Оглавление

- 1. Оксиды
- 2. Основания
- 3. Кислоты
- 4. Соли
- 5. Закономерности изменения свойств веществ
 - 1. Оксиды

Оксиды — это сложные вещества, состоящие из двух элементов, одним из которых является кислород в степени окисления -2.

В названии этих соединений сначала указывается слово «оксид», а затем в родительном падеже название элемента (ВаО – оксид бария), если элемент образует несколько оксидов, то после названия в скобках указывается его валентность (FeO – оксид железа (II)).

Классификация оксидов

Оксиды делятся на солеобразующие и несолеобразующие.

К несолеобразующим относятся оксиды, не образующие ни кислот, ни оснований.

Солеобразующие оксиды подразделяются

на основные, кислотные и амфотерные.

Основные оксиды - это оксиды металлов в низших степенях окисления (например, Na_2O , CaO), в реакциях эти оксиды проявляют основные свойства, им соответствуют основания.

Кислотные оксиды - это оксиды металлов и неметаллов в высших степенях окисления (например, SO_3 , Mn_2O_7), в реакциях эти оксиды проявляют кислотные свойства, им соответствуют кислоты.

Амфотерные оксиды - это оксиды металлов в промежуточных степенях окисления (например, ZnO, Al_2O_3), в реакциях эти оксиды могут проявлять кислотные и основные свойства, им соответствуют и кислоты и основания.

Получение оксидов

1. горение простых веществ:

$$2Mg + O_2 \rightarrow 2MgO$$

$$4P + 5O_2 \rightarrow 2P_2O_5$$

2. окисление сложных веществ:

$$2CuS + 3O_2 \rightarrow 2CuO + 2SO_2$$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

3. разложение некоторых кислородсодержащих веществ (оснований, кислот, солей) при нагревании:

$$Cu(OH)_2 \xrightarrow{t^\circ} CuO + H_2O$$

$$2Pb(NO_3)_2 \stackrel{t^{\circ}}{\longrightarrow} 2PbO + 4NO_2 + O_2\uparrow$$

$$H_2SiO_3-t^{\circ} \rightarrow H_2O = SiO_2$$

4. разложение высших оксидов и окисление низших оксидов:

$$2CO + O_2 \rightarrow 2CO_2$$

$$4\text{CrO}_3 \rightarrow 2\text{Cr}_2\text{O}_3 + 3\text{O}_2\uparrow$$

5. вытеснение летучего оксида менее летучим из солей:

$$Na_2CO_3 + SiO_2 \xrightarrow{t^{\circ}} Na_2SiO_3 + CO_2 \uparrow$$

Химические свойства

1. оксиды могут быть восстановлены до простых веществ при взаимодействии с углеродом, водородом и др.:

$$P_2O_5 + 5C \rightarrow 2P + 5CO$$

- 2. взаимодействуют с водой:
- а) из основных оксидов непосредственно взаимодействуют с водой только оксиды щелочных и щелочноземельных металлов с образованием соответствующих оснований:

$$Na_2O + H_2O \rightarrow 2NaOH$$

$$CaO + H_2O \rightarrow Ca(OH)_2$$

б) кислотные оксиды практически все непосредственно взаимодействуют с водой с образованием соответствующих кислот:

$$Mn_2O_7 + H_2O \rightarrow 2HMnO_4$$

$$P_2O_5 + 3H_2O \rightarrow 2H_3PO_4$$

- в) амфотерные оксиды с водой не взаимодействуют.
- 3. взаимодействуют с кислотами и основаниями:
- а) основные оксиды взаимодействуют с кислотами с образованием солей:

$$MgO + H_2SO_4 \rightarrow MgSO_4 + H_2O$$

$$CuO + 2HCl \rightarrow CuCl_2 + H_2O$$

б) кислотные оксиды взаимодействуют с основаниями с образованием солей:

$$CO_2 + Ba(OH)_2 \rightarrow BaCO_3 + H_2O$$

$$SO_2 + 2NaOH \rightarrow Na_2SO_3 + H_2O$$

в) амфотерные оксиды взаимодействуют с кислотами и со щелочами с образованием солей:

$$ZnO + H_2SO_4 \rightarrow ZnSO_4 + H_2O$$

$$ZnO + 2NaOH \rightarrow Na_2ZnO_2 + H_2O$$

4. основные и кислотные оксиды взаимодействуют между собой с образованием солей:

$$Na_2O + CO_2 \rightarrow Na_2CO_3$$

$$CaO + SO_3 \rightarrow CaSO_4$$

2. Основания

Основания — это электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы OH^- .

При написании названий сначала указывают слово «гидроксид», а затем название металла в родительном падеже (КОН — гидроксид калия), если металл образует основания переменного состава, то после названия в скобках указывается его валентность ($Fe(OH)_3$ — оксид железа (III)).

Классификация оснований

Основания делятся на **растворимые** и **нерастворимые**, растворимые в воде основания щелочных и щелочно-земельных металлов называют **щёлочами**, например NaOH, Ba(OH)₂. Выделяют еще **амфотерные** основания (они являются нерастворимыми), которые проявляют свойства слабых оснований и слабых кислот, например $Al(OH)_3$, $Zn(OH)_2$.

Получение оснований

1. реакции активных металлов (щелочных и щелочноземельных) с водой:

$$2Na + 2H_2O \rightarrow 2NaOH + H_2\uparrow$$

$$Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2\uparrow$$

2. взаимодействие оксидов активных металлов с водой:

$$BaO + H_2O \rightarrow Ba(OH)_2$$

3. электролиз водных растворов солей:

$$2NaCl + 2H_2O \xrightarrow{_{\mathfrak{I}\!\mathsf{I}-3}} \rightarrow 2NaOH + H_2 \uparrow + Cl_2 \uparrow$$

4. реакции обмена между солями и основаниями:

$$Fe(NO_3)_3 + 3NaOH \rightarrow Fe(OH)_3 \downarrow + 3NaNO_3$$

Химические свойства

1. щелочи действуют на индикаторы, изменяя их окраску:

лакмус становится синим, метилоранж – жёлтым, фенолфталеин - малиновым

2. взаимодействуют с кислотными оксидами:

$$2KOH + CO_2 \rightarrow K_2CO_3 + H_2O$$

$$Cu(OH)_2 + SO_3 \rightarrow CuSO_4 + H_2O$$

3. взаимодействуют с кислотами (реакция нейтрализации):

$$NaOH + HNO_3 \rightarrow NaNO_3 + H_2O$$

$$Cu(OH)_2 + 2HCl \rightarrow CuCl_2 + 2H_2O$$

4. щелочи взаимодействуют с амфотерными оксидами:

$$2KOH + ZnO \rightarrow K_2ZnO_2 + H_2O$$

5. щелочи взаимодействуют с солями, если в результате образуется малорастворимое соединение:

$$Ba(OH)_2 + K_2SO_4 \rightarrow 2KOH + BaSO_4 \downarrow$$

$$3KOH+Fe(NO_3)_3 \rightarrow Fe(OH)_3 \downarrow + 3KNO_3$$

6. нерастворимые основания разлагаются при нагревании:

$$Cu(OH)_2 \xrightarrow{t^{\circ}} CuO + H_2O$$

7. амфотерные основания могут взаимодействовать и с кислотами и с основаниями:

$$2HNO_3 + Zn(OH)_2 \rightarrow Zn(NO_3)_2 + 2H_2O (Zn(OH)_2$$
 реагирует как основание)

$$2NaOH + Zn(OH)_2 \rightarrow Na_2ZnO_2 + 2H_2O (Zn(OH)_2$$
 реагирует как кислота)

3. Кислоты

Kucnomы — это электролиты, при диссоциации которых в качестве катионов образуются только ионы водорода H^+ .

Классификация кислот

- 1. <u>по составу</u> кислоты разделяются на *бескислородные* (HCl) и *кислородсодержащие* (H_2SO_4).
- 2. по числу атомов водорода, способных замещаться на металл, кислоты разделяются на одноосновные (HNO₃), двухосновные (H₂SO₄) и $mp\ddot{e}x$ основные (H₃PO₄).
- 3. <u>по степени диссоциации</u> кислоты разделяют на *сильные* практически полностью диссоциируют на ионы в водных растворах (HCl, HBr, HI, HNO₃, H_2SO_4 , HClO₄, HMnO₄, H_2CrO_4) и *слабые* в незначительной степени диссоциируют на ионы в водных растворах (HF, HCN, H_2S , HNO₂, CH₃COOH, H_2SO_3 , H_2CO_3).

Названия кислот производят от названия элемента, образующего кислоту. В случае бескислородных кислот к названию кислотообразующего элемента добавляют «-водородная»: HCl – хлороводородная кислота. Названия кислородсодержащих кислот зависят от степени окисления элементакислотообразователя. порядке В уменьшения степени окисления кислотообразующего элемента названия кислот образуют добавлением «-ная» (или «-овая»), «-оватая», «-истая», «-оватистая»: $HClO_4$ – хлорная, $HClO_3$ – хлорноватая, HClO₂ – хлористая, HClO – хлорноватистая. Если элемент образует кислоты только в двух степенях окисления, то в случае высшей степени окисления к названию элемента добавляют «-ная» (или «-овая»), для низшей степени окисления – «-истая»: HNO_3 – азотная, HNO_2 – азотистая.

Наиболее важные кислоты

Бескислородные:		Название соли
HCl – хлороводородная (соляная)	одноосновная	хлорид
HBr – бромоводородная	одноосновная	бромид
HI – йодоводородная	одноосновная	йодид
HF – фтороводородная (плавиковая)	одноосновная	фторид
HCN – циановодородная (синильная)	одноосновная	цианид
H_2S — сероводородная	двухосновная	сульфид

Кислородсодержащие:

HNO_2 — азотистая	одноосновная	нитрит
HNO_3 — азотная	одноосновная	нитрат
HClO ₄ – хлорная	одноосновная	перхлорат
HMnO ₄ — марганцовая	одноосновная	перманганат
СН ₃ СООН – уксусная	одноосновная	ацетат
H_2SO_3 — сернистая	двухосновная	сульфит
H_2SO_4 — серная	двухосновная	сульфат
H_2CrO_4 — хромовая	двухосновная	хромат
H_2CO_3 – угольная	двухосновная	карбонат
H_2SiO_3 – кремниевая	двухосновная	силикат
Н ₃ РО ₄ – ортофосфорная	трёхосновная	ортофосфат

Получение кислот

1. взаимодействие кислотного оксида с водой (для кислородсодержащих кислот):

$$SO_3 + H_2O \rightarrow H_2SO_4$$

$$P_2O_5 + 3H_2O \rightarrow 2H_3PO_4$$

2. взаимодействие водорода с неметаллом и последующим растворением полученного продукта в воде (для бескислородных кислот):

$$H_2 + Cl_2 \rightarrow 2HCl$$

$$H_2 + S \rightarrow H_2S$$

3. взаимодействие соли с кислотой, если в результате происходит образование летучих или малорастворимых соединений:

$$Na_2S + 2HCl \rightarrow 2NaCl + H_2S\uparrow$$

$$Ba(NO_3)_2 + H_2SO_4 \rightarrow BaSO_4 \downarrow + 2HNO_3$$

$$Na_2SiO_3 + 2HCl \rightarrow H_2SiO_3 \downarrow + 2NaCl$$

Химические свойства кислот

1. действуют на индикаторы, изменяя их окраску:

лакмус становится красным, метилоранж – розовым

2. взаимодействуют с металлами, стоящими в ряду напряжений до водорода (для растворов кислот-неокислителей):

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2 \uparrow$$

$$2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2\uparrow$$

3. взаимодействуют с основными и амфотерными оксидами:

$$CuO + 2HNO_3 \xrightarrow{t^\circ} Cu(NO_3)_2 + H_2O$$

4. взаимодействуют с основаниями (реакция нейтрализации):

$$H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$$

$$2HNO_3 + Ca(OH)_2 \rightarrow Ca(NO_3)_2 + 2H_2O$$

5. взаимодействуют с солями, если в результате выделяется газ или образуется осадок:

$$H_2SO_4 + BaCl_2 \rightarrow BaSO_4 \downarrow +2HCl$$

$$2HCl + K_2CO_3 \rightarrow 2KCl + H_2O + CO_2 \uparrow$$

6. кислородсодержащие кислоты при нагревании разлагаются:

$$H_2SiO_3 - t^{\circ} \longrightarrow SiO_2 \downarrow + H_2O$$

4. Соли

Conu — это электролиты, при диссоциации которых образуются катионы, отличные от ионов водорода H^+ , и анионы, отличные от гидроксид-ионов OH^- .

Классификация солей

Средние (нормальные) соли — это продукты полного замещения атомов водорода в молекуле кислоты на атомы металла (Na_2SO_4 , $CaCl_2$). Названия средних солей составляют из названия аниона в именительном падеже и названия катиона металла в родительном падеже. Название аниона образуют с помощью латинского названия кислотообразующего элемента и суффикса, который зависит от степени окисления этого элемента : «-ат» для высшей степени окисления, «-ит» для более низшей степени окисления, «-ид» в случае бескислородных кислот: Na_2SO_4 — сульфат натрия, $CaCl_2$ — хлорид кальция. Названия анионов некоторых кислот приведены выше.

Кислые соли — это продукты частичного замещения атомов водорода (H) в молекуле кислоты на атомы металла (KHCO₃, NaH₂PO₄). Названия кислых солей образуют путем добавления к названию аниона приставки «гидро-», обозначая количество незамещенных атомов водорода греческими числительными: KHCO₃ — гидрокарбонат калия, NaH₂PO₄ — дигидрофосфат натрия.

Основные соли — это продукты неполного замещения гидроксогрупп (OH) в молекуле основания на кислотный остаток (Al(OH)₂Cl, (MgOH)₂SO₄). Названия основных солей образуют путем добавления к названию катиона приставки «гидроксо-», обозначая количество незамещенных гидроксильных групп греческими числительными: Al(OH)₂Cl — хлорид дигидроксоалюминия, (MgOH)₂SO₄ — сульфат гидроксомагния.

Двойные соли — это продукты, образовавшиеся при взаимодействии двух металлов и одной кислоты: $KAl(SO_4)_2$ — сульфат калия-алюминия.

Смешанные соли — это продукты, образовавшиеся при взаимодействии двух кислот и одного металла: AlClSO₄ — хлорид-сульфат алюминия.

Комилексные соли — это соли, содержащие в своем составе комплексные ионы: $[Ag(NH_3)_2]Cl$ — хлорид диамминсеребра, $K_4[Fe(CN)_6]$ — гексацианоферрат(II) калия.

Получение солей

1. взаимодействие металла с неметаллом:

$$2Na + Cl_2 \rightarrow 2NaCl$$

2. взаимодействие металла с кислотой:

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2 \uparrow$$

3. взаимодействие металла с раствором соли менее активного металла:

$$Fe + CuSO_4 \rightarrow FeSO_4 + Cu \downarrow$$

4. взаимодействие основного оксида с кислотным оксидом:

$$MgO + CO_2 \rightarrow MgCO_3$$

5. взаимодействие основного оксида с кислотой:

$$CuO + H_2SO_4 - t^{\circ} \rightarrow CuSO_4 + H_2O$$

6. взаимодействие основания с кислотным оксидом:

$$Ba(OH)_2 + CO_2 \rightarrow BaCO_3 \downarrow + H_2O$$

7. взаимодействие основания с кислотой:

$$Ca(OH)_2 + 2HCl \rightarrow CaCl_2 + 2H_2O$$

8. взаимодействие соли с кислотой:

$$MgCO_3 + 2HCl \rightarrow MgCl_2 + H_2O + CO_2\uparrow$$

$$BaCl_2 + H_2SO_4 \rightarrow BaSO_4 \downarrow + 2HCl$$

9. взаимодействие раствора основания с раствором соли:

$$Ba(OH)_2 + Na_2SO_4 \rightarrow 2NaOH + BaSO_4 \downarrow$$

10. взаимодействие растворов двух солей:

$$3CaCl_2 + 2Na_3PO_4 \rightarrow Ca_3(PO_4)_2\downarrow + 6NaCl$$

11. кислые соли можно получить при взаимодействии избытка кислоты с основанием, основания с избытком кислотного оксида или средней соли с кислотой:

$$KOH + H_2SO_4$$
(изб) $\rightarrow KHSO_4 + H_2O$

$$Ca(OH)_2 + 2CO_2(изб) \rightarrow Ca(HCO_3)_2$$

$$Ca_3(PO_4)_2 + 4H_3PO_4 \rightarrow 3Ca(H_2PO_4)_2$$

Для перевода кислой соли в среднюю к ней добавляют щелочь:

$$Ca(H_2PO_4)_2 + 2Ca(OH)_2 \rightarrow Ca_3(PO_4)_2 + 4H_2O$$

12. основные соли можно получить при взаимодействии избытка основания с кислотой или растворов щелочей с растворами средних солей металлов:

$$2Ca(OH)_2$$
 (изб) + $H_2SO_4 \rightarrow (CaOH)_2SO_4 + 2H_2O$

$$AlCl_3 + 2NaOH(изб) \rightarrow Al(OH)_2Cl + 2NaCl$$

Для перевода основной соли в среднюю к ней добавляют кислоту:

$$(MgOH)_2SO_4 + H_2SO_4 \rightarrow 2MgSO_4 + 2H_2O$$

Химические свойства солей:

1. термическое разложение:

$$CaCO_3$$
 (мел, мрамор, известняк) $-t^{\circ} \rightarrow CaO + CO_2 \uparrow$

$$2Cu(NO_3)_2 \xrightarrow{t^\circ} 2CuO + 4NO_2\uparrow + O_2\uparrow$$

$$Ca(HCO_3)_2 \xrightarrow{t^\circ} CaCO_3 \downarrow + CO_2 \uparrow + H_2O$$

2.взаимодействие с металлами, при этом более активный металл вытесняет менее активный металл из солей:

$$Zn + CuSO_4 \rightarrow ZnSO_4 + Cu \downarrow$$

3. взаимодействие с кислотами, основаниями и другими солями (реакция возможна, если образуется осадок, выделяется газ или образуется вода):

$$AgNO_3 + HCl \rightarrow AgCl \downarrow + HNO_3$$

$$SnOHCl + HCl \rightarrow SnCl_2 + H_2O$$

$$Fe(NO_3)_3 + 3NaOH \rightarrow Fe(OH)_3 \downarrow + 3NaNO_3$$

$$Ba(HCO_3)_2 + Ba(OH)_2 \rightarrow 2BaCO_3 \downarrow + 2H_2O$$

$$CaCl_2 + Na_2SiO_3 \rightarrow CaSiO_3 \downarrow + 2NaCl$$

5. Закономерности изменения свойств веществ

Закономерное изменение кислотно-основных свойств соединений зависит от степени окисления элемента и радиуса его иона.

При повышении степени окисления элемента усиливаются кислотные свойства оксида и увеличивается сила соответствующей кислоты.

MnO (Mn ⁺²)	$Mn_2O_3 (Mn^{+3})$	$MnO_2 (Mn^{+4})$	MnO ₃ (Mn ⁺⁶)	$Mn_2O_7 (Mn^{+7})$
основной	амфотерный	амфотерный	кислотный	кислотный
оксид	оксид с	оксид с	оксид	оксид
	преобладанием	преобладанием		
	основных	кислотных		
	свойств	свойств		
	$Mn(OH)_3$	$Mn(OH)_4$	H_2MnO_4	HMnO ₄
$Mn(OH)_2$	амфотерное	амфотерное	слабая кислота	сильная
основание	основание	основание		кислота

В одном периоде при увеличении порядкового номера происходит усиление кислотных свойств высших оксидов и увеличение силы соостветствующих килот.

₁₁ Na	₁₂ Mg	₁₃ Al	₁₄ Si	₁₅ P	₁₆ S	₁₇ Cl
Na_2O	MgO	$\mathrm{Al}_2\mathrm{O}_3$	${ m SiO_2}$	P_2O_5	SO_3	Cl ₂ O ₇
основной	основной	амфотерный	кислотный	кислотный	кислотный	кислотный
оксид	оксид	оксид	оксид	оксид	оксид	оксид
NaOH	Mg(OH) ₂	Al(OH) ₃	H_2SiO_3	H_3PO_4	$ m H_2SO_4$	HClO ₄
сильное	слабое	амфотерное	очень	кислота	сильная	очень
основание	основание	основание	слабая	средней	кислота	сильная
(щелочь)			кислота	силы		кислота

В главных подгруппах периодической системы при переходе от одного элемента к другому сверху вниз наблюдается усиление основных свойств оксидов и увеличение силы соответствующих оснований.

В	Al	Ga	In	Tl
B_2O_3	Al_2O_3	Ga_2O_3	In_2O_3	Tl_2O_3
кислотный	амфотерный	амфотерный	амфотерный	основной
оксид	оксид	оксид	оксид с	оксид
			преобладанием	

	Al(OH) ₃	Ga(OH) ₃	основных	
H_3BO_3	амфотерное	амфотерное	свойств	$Tl(OH)_3$
слабая кислота	основание	основание	$In(OH)_3$	основание
			амфотерное	
			основание	