹⁸ В **Лекции 2** дано систематическое изложение теории пределов числовых последовательностей. Читателю настоятельно рекомендуется сравнить соответствующую терминологию и усмотреть сходство.

¹⁹ Значок ∃! иногда используют для краткого обозначения словосочетания «существует и единственно».

Предварим третью формулировку свойства V следующими определениями.

Определение Множество A действительных чисел называется ограниченным снизу (сверху), если найдется такое число m(M), что все числа из A не меньше m (не больше M). Коротко говоря, $\exists m(M)$: $\forall a \in A \Rightarrow a \geq m \ (a \leq M)$. При этом число m(M) называется нижней (верхней) гранью множества A.

Определение Множество A называется ограниченным, если оно одновременно ограничено и сверху и снизу²⁰.

Отсюда нетрудно вывести, что ограниченность множества A означает: $\exists M > 0$: $\forall a \in A \Rightarrow |a| \leq M$ (последнее неравенство может быть и строгим).

Определение Число m(M) называется *точной нижней (верхней) гранью* множества A, если выполнены условия:

- 1). m(M) нижняя (верхняя) грань множества A, то есть $\forall a \in A \Rightarrow a \geq m \ (a \leq M)$;
- 2). ни одно из чисел, больших m (меньших M), не является нижней (верхней) гранью множества A . Иначе говоря, $\forall \varepsilon > 0 \ \exists a \in A : a < m + \varepsilon \ (a > M \varepsilon)$.

Пишут:
$$m = \inf A = \inf_{a \in A} a$$
, $M = \sup A = \sup_{a \in A} a^{21}$

Можно сказать, что точная нижняя (верхняя) грань числового множества есть наибольшая (наименьшая) из его нижних (верхних) граней.

В третьей формулировке свойства непрерывности множества действительных чисел утверждается наличие точных граней у ограниченных числовых множеств. Именно,

V_{III}. Любое числовое множество, ограниченное снизу (сверху), имеет точную нижнюю (верхнюю) грань.

О непрерывности множества \mathbb{R} говорится также при дальнейшем изложении в ряде мест данного курса лекций; в той или иной формулировке она используется как вспомогательное средство при доказательстве некоторых утверждений.

-

²⁰ Сравните это определение с определениями ограниченной сверху (снизу) и ограниченной числовой последовательности, **Лекция 2**.

²¹ От «infinum» – наименьший и «supremum» – наибольший, лат.

◆Замечания

1). Сравнения и некоторые из бинарных 22 арифметических операций, свойства которых приведены выше, можно осуществлять не только над числами из \mathbb{R} , а и над несобственными символами $+\infty$, $-\infty$ и ∞ числовой прямой, или над парами a, *, где $a \in \mathbb{R}$, а * – один из этих символов, в соответствии с соглашениями

$$-\infty < +\infty; \ -\infty < a < +\infty;$$

$$(+\infty) + (+\infty) = +\infty; \ (-\infty) + (-\infty) = -\infty; \ (+\infty) - (-\infty) = +\infty; \ (-\infty) - (+\infty) = -\infty,$$

$$(+\infty)(+\infty) = (-\infty)(-\infty) = +\infty; \ (-\infty)(+\infty) = (+\infty)(-\infty) = -\infty,$$

$$a + (+\infty) = +\infty + a = +\infty; \ a + (-\infty) = -\infty + a = -\infty,$$

$$ech \ a > 0, \text{ To } a(+\infty) = (+\infty)a = +\infty; \ a(-\infty) = (-\infty)a = -\infty,$$

$$ech \ a < 0, \text{ To } a(+\infty) = (+\infty)a = -\infty; \ a(-\infty) = (-\infty)a = +\infty,$$

$$a + (\infty) = (\infty) + a = \infty; \ (\infty)(\infty) = \infty,$$

$$ech \ a \neq 0, \text{ To } a(\infty) = (\infty)a = \infty.$$

Операции
$$(+\infty)+(-\infty)$$
, $(-\infty)+(+\infty)$, $(+\infty)-(+\infty)$, $(-\infty)-(-\infty)$, $(\infty)\pm(\infty)$, $0(*)$, $\frac{\infty}{\infty}$

или $\frac{\pm \infty}{\pm \infty}$ (комбинация знаков – произвольная) не определены.

Наделение несобственных символов приведенными свойствами, так сказать, теснее роднит их с собственными элементами \mathbb{R} – действительными числами и в ряде случаев делает оправданным пополнение (расширение) множества \mathbb{R} путем добавления к нему бесконечно удаленных точек.

Известны два способа такого пополнения: $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$, либо $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$. В обоих случаях получившееся множество $\overline{\mathbb{R}}$ называют *расширенной* или *замкнутой числовой прямой*. Если во введенных ранее окрестностях символов $+\infty$, $-\infty$ и ∞ сами они отсутствовали, то их окрестности в множестве $\overline{\mathbb{R}}$ получаются добавлением к прежним соответствующей бесконечно удаленной точки, так что будут уже содержать ее. На письме это отражается заменой круглой скобки, соседствующей с $+\infty$, $-\infty$, ∞ , на квадратную: $U_{\varepsilon}(+\infty) = (\varepsilon; +\infty]$, $U_{\varepsilon}(-\infty) = [-\infty; -\varepsilon)$, $U_{\varepsilon}(\infty) = [-\infty; -\varepsilon) \cup (\varepsilon; +\infty]$.

²² Результат **би**нарной операции получается из значений **двух** операндов: $a,b \Rightarrow a+b$ и т.п.

2). В противоположность культивируемому в средней школе и развиваемому далее на младших курсах университетов истолкованию действительных чисел как десятичных дробей (конечных и периодических, представляющих рациональные числа, или апериодических, представляющих иррациональные) существует и так называемый аксиоматический подход к построению понятия числа.

Его суть состоит в том, что действительные числа трактуются как абстрактные математические объекты (сущности, вещи), для которых отношения порядка и арифметические операции определяются как соответствия, обладающие свойствами I–V.

Например, каждой паре чисел a,b ставится в соответствие число, обозначаемое как a+b (ab) и называемое их суммой (произведением), причем такое соответствие удовлетворяет свойствам Π ($\Pi\Pi$).

Далее, постулируется существование чисел, обозначаемых как 0 и 1, называемых нулем и единицей и удовлетворяющих для всякого числа a условиям a+0=0, $a\cdot 1=a$, доказывается единственность нуля и единицы и т.д.

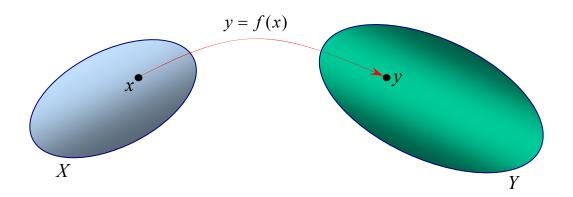
При таком подходе свойства I–V называются *аксиомами действительного числа*. Заметим, что определяя описанным способом систему действительных чисел, необходимо проверить совместность аксиом I–V и мотивировать их количество и состав. Указанный круг вопросов, ввиду их принципиальной важности как фундамента для построения прочих разделов высшей математики, излагается с исчерпывающей подробностью в углубленных курсах математического анализа.

Подчеркнем в заключение, что система свойств **I–V** оказывается *непротиворечивой* и *полной* в том смысле, что множество $\mathbb R$ не может быть расширено до некоторого включающего $\mathbb R$ множества таким образом, чтобы его элементы и операции над ними обладали всеми свойствами **I–V**. Поэтому описанные выше в данной лекции расширения понятия числа возможны лишь как результат некоторых, если можно так выразиться, «жертвоприношений», выражающихся в отказе от некоторых из свойств действительных чисел. Так, операции сложения и умножения над комплексными числами (элементами множества $\mathbb C \supset \mathbb R$, см. стр.18) являются коммутативными и ассоциативными при том, что умножение дистрибутивно относительно сложения. Однако сами эти числа уже не образуют упорядоченного множества.

Ш. ФУНКЦИЯ

Понятие функциональной зависимости (функции) принадлежит к числу первичных математических понятий наряду с уже рассмотренными выше понятиями множества и числа. Подобные понятия не имеют строгого определения, а смысл их, за неимением лучшего, *лишь разъясняется*. Итак, функция понимается в математике в широком смысле как *соответствие* между элементами двух множеств. Далее нас будут интересовать в основном *числовые* математические функций. Это соответствия между элементами числовых множеств, то есть между числами.

Пусть каждому элементу x числового множества X по определенному правилу f приводится в соответствие единственное число y. Тогда говорят, что на множестве X задана функция f: y = f(x). Множество X, обозначаемое также D(f), называют при этом множеством определения (областью определения), а совокупность значений y, обозначаемую Y или E(f), — множеством значений (областью значений или областью изменения) функции f^{23} . Число x называют аргументом функции f.



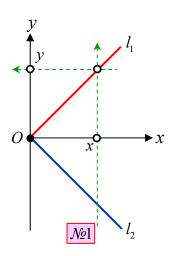
Приведенная трактовка понятия функциональной зависимости исторически приписывается Лобачевскому и Дирихле.

²³ При помощи логических символов множество значений функции y = f(x) можно описать следующим образом: $Y = E(f) = \{ y : \exists x \in X \text{ такой, что } y = f(x) \}$.

Несмотря на то, что в некоторых учебниках данное выше описание функциональной зависимости называют ее определением, в нем остается не формализованным и никак не объясняется смысл термина «правило», при помощи которого каждому $x \in D(f)$ ставится в соответствие $y \in E(f)$.

В самом деле, является ли правилом, о котором идет речь выше, следующий набор инструкций, устанавливающий соответствие (для примера) между числами множеств $\mathbb{R}_+ = [0; +\infty)$ и \mathbb{R} :

- 1). изобразите оси д.п.с.к. на плоскости;
- 2). проведите прямые $l_1: y = x, x \ge 0$ и $l_2: y = -x, x \ge 0$;



3). приведите в соответствие всякому $x \ge 0$ действительное число y путем «физического» проведения через точку (x;0) на оси абсцисс прямой, параллельной оси ординат так: если проводимая прямая имеет нечетный номер (каждая проведенная прямая нумеруется и остается навсегда в плоскости Oxy), то y, соответствующий взятому x, есть ордината точки пересечения этой прямой с l_1 , а если номер проводимой прямой четный, то y, отвечающий этому x, равен ординате точки пересечения этой прямой с l_2 .

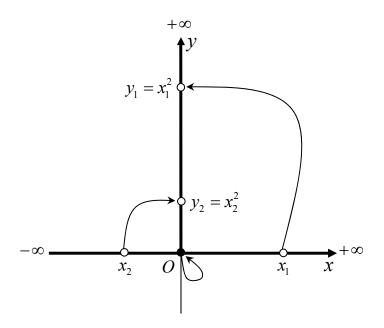
Если это – правило, то отвечайте на вопросы: «каково значение функции y=f(x) в точке x=1?», «каково значение функции y=f(x) в точке x=1?» и т.д.

А если это не правило, то что есть правило?

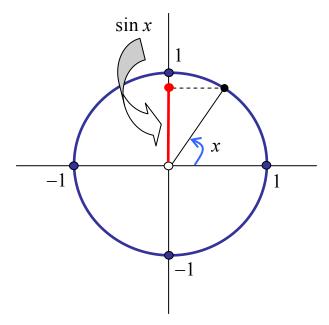
•Примеры:

1). Функция $y = x^2$ ставит в соответствие $\forall x \in \mathbb{R}$ неотрицательное число y, равное

 $x^2 = x \cdot x$. Следовательно, $X = (-\infty; +\infty)$ — область ее определения, а $Y = [0; +\infty)$ — область значений:



2). Функция $y = \sin x$ ставит в соответствие $\forall x \in \mathbb{R}$ проекцию на вертикальный диаметр единичного круга радиуса этого круга, повернутого на угол x (в радианах!), отсчитываемый от его положительного горизонтального полудиаметра (положительное направление отсчета угла – *против часовой стрелки*):



Таким образом, $X = (-\infty; +\infty)$, Y = [-1; 1].

3). Функция $y = \log_a x$ ставит в соответствие $\forall x > 0$ действительное число y, удовлетворяющее условию $x = a^y$, где a > 0, $a \ne 1$. Здесь $X = (0; +\infty)$, $Y = (-\infty; +\infty)$. (Сколько раз каждая из рассмотренных функций принимает каждое свое значение из Y?)

Элементарные функции

Часто употребляемые в приложениях типы функциональных зависимостей выделяют в класс *основных элементарных функций*. Это:

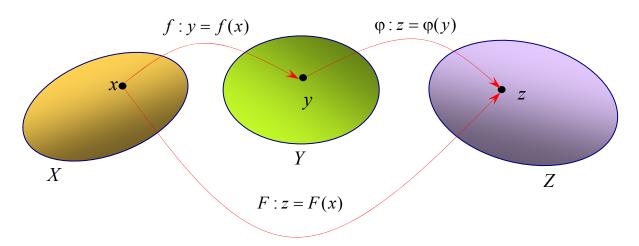
- $y = x^{\alpha}$, $\alpha \in \mathbb{R}$ степенная функция;
- $y = a^x$, a > 0, a ≠ 1 показательная функция;
- $ightharpoonup y = \log_a x$ логарифмическая функция;
- $y = \sin x$, $y = \cos x$, $y = \sin x/\cos x = \tan x$, $y = \cos x/\sin x = \cot x$ основные тригонометрические функции;
- $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$, $y = \arctan x$ обратные тригонометрические функции.

Суперпозиция функций

Пусть задана функция y = f(x), причем число y является в свою очередь аргументом другой функции $\varphi \colon z = \varphi(y)$. Тем самым устанавливается соответствие чисел x числам z, которое осуществляет функция $F \colon z = \varphi[f(x)] = F(x)$, которая называется *сложной функцией*, или *суперпозицией* (композицией) функций φ и $f \colon F = \varphi \circ f$. Суперпозиция может «состоять» и более чем из двух функций: $F(x) = w\{v[u(x)]\}^{24}$ и т.п.

си суперпозиций скобки не употребляются вовсе: $y(x) = \ln \cos \arctan \sinh 2x$ и т.п.

²⁴ Для устранения недоразумений в записях подобного рода использование квадратных и фигурных скобок для обозначения целой и дробной частей соответствующих выражений должно быть оговорено специально. В суперпозициях с числом вложений, большим трех, часто используются только круглые скобки. Иногда при запи-



Определение Все функции, образуемые из основных элементарных функций при помощи *конечного числа* арифметических операций и суперпозиций, называются элементарными функциями.

•Пример: $|x| = \sqrt{x^2}$ — элементарная функция; является суперпозицией двух степенных функций: $y = x^2$ и $z = \sqrt{y}$.

Классификация элементарных функций

Подобно тому, как классифицируются, то есть подразделяются на определенные типы или классы, вещественные числа, могут быть классифицированы и элементарные функции. Такая классификация оказывается полезной в ряде разделов математического анализа при выработке теоретических основ и технических приемов решения некоторых ключевых задач дифференциального и интегрального исчисления. Оказывается, что такие приемы можно естественным образом связать со свойствами функций, над которыми осуществляются те или иные математические операции с целью получения решения поставленной задачи общего содержания. Именно различие в характере, специфике зависимости функции от ее аргумента (аргументов) и служит основой для обсуждаемой классификации.

Одним из ярких примеров является здесь техника вычисления первообразных (неопределенных интегралов), изучаемая далее в предлагаемом курсе лекций (см. **Лекцию 15**).

Элементарные функции разбивают на перечисляемые ниже классы в соответствии со следующими определениями, первое из которых носит вспомогательный характер.

Определение Многочленом от переменных x,y называется функция $P(x,y) = a_n(x)y^n + a_{n-1}(x)y^{n-1} + ... + a_1(x)y + a_0(x)$, где $n \in \mathbb{N}$, $a_n(x) - a_0(x)$ – многочлены от переменной x, причем $a_n(x) \neq 0^{25}$. Уравнение относительно двух переменных вида P(x,y) = 0 называется алгебраическим²⁶. Число n называется степенью многочлена P(x,y) относительно переменной y.

Определение Элементарная функция y = f(x) называется *алгебраической*, если она удовлетворяет на некотором промежутке Δ алгебраическому уравнению P(x, y) = 0, то есть $P(x, f(x)) \equiv 0$, $x \in \Delta$.

◆Примеры:

1). Функции $y = \pm \sqrt{2010 - x^3}$ — алгебраические, поскольку они удовлетворяют тождественно по x в данном случае на всей числовой оси алгебраическому уравнению $P(x,y) = y^2 + x^3 - 2010 = 0$.

2). Если P(x), Q(x) – некоторые многочлены относительно переменной x, то как они сами, так и их отношение P(x)/Q(x), $Q(x)\not\equiv 0$, называемое *рациональной функцией*, являются алгебраическими функциями.

В самом деле, $y=P(x) \Leftrightarrow P(x,y)=1\cdot y-P(x)=0$ и $y=P(x)/Q(x) \Leftrightarrow P(x,y)=Q(x)y-P(x)=0$, $x:Q(x)\neq 0$.

В рамках такой терминологии многочлены принято называть *целыми рациональны-ми функциями*. В обоих приведенных только что примерах уравнение, которым определена рациональная функция, есть алгебраическое уравнение первой степени относительно переменной y. Однако, это необязательно. Так, например, рациональная функция y = x определяется, помимо уравнения $1 \cdot y - x = 0$ еще и уравнениями $y^2 - x^2 = 0$, $y^{11} - x^{11} = 0$ и т.п.

 $^{^{25}}$ В этом определении буквы x и y можно поменять ролями.

²⁶ Это «родовое» наименование класса уравнений с нулевой правой частью, левая часть которых есть некоторый многочлен. Так, в средней школе систематически изучаются алгебраические уравнения первой и второй степеней относительно одной переменной – линейные и квадратные.

Определение Алгебраическая функция, не являющаяся рациональной, называется *иррациональной*.

•Примеры:

- **1).** Функция $y = \sqrt{x}$ есть алгебраическая иррациональная функция, определяемая, например, алгебраическим уравнением $P(x, y) = y^2 x = 0, x \ge 0$.
- **2).** Алгебраическое уравнение $P(x,y) = y^3 x^2 = 0$ определяет при $x \ge 0$ иррациональную функцию $y = \sqrt[3]{x^2}$.

В подтверждение того обстоятельства, что множество алгебраических функций не исчерпывается алгебраическими функциями, покажем, что функция $y = \sqrt{x}$ не может быть представлена в виде отношения двух многочленов от переменной x.

Действительно, если это не так, то $\sqrt{x} = \frac{P(x)}{Q(x)}$, $x \ge 0$. Не ограничивая общности допустим, что у многочленов P(x) и Q(x) нет общего множителя в виде многочлена степени $k \ge 1$. Далее, $\sqrt{x} = \frac{P(x)}{Q(x)} \Rightarrow x \cdot Q^2(x) = P^2(x)$, так что $P^2(x) \vdots x$. Но тогда и $P(x) \vdots x$ (обоснуйте это утверждение), и тогда справедливо представление $P(x) = x \cdot T(x)$, где T(x) — многочлен на единицу меньшей степени, чем P(x), который сам имеет степень не меньше единицы.

Отсюда $xQ^2(x) = P^2(x) = x^2 \cdot T^2(x)$, или $Q^2(x) = x \cdot T^2(x)$, что повлечет $Q^2(x) \vdots x$ и, следовательно, $Q(x) \vdots x$. Как видно, многочлены P(x), Q(x) одновременно кратны x, что противоречит предположению об отсутствии у них общего множителя в виде многочлена степени не ниже первой.

Определение Элементарные функции, не являющиеся алгебраическими, называются *трансцендентными* 27.

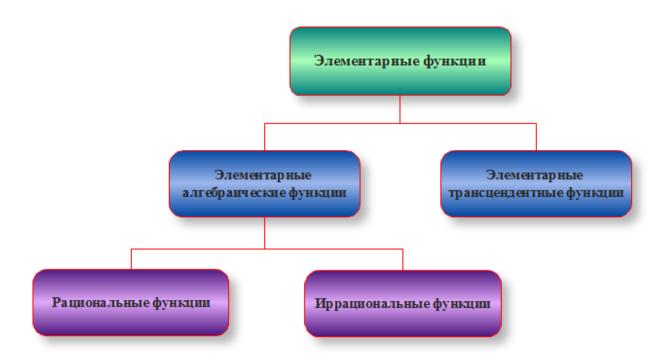
²⁷ Трансцендентный (от transcendo, лат. – переступать, перешагивать) – запредельный по отношению к какойлибо определенной сфере. В данном контексте – не могущий быть описанным «силами» алгебраических функций, предполагающих выполнение над аргументом только основных арифметических действий и операции извлечения корня в конечном числе.

Иными словами, трансцендентные функции — это такие, которые не удовлетворяют алгебраическим уравнениям вида P(x, y) = 0.

В углубленных курсах математического анализа доказывается, что показательные, логарифмические, тригонометрические и обратные тригонометрические функции являются трансцендентными.

Пример такого доказательства можно найти в Лекции 8.

Описанная выше классификация элементарных функций отражена на приводимой схеме.



◆Замечание

Как уже говорилось выше, описанная классификация элементарных функций фактически повторяет разделение на классы множества $\mathbb R$ действительных чисел. В соответствии с принятой терминологией *алгебраическими* действительными числами называют те из них, которые являются корнями алгебраических уравнений относительно одной переменной с целыми коэффициентами. Алгебраические числа в свою очередь подразделяются на *рациональные* $(0, -1, 5/7, -9/5, \sqrt[4]{81}$ и т.п.) и *иррациональные* $(\sqrt{2}, -\sqrt[7]{13}, 5/\sqrt[3]{3}$ и т.п.). Первые представимы, а вторые – непредставимы в виде отношения целого числа к натуральному (или двух целых чисел при условии, что делитель отличен от нуля).

Действительные числа, не являющиеся алгебраическими, называют *трансцендентными*. Примером трансцендентных действительных чисел являются мировые константы π и e. Их невозможно «сконструировать» из целых чисел при помощи конечного числа арифметических операций и извлечений корня.

- **▲** Докажите взаимную дистрибутивность операций «∪» и «∩».
- **▲** Докажите равенства $A \triangle B = (A \cup B) \setminus (A \cap B)$, $A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$.
- \blacktriangle Докажите, что если для множества X и любого множества A выполнено включение $X \subset A \text{ , то } X = \varnothing \text{ .}$
- \blacktriangle Докажите следующие свойства символа суммирования $\sum_{j=1}^{n}$:

$$\sum_{j=1}^{n} (a_j + b_j) = \sum_{j=1}^{n} a_j + \sum_{j=1}^{n} b_j, \quad \sum_{j=1}^{n} (\alpha a_j) = \alpha \sum_{j=1}^{n} a_j, \quad \sum_{j=1}^{n} \left(\sum_{k=1}^{m} a_{jk} \right) = \sum_{k=1}^{m} \left(\sum_{j=1}^{n} a_{jk} \right).$$

- ▲ Приведите пример системы вложенных *интервалов* $\omega_n = (a_n, b_n), n = 1, 2, \dots, \ \omega_{n+1} \subset \omega_n,$ $\forall n \in \mathbb{N}, \ l_n = b_n a_n \underset{n \to \infty}{\longrightarrow} 0$, не имеющих общей точки.
- ▲ Приведите пример системы вложенных интервалов (см. предыдущий пункт), имеющих общую точку.
- ▲ Постройте графики *всех типов* основных элементарных функций, а также графики функций: y = |x|, y = [x], y = [x

A Решите уравнение f(f(f(f(x)))) = 0, где $f(x) = x^2 + 12x + 30$.

Для визуализации результатов можно использовать компьютерную программу \mathbf{Ad} vanced $\mathbf{Grapher}^{28}$.

Краткая биографическая справка

- Леонард Эйлер (1707–1783 г.г.) знаменитый швейцарский математик, механик и физик.
- Джон Венн (1834–1923 г.г.) английский логик.
- Огастес де Морган (1806–1871 г.г.) шотландский математик и логик.
- Бертран Артур Уильям Рассел (1872—1970 г.г.) английский математик, логик и философ.
- Николай Иванович Лобачевский (1792—1856 г.г.) великий русский математик, творец неевклидовой геометрии.
- Иоганн Петер Густав Лежён Дирихле (1805–1859 г.г.) немецкий математик, внёсший существенный вклад в математический анализ, теорию функций и теорию чисел.

-

Аналогичные показатели и условия распространения имеет программа построения графиков функций двух переменных 3DGrapher, использовавшаяся в данном курсе при визуализации поверхностей в трехмерном пространстве. Сайт программы http://www.romanlab.com.

²⁸ Программа предназначена в основном для визуализации различных функциональных зависимостей и обладает в своем классе одним из высших соотношений возможностей к размеру (< 1Мб) . Она является бесплатной для жителей бывшего СССР и часто будет применяться в данном курсе лекций как средство получения графической информации в рассматриваемых задачах. Сайт программы http://www.alentum.com.