1-й модуль

1. Дать определение умножения матриц. Коммутативна ли эта операция? Ответ пояснить.

Произведением матриц, $A_{n\times p}$ и $B_{p\times k}$ называется матрица C типа $n\times k$, где $c_{ij}=\sum\limits_{l=1}^pa_{il}\cdot b_{lj}$. Умножение матриц, вообще говоря, не коммутативно, то есть $A \cdot B$, вообще говоря, $\neq B \cdot A$.

Пример:

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad A \cdot B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B \cdot A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

2. Дать определение ступенчатого вида матрицы и канонического вида матрицы.

Матрица M имеет cmynenvamый 6ud, если номера первых ненулевых элементов всех строк (такие элементы называют ведущими) возрастают, а нулевые строки стоят внизу матрицы.

Матрица M имеет κ имеет κ имеет κ имеет κ имеет κ имеет ступенчатый вид, причем все ведущие элементы равны 1 и в любом столбце, содержащем ведущий элемент, выше и ниже него стоят 0.

3. Перечислить элементарные преобразования строк.

Пусть (i) – i-тая строка матрицы A.

Тогда элементарные преобразования:

- 1) $(i) \rightarrow \lambda \cdot (i)$, $\lambda \neq 0$ умножили i-тую строку на число λ
- 2) $(i) \leftrightarrow (j)$ поменяли местами i-тую и j-тую строки
- $3)(i) \rightarrow (i) + \lambda \cdot (k) i$ -тая строка заменяется на сумму i-той строки и k-той строки \cdot число λ

4. Сформулировать теорему о методе Гаусса (алгоритм приводить не нужно).

Любую конечную матрицу A можно привести элементарными преобразованиями к ступенчатому (каноническому) виду.

5. Дать определения перестановки и подстановки.

Всякое расположение чисел от 1 до n в определенном порядке называют $nepecmanos \kappa o \tilde{u}$.

 $\Pi o d c mano в к a \ \sigma \begin{pmatrix} 1 & \dots & n \\ \sigma(1) & \dots & \sigma(n) \end{pmatrix}$ – отображение множества $1, \dots, n$ в себя. Это отображение должно быть биективным.

6. Дать определение знака и четности подстановки.

Знак подстановки $\begin{pmatrix} 1 & 2 & \cdots & n \\ \alpha_1 & \alpha_2 & \cdots & \alpha_n \end{pmatrix}$ равен $(-1)^a$, где a – число инверсий в строке $(\alpha_1 \ \alpha_2 \ \dots \ \alpha_n)$. Если знак равен 1, то подстановка четна, если -1 – нечетна.

7. Выписать общую формулу для вычисления определителя произвольного порядка

 $\det A = \sum_{\sigma \in S} sgn(\sigma)a_{1\sigma(1)} \cdot a_{2\sigma(2)} \cdot \ldots \cdot a_{n\sigma(n)}$ (сумма по всем подстановкам).

8. Выписать формулы для разложения определителя по строке и столбцу.

Определитель матрицы A равен сумме произведений элементов i-той строки (j-того столбца) на их алгебраические дополнения:

$$\det A = \sum_{i=1}^{n} a_{ij} \cdot A_{ij} = \sum_{i=1}^{n} a_{ij} \cdot A_{ij}$$

9. Что такое фальшивое разложение?

Элементы строки при умножении на алгебраические дополнения к элементу другой строки дают после суммирования 0.

$$\sum_{j=1}^{n} a_{ij} \cdot A_{kj} = 0, \text{ если } k \neq i$$

$$\sum_{i=1}^n a_{ij} \cdot A_{ik}$$
 = 0, если $k \neq j$

10. Выписать формулы Крамера для квадратной матрицы произвольного порядка.

Пусть
$$A \cdot x = b$$
 — совместная СЛАУ. Тогда $\Delta_j = x_j \cdot \det(A_1, \dots, A_n) = \det(A_1, \dots, A_{j-1}, b, A_{j+1}, \dots, A_n)$ Если $\Delta \equiv \det A \neq 0$, то $x_j = \frac{\Delta_j}{\Delta}$, $j = \overline{1, n}$

11. Что такое дополняющий минор и что такое алгебраическое дополнение?

В матрице $A_{n \times n}$ вычеркнем i-тую строку и j-тый столбец. Определитель получившейся матрицы называется dononняющим*минором* элемента a_{ij} .

Aлгебраическим дополнением элемента a_{ij} называется число $(-1)^{i+j} \cdot M_{ij} = A_{ij}$

12. Дать определение союзной матрицы.

Coюзная матрица – транспонированная матрица из алгебраических дополнений к элементам матрицы A.

$$\tilde{A} = \begin{pmatrix} A_{11} & \dots & A_{n1} \\ \vdots & \ddots & \vdots \\ A_{1n} & \dots & A_{nn} \end{pmatrix}$$

13. Дать определение обратной матрицы. Сформулировать критерий ее существования.

Матрица $B \in M_n(\mathbb{R})$ называется обратной к матрице A, если $B \cdot A = E = A \cdot B$.

Матрица $A \in M_n(\mathbb{R})$ имеет обратную (обратима) $\Leftrightarrow \det A \neq 0$ (она невырождена).

14. Выписать формулу для нахождения обратной матрицы.

$$A^{-1}=rac{1}{\det A}\cdot ilde{A},$$
 где $ilde{A}$ — союзная матрица.

15. Дать определение минора.

Минором k-го порядка матрицы A называют определитель матрицы, составленной из элементов, стоящих на пересечениях произвольных k строк и k столбцов.

16. Дать определение базисного минора. Какие строки называются базисными?

Любой отличный от нуля минор, порядок которого равен рангу, называется базисным минором матрицы.

Строки, попавшие в фиксированный базисный минор, называются базисными.

17. Дать определение ранга матрицы.

Рангом матрицы называют наибольший порядок отличного от 0 минора.

18. Дать определение линейной комбинации строк. Что такое нетривиальная линейная комбинация?

Линейная комбинация называется нетривиальной, если $\exists \lambda_i \neq 0$.

19. Дать определение линейной зависимости строк матрицы.

Строки a_1, \ldots, a_s называют *линейно зависимыми*, если существует нетривиальная линейная комбинация $\lambda_1 \cdot a_1 + \ldots + \lambda_s \cdot a_s = 0$.

20. Дать определение линейно независимых столбцов матрицы.

Если равенство $\lambda_1 \cdot a_1 + \ldots + \lambda_k \cdot a_k = 0$ возможно только при $\lambda_1 = \lambda_2 = \ldots = \lambda_k = 0$, то говорят, что столбцы a_1, \ldots, a_k линейно независимы (л.н.з.).

21. Сформулировать критерий линейной зависимости.

Строки a_1, \ldots, a_k линейно зависимы \Leftrightarrow хотя бы одна из них является линейной комбинацией остальных.

22. Сформулировать теорему о базисном миноре.

- 1) Базисные строки (столбцы), соответсвующие любому базисному минору M матрицы A л.н.з.
- 2) Строки (столбцы) матрицы A, не входящие в M, являются линейными комбинациями базисных строк (столбцов).

23. Сформулировать теорему о ранге матрицы.

Ранг матрицы равен максимальному числу ее л.н.з. строк (столбцов).

24. Сформулировать критерий невырожденности квадратной матрицы.

Рассмотрим матрицу $A \in M_n(\mathbb{R})$. Следующие условия эквивалентны:

- 1) $\det A \neq 0$
- 2) RgA = n
- 3) все строки A л.н.з.

2-й модуль

1. Сформулируйте теорему Кронекера-Капелли.

СЛАУ $A \cdot x = b$ совместна $\Leftrightarrow RgA = Rg(A|b)$.

2. Сформулируйте критерий существования ненулевого решения однородной системы линейных уравнений с квадратной матрицей.

Однородная СЛАУ $A \cdot x = 0$ имеет ненулевое решение \Leftrightarrow Матрица A вырождена, то есть det A = 0.

3. Дайте определение фундаментальной системы решений (ФСР) однородной СЛАУ.

Любые n-r линейно независимых столбцов, являющихся решениями однородной СЛАУ $A \cdot x = 0$, где n – число неизвестных, а r = RgA, называют фундаментальной системой решений (ФСР) однородной СЛАУ $A \cdot x = 0$.

4. Сформулируйте теорему о структуре общего решения однородной СЛАУ.

Пусть Φ_1, \ldots, Φ_k – Φ CP однородной СЛАУ $A \cdot x = 0$. Тогда любое решение этой СЛАУ можно представить в виде $x = c_1 \cdot \Phi_1 + \ldots + c_k \cdot \Phi_k$, где c_1, \ldots, c_k - некоторые постоянные.

5. Сформулируйте теорему о структуре общего решения неоднородной системы линейных алгебраических уравнений.

Пусть известно частное решение \tilde{x} СЛАУ $A \cdot x = b$. Тогда любое решение этой СЛАУ можно представить в виде $x = \tilde{x} + c_1 \cdot \Phi_1 + \ldots + c_k \cdot \Phi_k$, где Φ_1, \ldots, Φ_k – Φ CP соответствующей однородной СЛАУ, а c_1, \ldots, c_k – некоторые постоянные.

6. Что такое алгебраическая и тригонометрическая форма записи комплексного числа?

Пусть $z \in \mathbb{C}$. Тогда:

- z = x + iy aлгебраическая форма записи, где $x, y \in \mathbb{R}$
- $z = r(\cos\varphi + i\sin\varphi)$ тригонометрическая форма записи, где $r = |z| = \sqrt{x^2 + y^2}$, $\cos\varphi = \frac{x}{z}$, $\sin\varphi = \frac{y}{z}$

7. Дайте определение модуля и аргумента комплексного числа. Что такое главное значение аргумента комплексного числа?

Modynb комплексного числа $r = |z| = \sqrt{x^2 + y^2}$.

Аргумент комплексного числа – угол между положительным направлением вещественной оси и радиус-вектором этой точки:

$$\phi = Arqz = \arg z + 2\pi k, \ k \in \mathbb{Z}.$$

 $\arg z \in [0, 2\pi)$ или $\arg z \in (-\pi, \pi]$ – главное значение аргумента.

8. Сложение, умножение комплексных чисел. Что происходит с аргументами и модулями комплексных чисел при умножении и делении?

Сложение: $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$

Умножение: $(x_1, y_1) \cdot (x_2, y_2) = (x_1 \cdot x_2 - y_1 \cdot y_2, x_1 \cdot y_2 + x_2 \cdot y_1).$

При умножении модули комплексных чисел перемножаются, а аргументы складываются. Модуль частного двух комплексных чисел равен частному модулей, а аргумент – разности аргументов делимого и делителя.

9. Что такое комплексное сопряжение? Как можно делить комплексные числа в алгебраической форме?

Комплексное сопряжение: $\overline{z} = \overline{a+b\cdot i} = a-b\cdot i$

Пусть $z_1, z_2 \in \mathbb{C}$ и $z_2 \neq 0$. Тогда:

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}} = \frac{z_1 \cdot \overline{z_2}}{|z_2|^2}$$

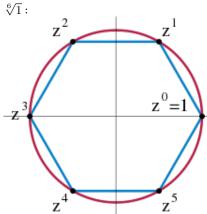
10. Выпишите формулу Муавра.

$$z^n = r^n(\cos n\phi + i\sin n\phi), n \in \mathbb{N}$$

11. Как найти комплексные корни п-ой степени из комплексного числа? Сделайте эскиз, на котором отметьте исходное число и все корни из него.

Дано число $w = \rho \cdot (\cos \psi + i \cdot \sin \psi)$ и число $n \in \mathbb{N}$

$$\sqrt[n]{w} = \left\{ z = \sqrt[n]{\rho} \cdot \left(\cos \frac{\psi + 2\pi k}{n} + i \cdot \sin \frac{\psi + 2\pi k}{n} \right), \ k = \overline{0, n - 1} \right\}$$



12. Сформулируйте основную теорему алгебры. Сформулируйте теорему Безу.

Основная теорема алгебры: \forall многочлена $f(z) = a_n \cdot z^n + a_{n-1} \cdot z^{n-1} + \ldots + a_0 \cdot z^0, \ a_i \in \mathbb{C}, \ n \in \mathbb{N}, \ a_n \neq 0 \ \exists$ корень $z_0 \in \mathbb{C}$.

Теорема Безу: Остаток от деления многочлена f(x) на x - c равен f(c).

13. Выпишите формулу Эйлера. Выпишите выражения для синуса и косинуса через экспоненту.

Формула Эйлера: $\cos \phi + i \cdot \sin \phi = e^{i\phi}, \ \phi \in \mathbb{R}$

$$\cos \phi = \frac{e^{i\phi} + e^{-i\phi}}{2}, \sin \phi = \frac{e^{i\phi} - e^{-i\phi}}{2i}$$

14. Какие многочлены называются неприводимыми?

Многочлен называется npusodumыm, если \exists нетривиальное разложение $f = g \cdot h$ и nenpusodumыm в противном случае.

15. Сформулируйте утверждение о разложении многочленов на неприводимые множители над комплексными числами.

 \forall многочлен степени n>0 разлагается в произведение неприводимых многочленов.

Комплексный многочлен степени n разлагается в произведение:

$$P_n(z)=a_n\cdot(z-z_1)^{\alpha_1}\cdot\ldots\cdot(z-z_k)^{\alpha_k}$$
, где сумма кратностей $\alpha_1+\ldots+\alpha_k=n,z_i\in\mathbb{C}$

16. Дайте определение векторного произведения векторов в трехмерном пространстве.

Вектор \overrightarrow{c} называют векторным произведением векторов \overrightarrow{a} и \overrightarrow{b} , если:

- 1) $|\overrightarrow{c}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \varphi$, где φ угол между \overrightarrow{a} и \overrightarrow{b}
- 2) $\overrightarrow{c} \perp \overrightarrow{a}, \overrightarrow{c} \perp \overrightarrow{b}$
- 3) тройка \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} правая

17. Сформулируйте три алгебраических свойства векторного произведения.

- 1) $\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$ (антикоммутативность)
- 2) $(\lambda \overrightarrow{a}) \times \overrightarrow{b} = \lambda (\overrightarrow{a} \times \overrightarrow{b})$
- 3) $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$ (дистрибутивность)

18. Выпишите формулу для вычисления векторного произведения в координатах, заданных в ортонормированном базисе.

Пусть \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} – правый ортонормированный базис, $\overrightarrow{a} = a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}$, $\overrightarrow{b} = b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k}$. Тогда:

$$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \overrightarrow{i} (a_y b_z - b_y a_z) + \overrightarrow{j} (a_z b_x - a_x b_z) + \overrightarrow{k} (a_x b_y - a_y b_x)$$

19. Сформулируйте критерий коллинеарности двух векторов с помощью векторного произведения.

Векторы \overrightarrow{a} и \overrightarrow{b} коллинеарны $\Leftrightarrow \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0}$.

20. Дайте определение смешанного произведения векторов. Как вычислить объем тетраэдра с помощью смешанного произведения?

Смешанным произведением векторов \vec{a} , \vec{b} , \vec{c} называют число ($\vec{a} \times \vec{b}$, \vec{c}).

Объем тетраэдра, построенного на векторах \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} равен $V_T = \frac{1}{6} |\langle \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \rangle|$.

21. Выпишите формулу для вычисления смешанного произведения в координатах, заданных в ортонормированном базисе.

Пусть \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} — правый ортонормированный базис, $\overrightarrow{a} = a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}$, $\overrightarrow{b} = b_x \overrightarrow{i} + b_y \overrightarrow{j} + b_z \overrightarrow{k}$, $\overrightarrow{c} = c_x \overrightarrow{i} + c_y \overrightarrow{j} + c_z \overrightarrow{k}$. Тогда:

$$\langle \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \rangle = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

22. Сформулируйте критерий компланарности трех векторов с помощью смешанного произведения.

Векторы \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} компланарны $\Leftrightarrow \langle \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \rangle = 0$.

23. Дайте определение прямоугольной декартовой системы координат.

Прямоугольной декартовой системой координат называют пару, состоящую из точки О и ортонормированного базиса.

24. Что такое уравнение поверхности и его геометрический образ?

Уравнение F(x,y,z)=0 называют уравнением поверхности S, если этому уравнению удовлетворяют координаты любой точки, лежащей на поверхности, и не удовлетворяют координаты ни одной точки, не лежащей на поверхности.

При этом поверхность S называют геометрическим образом уравнения F(x, y, z) = 0.

25. Сформулируйте теорему о том, что задает любое линейное уравнение на координаты точки в трехмерном пространстве.

Любое уравнение Ax + By + Cz + D = 0, где $A^2 + B^2 + C^2 > 0$, определяет в пространстве плоскость.

26. Что такое нормаль к плоскости?

Пусть Ax + By + Cz + D = 0 – уравнение плоскости. Тогда вектор $\overrightarrow{n} = (A, B, C)$ перпендикулярен плоскости и называется

27. Выпишите формулу расстояния от точки до плоскости.

Рассмотрим плоскость L: Ax + By + Cz + D = 0 и точку $M(x_0, y_0, z_0)$. Тогда:

$$\rho(M,L) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

28. Общие уравнения прямой. Векторное уравнение прямой. Параметрические и канонические уравнения прямой.

- ullet $egin{cases} A_1x+B_1y+C_1z+D_1=0 \ A_2x+B_2y+C_2z+D_2=0 \end{cases}$ общее уравнение прямой
- Векторное уравнение прямой: $\overrightarrow{r} = \overrightarrow{r_0} + t \overrightarrow{s}$, где $\overrightarrow{r_0}$ радиус-вектор некоторой точки прямой, \overrightarrow{s} направляющий вектор прямой
- Параметрическое уравнение: $\begin{cases} x-x_0=tl\\ y-y_0=tm \text{, где } \overrightarrow{p}(l,m,n)-\text{направляющий вектор прямой,}\\ z-z_0=tn \end{cases}$

 $M(x_0,y_0,z_0)$ – точка прямой

• Каноническое уравнение прямой: $t = \frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}$

29. Сформулируйте критерий принадлежности двух прямых одной плоскости.

Пусть $M_1(x_1, y_1, z_1) \in L_1$, $M_2(x_2, y_2, z_2) \in L_2$. Тогда L_1 и L_2 в одной плоскости $\Leftrightarrow \overrightarrow{s_1}, \overrightarrow{s_2}$ и $\overrightarrow{M_1 M_2}$ компланарны, где $\overrightarrow{s_1}, \overrightarrow{s_2}$ – направляющие вектора прямых L_1 и L_2 соответственно.

30. Выпишите формулу для вычисления расстояния от точки до прямой.

Рассмотрим точку $M_1(x_1,y_1,z_1)$ и прямую $L: \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$. Пусть $\overrightarrow{s} = (l,m,n), \ M_0(x_0,y_0,z_0)$. Тогда:

$$\rho(M_1, L) = \frac{|\overrightarrow{M_0 M_1} \times \overrightarrow{s}|}{|\overrightarrow{s}|}$$

31. Выпишите формулу для вычисления расстояния между двумя скрещивающимися прямыми.

Рассмотрим скрещивающиеся прямые L_1 и L_2 , s_1 и s_2 – их направляющие векторы и точки $M_1 \in L_1$, $M_2 \in L_2$. Тогда:

$$\rho(L_1, L_2) = \frac{|\langle \overrightarrow{s_1}, \overrightarrow{s_2}, \overrightarrow{M_1 M_2} \rangle|}{|\overrightarrow{s_1} \times \overrightarrow{s_2}|}$$

32. Какие бинарные операции называются ассоциативными, а какие коммутативными?

Бинарная операция \times называется accoulumushoù, если $\forall a,b,c\in X:a\times (b\times c)=(a\times b)\times c.$

Бинарная операция * называется коммутативной, если $\forall a, b \in X \ a * b = b * a$.

33. Дайте определение полугруппы и моноида. Приведите примеры.

Множество с заданной на нем ассоциативной бинарной операцией называется nonyepynnoù. **Пример:** $(\mathbb{N},+)$.

Полугруппа, в которой есть нейтральный элемент, называется *моноидом*. **Пример:** (\mathbb{N}, \cdot) – моноид, e = 1.

34. Сформулируйте определение группы. Приведите пример.

Моноид G, все элементы которого обратимы, называется *группой*. **Пример:** множество всех невырожденных (det $A \neq 0$) матриц $A_{n \times n}$ с операцией матричного умножения.

35. Что такое симметрическая группа? Укажите число элементов в ней.

Симметрическая группа S_n — множество всех подстановок длины n $\sigma = \begin{pmatrix} 1 & \dots & n \\ l_1 & \dots & l_n \end{pmatrix}$ с операцией композиции. В ней n! элементов.

36. Что такое общая линейная и специальная линейная группы?

Множество всех невырожденных (det $A \neq 0$) матриц $A_{n \times n}$ с операцией матричного умножения — $GL_n(\mathbb{R})$ — общая линейная группа.

$$SL_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) | \det A = 1\} -$$
специальная линейная группа.

37. Сформулируйте определение абелевой группы. Приведите пример.

Группа с коммутативной операцией называется *абелевой*. **Пример:** $(\mathbb{Z},+)$ – абелева группа.

38. Дайте определение подгруппы. Приведите пример группы и ее подгруппы.

Подмножество $H \subseteq G$ называется *подгруппой* в группе G, если:

- 1) $e \in H$
- 2) $\forall h_1, h_2 \in H : h_1 \cdot h_2 \in H$
- 3) $\forall h \in H \Rightarrow h^{-1} \in H$

Пример: $SL_n(\mathbb{R}) \subset GL_n(\mathbb{R})$

39. Дайте определение гомоморфизма групп. Приведите пример.

Отображение $f: G \to G'$ группы (G, *) в группу (G', \circ) называется гомоморфизмом, если $\forall a, b \in G \ f(a * b) = f(a) \circ f(b)$.

Пример: $\det : GL_n(\mathbb{R}) \to \mathbb{R}^*$ (\mathbb{R}^* – это $\mathbb{R}\setminus\{0\}$ с операцией умножения). Это гомоморфизм, так как $\det(A \cdot B) = \det A \cdot \det B$.

40. Дайте определение изоморфизма групп. Приведите пример.

Изоморфизм – это биективный гомоморфизм.

Пример: $(\mathbb{R},+) \simeq (\mathbb{R}^+,\cdot)$ посредством изоморфизма $f(x) = e^x$.

41. Дайте определение порядка элемента

Порядок элемента $a \in G$ – наименьшее натуральное число p такое, что $a^p = e$.

3-й модуль

1. Что такое ядро гомоморфизма групп? Приведите пример.

 \mathcal{A} дро гомоморфизма $f:G \to F$ $Kerf = \{g \in G | f(g) = e_F\}$ $(e_F - \text{нейтральный элелемент в } F).$

Пример: В гомоморфизме $\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$ с $h(u) = u \mod 3$ ядро состоит из целых чисел, делящихся на 3.

2. Сформулируйте определение циклической группы. Приведите пример.

Если \forall элемент $g \in G$ имеет вид $g = a^n = a \times a \times \ldots \times a$ (n раз), где $a \in G$, то G - циклическая группа.

Пример: (\mathbb{Z} , +) – циклическая группа, порожденная 1.

3. Сколько существует, с точностью до изоморфизма, циклических групп данного порядка?

Существует ровно одна циклическая группа данного порядка с точностью до изоморфизма.

4. Что такое группа диэдра? Что такое знакопеременная группа? Укажите число элементов в них.

Группа диэдра (D_n) – это группа симметрии правильного *n*-угольника, $|D_n| = 2n$.

 A_n – знакопеременная группа, то есть множество всех четных подстановок, $|A_n| = \frac{n!}{2}$.

5. Сформулируйте утверждение о связи порядка элемента, порождающего циклическую группу, с порядком группы.

Пусть G – группа и $g \in G$, тогда $ord(g) = |\langle g \rangle|$.

6. Сформулируйте утверждение о том, какими могут быть подгруппы группы целых чисел по сложению.

 \forall подгруппа в (\mathbb{Z} , +) имеет вид $k\mathbb{Z}$ для некоторых $k \in \mathbb{N} \cup \{0\}$.

7. Дайте определение левого смежного класса по некоторой подгруппе.

Пусть G – группа, $H \subseteq G$ – подгруппа и $g \in G$. Тогда левым смежным классом элемента g по подгруппе H называется множество $gH = \{gh|h \in H\}.$

8. Дайте определение нормальной подгруппы.

Подгруппа H называется *нормальной*, если gH = Hg, $\forall g \in G$ (равенство правых и левых смежных классов).

9. Что такое индекс подгруппы?

 $\mathit{Индексом}$ подгруппы H в группе G называется число левых смежных классов G по H .

10. Сформулируйте теорему Лагранжа.

Пусть G – конечная группа и $H \subseteq G$ – подгруппа. Тогда $|G| = |H| \cdot [G:H]$.

11. Сформулируйте две леммы, которые нужны для доказательства теоремы Лагранжа.

Лемма 1: $\forall g_1, g_2 \in G$ либо $g_1H = g_2H$, либо $g_1H \cap g_2H = \emptyset$.

Лемма 2: |gH| = |H| $\forall g \in G$, \forall конечной подгруппы H.

12. Сформулируйте три следствия из теоремы Лагранжа.

Следствие 1: Пусть G – конечная группа и $g \in G$. Тогда ord(g) делит |G|.

Следствие 2: Пусть G – конечная группа. Тогда $q^{|G|}$ = e.

Следствие 3 (малая теорема Ферма): Пусть \overline{a} – ненулевой вычет по простому модулю p. Тогда $\overline{a}^{p-1} \equiv 1 \mod p$.

13. Сформулируйте критерий нормальности подгруппы, использующий сопряжение.

Пусть $H \subseteq G$ — подгруппа в группе G. Тогда 3 условия эквивалентны:

- 1) H нормальна
- 2) $\forall g \in G \ gHg^{-1} \subseteq H \ (gHg^{-1} = \{ghg^{-1} | h \in H\})$
- 3) $\forall q \in G \ qHq^{-1} = H$

14. Дайте определение факторгруппы.

Пусть H – нормальная подгруппа. Тогда G/H – множество левых смежных классов по H с операцией умножения: $(q_1H)\cdot (q_2H)=q_1\cdot q_2H$ называется факторгруппой G по H.

15. Что такое естественный гомоморфизм?

Отображение $\varepsilon: G \to G/H$, сопоставляющее каждому элементу $a \in G$ его класс смежности aH, называется естественным гомоморфизмом.

16. Сформулируйте критерий нормальности подгруппы, использующий понятие ядра гомоморфизма.

H – нормальная подгруппа $\Leftrightarrow H = Kerf$, где f – некоторый гомоморфизм.

17. Сформулируйте теорему о гомоморфизме групп. Приведите пример.

Пусть $f: G \to F$ – гомоморфизм групп. Тогда группа $Imf = \{a \in F | \exists g \in G, f(g) = a\}$ изоморфна факторгруппе G/Kerf, $Kerf = \{g \in G | f(g) = e_F\}$ (Kerf - ядро гомоморфизма).

$$G/Kerf \simeq Imf$$

Пример: $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}_n$ $f: \mathbb{Z} \to \mathbb{Z}_n$, \forall целому числу сопоставляем его остаток от деления на $n-Kerf=n\mathbb{Z}$.

18. Что такое прямое произведение групп?

Прямое произведение групп $(G,+) \times (D,\star)$ – это группа из всех пар элементов с операцией поэлементного умножения:

$$(q_1, d_1) \times (q_2, d_2) = (q_1 + q_2, d_1 \star d_2)$$

19. Сформулируйте определение автоморфизма и внутреннего автоморфизма.

Автоморфизм – это изоморфизм из G в G.

Внутренний автоморфизм – это отображение $I_a: g \mapsto aga^{-1}$.

20. Что такое центр группы? Что можно сказать о его свойствах?

IIентр группы G – это множество $Z(G) = \{a \in G | ab = ba \ \forall b \in G\}, G$ – абелева $\Leftrightarrow Z(G) = G, Z(G)$ является нормальной подгруппой G.

21. Чему изоморфна факторгруппа группы по ее центру?

 $G/Z(G) \simeq Inn(G)$ (Inn – подгруппа, которую образуют все внутренние автоморфизмы группы Aut(G)).

22. Сформулируйте теорему Кэли.

 \forall конечная группа порядка n изоморфна некоторой подгруппе группы S_n .

23. Дайте определение кольца.

Пусть $K \neq \emptyset$ – множество, на котором заданы две бинарные операции " + " и " · ", такие, что:

- 1) (K, +) абелева группа (это аддитивная группа кольца)
- 2) (K,\cdot) полугруппа (это мультипликативная полугруппа кольца)
- 3) Умножение дистрибутивно относительно сложения: $\forall a, b, c \in K : c(a+b) = ca+cb, (a+b)c = ac+bc$ Тогда $(K, +, \cdot)$ – кольцо.

24. Что такое коммутативное кольцо? приведите примеры коммутативного и некоммутативного колец.

Если $\forall x, y \in K \ xy = yx$, то кольцо называется коммутативным.

Пример 1: $(\mathbb{Z}, +, \cdot)$ – является коммутативным кольцом.

Пример 2: $(M_n(\mathbb{R}), +, \cdot)$ – полное матричное кольцо над \mathbb{R} – некоммутативное.

25. Дайте определение делителей нуля.

Если $a \cdot b = 0$, при $a \neq 0$, $b \neq 0$ в кольце K, то a называется левым делителем нуля, а b – правым делителем нуля.

26. Дайте определение целостного кольца. Приведите пример.

Коммутативное кольцо с единицей $(\neq 0)$ и без делителей нуля называется *целостным кольцом*. **Пример:** $(\mathbb{Z}, +, \cdot)$.

27. Сформулируйте критерий целостности для нетривиального коммутативного кольца с единицей.

Нетривиальное коммутативное кольцо с единицей является целостным ⇔ в нем выполняется закон сокращения, то есть из $a \cdot b = a \cdot c$ при условии $a \neq 0 \Rightarrow b = c \ \forall a, b, c \in K$.

28. Какие элементы кольца называются обратимыми?

Элемент коммутативного кольца a называется обратимым, если $\exists a^{-1}: a\cdot a^{-1} = 1 = a^{-1}\cdot a$.

29. Дайте определение поля. Приведите три примера.

Поле P – это коммутативное кольцо с единицей (≠ 0), в котором каждый элемент $a \neq 0$ обратим. Пример: \mathbb{R} , \mathbb{C} , \mathbb{Q} .

30. Дайте определение подполя. Привести пример пары: поле и его подполе.

 $\Pi o \partial n o n e$ — это подмножество поля, которое само является полем относительно тех же операций. **Пример:** $\mathbb{Q} \subset \mathbb{R}$.

31. Дайте определение характеристики поля. Привести примеры: поля конечной положительной характеристики и поля нулевой характеристики.

Пусть P – поле. Xарактеристикой поля P (char P) называется наименьшее $q \in \mathbb{N} : \underbrace{1 + \ldots + 1}_q = 0$. Если такого q не существует, то char P = 0.

Пример: $char\mathbb{R} = 0$, $char\mathbb{Z}_p = p$, p – простое.

32. Сформулируйте утверждение о том, каким будет простое подполе в зависимости от характеристики.

Пусть F – поле. F_0 – его простое подполе. Тогда:

- 1) если char F = p > 0, то $F_0 \simeq \mathbb{Z}_p$
- 2) если charF = 0, то $F_0 \simeq \mathbb{Q}$

33. Дайте определение идеала. Что такое главный идеал?

Подмножество I кольца называется udeanom, если:

- 1. оно является подгруппой по сложению
- 2. $\forall a \in I, \forall r \in K \ r \cdot a$ и $a \cdot r \in I$

Идеал называется главным, если $\exists a \in K : I = < a >$.

34. Сформулируйте определение гомоморфизма колец.

$$\varphi:K_1 o K_2$$
 – гомоморфизм колец, если $\forall a,b\in K_1: \begin{cases} \varphi(a+b)=\varphi(a)\oplus \varphi(b) \\ \varphi(a\cdot b)=\varphi(a)*\varphi(b) \end{cases}$

35. Сформулируйте теорему о гомоморфизме колец. Приведите пример.

Пусть $\varphi: K_1 \to K_2$ – гомоморфизм колец. Тогда $K_1/Ker \varphi \simeq Im \varphi$.

Пример: $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}_n \ \varphi : \mathbb{Z} \to \mathbb{Z}_n, \ \forall$ целому числу сопоставляем его остаток от деления на $n, \ Ker \varphi = n\mathbb{Z}$.

36. Сформулируйте теорему о том, когда факторкольцо кольца многочленов над полем само является полем.

Факторкольцо $F[x]/\langle f(x)\rangle$ является полем $\Leftrightarrow f(x)$ неприводим над F.

37. Сформулируйте критерий того, что кольцо вычетов по модулю p является полем.

 \mathbb{Z}_p – поле $\Leftrightarrow p$ – простое.

38. Дайте определение алгебраического элемента над полем.

Пусть F_2 - поле, а F_1 - его подполе. Элемент $\alpha \in F_2$ называется алгебраическим над полем F_1 , если $\exists f(x) \neq 0$ (0 как функция), что $f(x) \in F_1[x]$, для которого $f(\alpha) = 0$.

39. Что такое поле рациональных дробей?

Пусть F – поле. Рассмотрим поле рациональных функций (частных) с коэфициентами из F. То есть элементы этого множества – дроби $\frac{f(x)}{g(x)}$, где $f,g \in F[x], g \neq 0$.

40. Сформулируйте утверждение о том, что любое конечное поле может быть реализовано как факторкольцо кольца многочленов по некоторому идеалу.

 \forall конечное поле F_q , где $q = p^n$, p – простое, можно реализовать в виде $\mathbb{Z}_p[x]/\langle h(x) \rangle$, где h(x) – неприводимый многочлен степени n над \mathbb{Z}_p .

41. Сформулируйте китайскую теорему об остатках (через изоморфизм колец).

Пусть $n \in \mathbb{Z}, n = n_1 \cdot \ldots \cdot n_m$, где n_i — взаимно просты. Тогда кольцо $\mathbb{Z}_n \simeq \mathbb{Z}_{n_1} \times \ldots \times \mathbb{Z}_{n_m}$.

42. Сформулируйте утверждение о том, сколько элементов может быть в конечном поле.

Число элементов конечного поля всегда p^n , где p – простое, $n \in \mathbb{N}$.

43. Дайте определение линейного (векторного) пространства.

Пусть F – поле. Пусть V – произвольное множество, на котором заданы две операции: сложение и умножение на число. Множество V называется линейным (векторным) пространством, если $\forall x,y,z \in V, \forall \lambda \mu \in F$ выполнены следующие 8 свойств:

- 1) (x + y) + z = x + (y + z) ассоциативность сложения
- 2) \exists нейтральный элемент по сложению: $\exists 0 \in V : \forall x \in V \ x + 0 = 0 + x = x$
- 3) \exists противоположный элемент по сложению: $\forall x \in V \ \exists (-x) \in V : x + (-x) = 0$
- 4) x + y = y + x коммутативность сложения
- 5) $\forall x \in V$ $1 \cdot x = x$ нейтральность $1 \in F$
- 6) ассоциативность умножения на число: $\mu(\lambda x) = (\mu \lambda)x$
- 7) $(\lambda + \mu)x = \lambda x + \mu x$ дистрибутивность относительно умножения на вектор
- 8) $\lambda(x+y) = \lambda x + \lambda y$ дистрибутивность относительно умножения на число

44. Дайте определение базиса линейного (векторного) пространства.

Базисом линейного пространства V называется система векторов b_1, \dots, b_n , такая, что:

- а) b_1, \ldots, b_n л.н.з.
- б) любой вектор из V представляется в виде линейной комбинации $b_1,\dots,b_n \ \forall x \in V \ x = x_1b_1+\dots+x_nb_n, \ x_i \in F$

45. Что такое размерность пространства?

Максимальное количество л.н.з. векторов в данном линейном пространстве V называется pазмерностью пространства V.

46. Дайте определение матрицы перехода от старого базиса линейного пространства к новому.

 ${\it Mampuye\'u}\ nepexoda$ от базиса A к базису B называется матрица

$$T_{A \to B} = \begin{pmatrix} t_{11} & \dots & t_{1n} \\ \vdots & \ddots & \vdots \\ t_{n1} & \dots & t_{nn} \end{pmatrix}$$

где t_{1i}, \ldots, t_{ni} – координаты b_i в базисе A.

47. Выпишите формулу для описания изменения координат вектора при изменении базиса.

Пусть
$$x \in V, A$$
 и B — базисы в $V.$ $x^a = \begin{pmatrix} x_1^a \\ \vdots \\ x_n^a \end{pmatrix}$ — столбец координат вектора x в базисе A ,

$$x^b = \begin{pmatrix} x_1^b \\ \vdots \\ x_n^b \end{pmatrix}$$
 — столбец координат вектора x в базисе B . Тогда:

$$x^b = T_{A \to B}^{-1} \cdot x^a$$

48. Дайте определение подпространства в линейном пространстве.

Подмножество W векторного пространства V называется nodnpocmpancmsom, если оно само является пространством относительно операций в V.

49. Дайте определения линейной оболочки конечного набора векторов и ранга системы векторов.

Множество $L(a_1, \ldots, a_k) = \{\lambda_1 a_1 + \ldots + \lambda_k a_k | \lambda_i \in F\}$ — множество всех линейных комбинаций векторов a_1, \ldots, a_k называется линейной оболочкой системы a_1, \ldots, a_k

Pангом системы векторов a_1, \ldots, a_k в линейном пространстве называется размерность линейной оболочки этой системы $Rg(a_1, \ldots, a_k) = \dim L(a_1, \ldots, a_k)$.

50. Дайте определения суммы и прямой суммы подпространств.

 $H_1 + H_2 = \{x_1 + x_2 | x_1 \in H_1, x_2 \in H_2\}$ называется суммой подпространств H_1 и H_2 .

 H_1+H_2 называется npямой суммой (и обзначается $H_1\oplus H_2$), если $H_1\cap H_2$ = $\{0\}$, то есть тривиально.

51. Сформулируйте утверждение о связи размерности суммы и пересечения подпространств.

Пусть H_1 и H_2 – подпространства. Тогда $\dim(H_1 + H_2) = \dim H_1 + \dim H_2 - \dim(H_1 \cap H_2)$.

52. Дайте определение билинейной формы.

Функцию $b: V \times V \to \mathbb{R}$ (V – линейное пространство над \mathbb{R}) называют билинейной формой, если $\forall x,y,z \in V, \ \forall \alpha,\beta \in \mathbb{R}$:

- 1) $b(\alpha x + \beta y, z) = \alpha b(x, z) + \beta b(y, z)$
- 2) $b(x, \alpha y + \beta z) = \alpha b(x, y) + \beta b(x, z)$

53. Дайте определение квадратичной формы.

Однородный многочлен второй степени от n переменных, то есть:

$$Q(x) = \sum_{i=1}^{n} a_{ii} x_{i}^{2} + 2 \sum_{1 \le i < j \le n} a_{ij} x_{i} x_{j}, \ a_{ij} \in \mathbb{R}$$

называют квадратичной формой.

54. Дайте определения положительной и отрицательной определенности квадратичной формы.

Квадратичную форму Q(x) называют:

- положительно определенной, если $\forall x \neq 0 \ Q(x) > 0$
- ullet отрицательно определенной, если $\forall x \neq 0 \ Q(x) < 0$

55. Какую квадратичную форму называют знакопеременной?

Квадратичную форму Q(x) называют знакопеременной, если $\exists x, y \in V \ Q(y) < 0 < Q(x)$.

56. Дайте определения канонического и нормального вида квадратичной формы.

Квадратичную форму $Q(x) = \alpha_1 x_1^2 + \ldots + \alpha_n x_n^2$, $\alpha_i \in \mathbb{R}$ $i = \overline{1,n}$ (то есть не имеющую попарных произведений переменных) называют квадратичной формой канонического вида.

Если $\alpha_i \in \{1, -1, 0\}$, то канонический вид называется нормальным.

57. Как меняется матрица билинейной формы при замене базиса? Как меняется матрица квадратичной формы при замене базиса?

Пусть U – матрица перехода от базиса e к базису f. Пусть B_e – матрица билинейной формы в базисе e, B_f – матрица билинейной формы в базисе f. Тогда:

$$B_f = U^T B_e U$$

При переходе от базиса e к базису e' линейного пространства V матрица квадратичной формы меняется следующим образом:

$$A' = S^T A S$$

где S – матрица перехода от e к e'.

58. Сформулируйте критерий Сильвестра и его следствие.

Квадратичная форма Q(x) от n переменных $x = (x_1, \dots, x_n)^T$ положительно определена \Leftrightarrow $\begin{cases} \triangle_1 > 0 \\ \vdots \\ \triangle_n > 0 \end{cases}$. Здесь $Q(x) = x^T A x$,

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n1} & \dots & \dots & a_{nn} \end{pmatrix}, \ \Delta_1 = a_{11}, \ \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \dots, \ \Delta_n = \det A$$

то есть последовательность главных угловых миноров положительна.

Следствие: Q(x) отрицательно определена $\Leftrightarrow \Delta_1 < 0, \Delta_2 > 0, \dots, (-1)^n \Delta_n > 0$ (Знаки главных угловых миноров чередуются, начиная с минуса).

59. Сформулируйте закон инерции квадратичных форм. Что такое индексы инерции?

Для любых двух канонических видов одной и той квадратичной формы

$$Q_1(y_1,\ldots,y_m) = \lambda_1 y_1^2 + \ldots + \lambda_m y_m^2, \lambda_i \neq 0, i = \overline{1,m}$$

$$Q_2(z_1,\ldots,z_k) = \mu_1 z_1^2 + \ldots + \mu_k z_k^2, \mu_j \neq 0, j = \overline{1,k}$$

- 1) m = k = RgA рангу квадратичной формы
- 2) количество положительных λ_i = количеству положительных $\mu_i = i_+ nonoжительный индекс инерции. Количество$ отрицательных λ_i = количеству отрицательных $\mu_i = i_-$ - отрицательный индекс инерции.

60. Дайте определение линейного отображения. Приведите пример.

Отображение $\varphi: V_1 \to V_2$ называется линейным, если:

- 1) $\forall u, v \in V_1, \ \varphi(u+v) = \varphi(u) + \varphi(v)$
- 2) $\forall u \in V_1, \forall \lambda \in F \varphi(\lambda u) = \lambda \varphi(u)$

Пример: В линейном пространстве $m \times n$ матриц существует линейное отображение умножения слева на фиксированную матрицу $A_{l \times m} : \varphi : X \to A \cdot X$.

61. Дайте определение матрицы линейного отображения.

Mampuua линейного отображения — это матрица $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$, где по столбцам стоят координаты образов векторов базиса V_1 в базисе V_2 .

62. Выпишите формулу преобразования матрицы линейного отображения при замене базиса. Как выглядит формула в случае линейного оператора?

Пусть φ – линейное отображение из линейного пространства V_1 в линейное пространство V_2 . Пусть $A_{e_1e_2}$ – матрица линейного отображения в паре базисов: e_1 в пространстве V_1 и e_2 в пространстве V_2 и пусть T_1 – матрица перехода от e_1 к e'_1 , T_2 – матрица перехода от e_2 к e'_2 . Тогда:

$$A_{e_1'e_2'} = T_2^{-1} A_{e_1e_2} T_1$$

Формула для линейных операторов:

$$A_{E'} = T^{-1}A_ET$$

4-й модуль

1. Дайте определения собственного вектора и собственного значения линейного оператора.

Число λ называется собственным числом или собственным значением линейного оператора $A:V\to V$, если существует вектор $v\in V, v\neq 0$, такой, что $Av=\lambda v$. При этом вектор v называется собственным вектором, отвечающим за собственное значение λ .

2. Дайте определения характеристического уравнения и характеристического многочлена квадратной матрицы.

Для произвольной квадратной матрицы A определитель $\chi_A(\lambda) = \det(A - \lambda E)$ называют характеристическим многочленом матрицы A. Характеристическое уравнение - уравнение вида $\det(A - \lambda E) = 0$.

3. Сформулируйте утверждение о связи характеристического уравнения и спектра линейного оператора.

 λ принадлежит спектру линейного оператора $\Leftrightarrow \lambda$ - корень характеристического уравнения(над алгебраически замкнутым полем).

4. Дайте определение собственного подпространства.

Пусть $A:V \to V$ - линейный оператор, λ - собственное значение A. Тогда множество $V_{\lambda} = \{v \in V | Av = \lambda v\}$ - подпространство в V, называемое собственным подпространством, отвечающим λ .

Коллоквиум определения, 2019 г.

5. Дайте определения алгебраической и геометрической кратности собственного значения. Какое неравенство их связывает?

Алгебраической кратностью λ называется кратность λ как корня характеристического уравнения. Размерность подпространтсва V_{λ} называется геометрической кратностью собственного значения λ . Геометрическая кратность собственного значения не превышает его алгебраической кратности.

6. Дайте определение следа матрицы. Как меняется след матрицы оператора при замене базиса.

Cледом матрицы A называется сумма ее диагональных элементов: $trA = \sum a_{ii}$. След матрицы не зависит от выбора базиса.

7. Каким свойством обладают собственные векторы линейного оператора, отвечающие различным собственным значениям.

Пусть $\lambda_1, \ldots, \lambda_k$ - собственные значения линейного оператора $A, \lambda_i \neq \lambda_j$, а v_1, \ldots, v_k - соответствующие собственные векторы. Тогда v_1, \ldots, v_k - линейно независимые, т.е. собственные векторы, отвечающие различным собственным значениям, линейно независимы.

8. Сформулируйте критерий диагональности матрицы оператора.

Матрица линейного оператора является диагональной в этом базисе \Leftrightarrow все векторы этого базиса являются собственными векторами для A.

9. Сформулируйте критерий диагонализируемости матрицы оператора с использованием понятия геометрической кратности.

Матрицы линейного оператора приводится к диагональному виду ⇔ геометрическая кратность каждого собственного значения орператора равна его алгебраической кратности

10. Дайте определение жордановой клетки. Сформулируйте теорему о жордановой нормальной форме матрицы оператора.

 \mathcal{K} орданова клетка размера $m \times m$ - это матрица вида:

$$J_m(\lambda_i) = \begin{pmatrix} \lambda_i & 1 & \dots & 0 \\ & \ddots & \ddots & \vdots \\ & & \lambda_i & 1 \\ 0 & & & \lambda_i \end{pmatrix}$$

 $\forall A \in Mn(\mathbb{F})$ приводится заменой базиса к ЖНФ над алгебраически замкнутым полем (например \mathbb{C}). Иными словами $\exists C \in Mn(\mathbb{F})$ и $\det C \neq 0$, что $A = CJC^{-1}$, где J - ЖНФ.

11. Выпишите формулу для количества жордановых клеток заданного размера.

 $h_k(\lambda_i) = \rho_{k+1} - 2\rho_k + \rho_{k-1}$ - количество жордановых клеток с λ_i на диагонали размера $k \times k$ ($\rho_i = Rg(A - \lambda_i E)^j$, $\rho_0 = n$).

12. Сформулируйте теорему Гамильтона-Кэли.

Если A - квадратная матрица и $\chi(\lambda)$ её характеристический многочлен, то $\chi(A) = 0$.

13. Дайте определение корневого подпространства.

Корневое подпространство: $K_i = Ker(A - \lambda_i E)^{m_i}$, где m_i - алгебраическая кратность λ_i .

14. Дайте определение минимального многочлена линейного оператора.

Для матрицы A многочлен $\mu(x)$ называется минимальным, если $\mu(A) = 0$ и $\forall f : f(A) = 0$, $\deg(f) \ge \deg(\mu)$.

15. Дайте определение инвариантного подпространства.

Подпространство L векторного пространства V называется инвариантным относительно оператора φ , если $\varphi(x) \in L \ \forall x \in L$.

16. Дайте определение евклидова пространства.

Eвклидово пространство - это пара V - линейное пространство над $\mathbb R$ и скалярное произведение g(x,y), то есть симметричная положительно определенная билинейная форма.

$$\mathbb{E} = (V, g(x, y))$$
 и $\forall x, y \in V, \forall \lambda \in \mathbb{R}$:

- g(x,y) = g(y,x)
- g(x+y,z) = g(x,z) + g(y,z)
- $g(\lambda x, y) = \lambda g(x, y)$
- $g(x,x) \ge 0$ и $g(x,x) = 0 \Leftrightarrow x = 0$

17. Выпишите неравенство Коши-Буняковского и треугольника.

Неравенсво Коши-Буняковского: $\forall x, y \in \mathbb{E} \ |(x, y)| \le ||x|| \cdot ||y||$. Неравенсво треугольника: $\forall x, y \in \mathbb{E} \|x + y\| \le \|x\| + \|y\|$.

18. Дайте определения ортогонального и ортонормированного базисов.

Пусть $\{v_1,\ldots,v_k\}$ – ортогональная система векторов, причем $v_i\neq 0 \ \forall i=\overline{1,k}$. Если $k = \dim V = n$, то v_1, \ldots, v_k будут ортогональным базисом

Если рассмотрим $e_1 = \frac{v_1}{||v_1||}, \dots, e_n = \frac{v_n}{||v_n||}$, то мы получим OHB

19. Опишите алгоритм ортогонализации Грама-Шмидта.

Пусть имеется система линейно независимых векторов (a_1, \ldots, a_n) . Определим оператор проекции следующим образом: $proj_ba = \frac{(a,b)}{(b,b)}b$. Этот оператор проецирует вектор a коллинеарно вектору b.

Классический процесс Грама — Шмидта выполняется следующим образом:

$$\begin{aligned} b_1 &= a_1 \\ b_2 &= a_2 - proj_{b_1} a_2 \\ &\vdots \\ b_n &= a_n - \sum_{j=1}^{n-1} proj_{b_j} a_n \end{aligned}$$

В результате получим систему ортогональных векторов (b_1, \ldots, b_n) .

20. Дайте определение матрицы Грама.

Mатрицей Γ рама системы векторов (e_1, \ldots, e_n) называется квадратная матрица, состоящая из всевозможных скалярных произведений этих векторов:

$$\Gamma = \begin{pmatrix} (e_1, e_1) & (e_1, e_2) & \cdots & (e_1, e_n) \\ (e_2, e_1) & (e_2, e_2) & \cdots & (e_2, e_n) \\ \vdots & & & & \\ (e_n, e_1) & (e_n, e_2) & \cdots & (e_n, e_n) \end{pmatrix}$$

21. Выпишите формулу для преобразования матрицы Грама при переходе к новому базису.

Матрицы Грама двух базисов е и e' связаны соотношением $\Gamma' = U^T \Gamma U$, где U - матрица перехода от e к e'.

22. Сформулируйте критерий линейной зависимости с помощью матрицы Грама.

Система векторов e_1, \ldots, e_n линейно зависима \Leftrightarrow определитель матрицы Грама этой системы равен нулю.

23. Дайте определение ортогонального дополнения.

Пусть $H \subseteq V$. Множество $H^{\perp} = \{x \in V | (x, y) = 0 \ \forall y \in H\}$ называется ортогональным дополнением.

24. Дайте определения ортогональной проекции вектора на подпространство и ортогональной составляющей.

Пусть L - линейное подпространство евклидова пространства $\mathbb{E},\ a$ - произвольный вектор пространства $\mathbb{E}.$ Если a=b+c,причём $b \in L, c \in L^{\perp}$, то b называется ортогональной проекцией вектора a на подпространство L (proj_La), а copmoгoнальной cocmaвляющей при (ортогональном) проектировании вектора а на подпространство $(ort_L a)$.

25. Выпишите формулу для ортогональной проекции вектора на подпространство, заданное как линейная оболочка данного линейно независимого набора векторов.

Пусть $L = (a_1, \ldots, a_n)$. Тогда $proj_L x = A(A^T A)^{-1} A^T x$, где A - матрица, составленная из столбцов a_1, \ldots, a_n .

26. Выпишите формулу для вычисления расстояния с помощью определителей матриц Грама.

Пусть $S \subset \mathbb{E}$ - подпространство, $x \in \mathbb{E}, (e_1, \dots, e_n)$ - базис S. Тогда:

$$(p(x,S))^2 = \frac{\det G(e_1,\ldots,e_n,x)}{\det G(e_1,\ldots,e_n)}$$

27. Дайте определение сопряженного пространства.

Пространством сопряженным к линейному пространству L называется множетсво всех линейных форм на нем с операциями:

$$\forall x \in L (f_1 + f_2)(x) = f_1(x) + f_2(x)$$
$$\forall \lambda \in \mathbb{F} (\lambda f)(x) = \lambda f(x)$$

Обозначение: $L^* \subseteq Hom(L, \mathbb{F})$.

28. Выпишите формулу для преобразования координат ковектора при переходе к другому базису.

Пусть L^* - сопряженное пространство. Если записывать координаты элементов по столбцам, то при переходе к другому базису они будут преобразовываться по формуле:

$$[f]_g^{\text{\tiny CT}} = T_{e \to g}^T \cdot [f]_e^{\text{\tiny CT}}$$

29. Дайте определение взаимных базисов.

Базис $\mathfrak{e} = (e_1, \dots, e_n)$ в линейном пространстве L и базис $\mathfrak{f} = (f_1, \dots, f_n)$ в сопряженном пространстве L^* называют взаимными, если:

$$(e_i, f^j) = \delta_i^j = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

30. Дайте определение биортогонального базиса.

Если $L = L^*$, то взаимный к данному базис называется биортогональным.

31. Дайте определение сопряженного оператора в евклидовом пространстве.

Линейный оператор \mathcal{A}^* называется сопряженным к линейному оператору \mathcal{A} , если $\forall x, y \in \mathbb{E}$ верно, что $(\mathcal{A}x, y) = (x, \mathcal{A}^*y)$.

32. Дайте определение самосопряженного (симметрического) оператора.

Линейный оператор \mathcal{A} называется самосопряженным (симметричным), если $\forall x,y \in \mathbb{E}$ верно, что $(\mathcal{A}x,y) = (x,\mathcal{A}y)$, т.е. $\mathcal{A}^* = \mathcal{A}$.

33. Дайте определение ортогонального оператора.

Линейный оператор \mathcal{A} называется *ортогональным*, если $\forall x,y \in \mathbb{E}$ верно, что $(\mathcal{A}x,\mathcal{A}y) = (x,y)$, т.е. оператор сохраняет скалярное произведение, и значит, он сохраняет длины сторон и углы между ними.

34. Как найти матрицу сопряженного оператора в произвольном базисе?

Пусть $\mathfrak{e} = (e_1, \dots, e_n)$ - базис в \mathbb{E} , Γ - матрица Грама, \mathcal{A} - матрица линейного оператора. Тогда матрица сопряженного линейного оператора выражается как:

$$\mathcal{A}^* = \Gamma^{-1} A^T \Gamma$$

35. Каким свойством обладают собственные значения самосопряженного оператора?

Собственные значения самосопряженного оператора вещественны.

36. Что можно сказать про собственные векторы самосопряженного оператора, отвечающие разным собственным значениям?

Собственные векторы, принадлежащие различным собственным значениям самосопряженного преобразования, ортогональны.

37. Сформулируйте определение ортогональной матрицы.

Матрица $C \in Mat_n(\mathbb{R})$ называется ортогональной, если $C^TC = E$.

38. Сформулируйте критерий ортогональности оператора, использующий его матрицу.

Матрица линейного оператора \mathcal{A} в ОНБ ортогональна $\Leftrightarrow \mathcal{A}$ - ортогональный оператор.

39. Каков канонический вид ортогонального оператора? Сформулируйте теорему Эйлера.

Для любого отогонального оператора \mathcal{A} существует ортонормированный базис, в котором матрица оператора имеет следующий вид:

$$\mathcal{A} = \begin{pmatrix} \Pi(\alpha_1) & & & & & & \\ & \ddots & & & & & \\ & & \Pi(\alpha_k) & & & & \\ & & & -1 & & & \\ & & & \ddots & & & \\ & & & & -1 & & \\ & & & & & 1 \end{pmatrix}$$
, где $\Pi(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$

Теорема Эйлера.

 \forall ортогонального преобразования в \mathbb{R}^3 \exists OHE, в котором его матрица имеет вид:

$$A = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0\\ \sin \varphi & \cos \varphi & 0\\ 0 & 0 & \pm 1 \end{pmatrix}.$$

40. Сформулируйте теорему о существовании для самосопряженного оператора базиса из собственных векторов.

Для всякого самосопряженного оператора \mathcal{A} существует ортонормированный базис из собственных векторов, в котором матрица оператора имеет диагональный вид.

$$\Lambda = diag(\lambda_1, \ldots, \lambda_n)$$

 $\lambda_1,\ldots,\lambda_n$ - собственные значения оператора \mathcal{A} , повторенные в соответствии с их кратностью.

41. Сформулируйте теорему о сингулярном разложении.

Для любой матрицы $A \in Mat_{m \times n}(\mathbb{R})$ существуют ортогональные матрицы $V \in M_m(\mathbb{R})$ и $W \in M_n(\mathbb{R})$ и диагональная матрица $\Sigma \in Mat_{m \times n}(\mathbb{R})$, такие что:

$$A = V\Sigma W^T$$
, где $\Sigma = egin{pmatrix} \sigma_1 & & & & & & \\ & \ddots & & & 0 & & \\ & & \sigma_r & & & \\ & & & 0 & & \\ & & & & 0 \end{pmatrix}$, $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$

42. Сформулируйте утверждение о QR-разложении.

Пусть $A \in M_m(\mathbb{R})$ и столбцы A_1, \ldots, A_m л.н.з. Тогда $\exists \ Q$ и R : A = QR, причем Q – ортогональная матрица, R – верхнетреугольная матрица

43. Сформулируйте утверждение о полярном разложении.

 \forall матрица $A \in M_n(\mathbb{R})$ представима в виде A = SU, где S — симметрическая матрица с положительными собственными значениями, а U – ортогональная.

44. Что можно сказать про ортогональное дополнение к образу сопряженного оператора?

Пусть линейный оператор $A: E \to E$. Тогда $E = Ker A \oplus Im A^*$

45. Сформулируйте теорему Фредгольма и альтернативу Фредгольма.

Теорема Фредгольма $Ax=b \ \text{совместна} \Leftrightarrow \text{вектор} \ b \ \bot \text{всем решениям однородной СЛАУ} \ A^Ty=0$ Альтернатива Фредгольма Либо у $Ax=b \ \exists !$ решение $\forall b,$ либо $A^Ty=0$ имеет ненулевое решение