

Поверка и калибровка средств измерений

Содержание:

- Теоретическая метрология;
- Законодательная метрология;
- Прикладная метрология.

Теоретическая	мет	роло	гия:
---------------	-----	------	------

Термины:

метрология; единица измерения; физическая величина;

характеристика физической величины в качественном отношении -размерность; характеристика физической величины в количественном отношении-размер; значение; числовое значение; истинное и действительное значение.

Термины:

средства измерений; испытательное оборудование; погрешность СИ и результатов измерений; методы измерении; единство измерений; систематическая и случайная погрешность.

Термины:

виды измерений: прямые, косвенные, совместные, совокупные измерения; однократные и многократные, равноточные и неравноточные измерения; точность, правильность, сходимость, воспроизводимость результатов измерений.

Погрешности результатов измерений:

$$S;\theta;\Delta_{\Sigma};\Delta_{\Sigma};\Delta_{C}$$

$$S(\bar{x}) = \sqrt{\frac{\sum(x_{i} - \bar{x})^{2}}{n(n-1)}}$$

$$\theta = \pm k\sqrt{\frac{\sum \theta_{i}^{2}}{3}}$$

$$\Delta_{\Sigma} = k \cdot S_{\Sigma}$$

$$k = \frac{\epsilon + \theta}{S(\bar{x}) + \sqrt{\frac{\sum \theta_{i}^{2}}{3}}}$$

$$S_{\Sigma} = \sqrt{S^{2}(\bar{x}) + \frac{m}{i-1}}$$

-	

Причины $\Delta_{\mathcal{C}}$ и способы ее исключения

$$\theta = \pm k \sqrt{\Sigma \theta_i^2}$$

Обработка прямых, равноточных, многократных результатов измерений

$$S = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n(n-1)}};$$

$$\varepsilon = \pm t \cdot S$$
;

$$\sigma = \sqrt{\mathcal{A}}$$

Измерения ф.в. факторы влияющие на результат измемерний:

- персонал;
- помещение и окружающая среда;
- технические средства;
- МВИ;
- Метрологическая прослеживаемость;
- оперирование с СИ ГОСТ ISO/IEC 17025

-	
-	
-	

Единицы физических величин ГОСТ 8.417-2002 г. Персонал образование; стаж работы; подготовка; аттестация; переподготовка. СТРК 2.45, правила Помещения и условия окружающей среды, размещение оборудования **CTPK 2.128** Техническая основа ОЕИ: эталоны; РСИ; ИО; индикаторы; уч. СИ; CO.

Средства измерений: классификация; метрологические характеристики СИ; причины погрешности СИ. МВИ – операции при разработке: формирование исходящих данных; выбор методов и СИ; операции при подготовке и выполнение измерений; оценивание погрешности измерений; контроль погрешности; МА МВИ. МВИ – это совокупность операций И правил, выполнение которых обеспечивает получение результатов измерений с известной погрешностью. CT PK 2.18-2019

Метрологическая прослеживаемость - свойство результата измерения, в соответствии с которым результат может быть соотнесен с государственным эталоном единицы величины через документированную неразрывную цепь поверок и калибровок; CT PK 2.39-2009 ГСИ РК «Поверочные схемы» Требование к компетентности лабораторий ΓOCT ISO/IEC 17025 $dimV = L^2 M T^{-3} I^{-1}$ (эл. напряжение) Размерность выражение в виде степенного одночлена, составленного из произведения символов основных величин (L, M, T, θ, I, J, N) в различных степенях, устанавливающего связь этой величины, величинами, принятыми за основные в SI. коэффициентом пропорциональности, равной единице.

Классификация погрешности измерений: • абсолютная; • относительная; • систематическая: 1. постоянная 2. переменная: 2.1 прогрессивная 2.2 периодическая 2.3 изменяющаяся по сложному закону. случайная. Причины систематической погрешности: инструментальная; • методическая; • субъективная; • внешнее влияние;

• неправильная установка

СИ.

Прямые однократные измерения.

а) Случайной составляющей погрешностью пренебрегаем (из-за ее малости).

$\theta(p) = k_{}$	$\sum_{i=1}^{m} \theta_i^2$

 θ - суммарная неисключенная систематическая погрешность (НСП).

 $\theta(p)$ - доверительные границы НСП

k = 1,1 при $p = 0,95$
k = 1,45 при $p = 0,99$ и $m > 4$
$k \approx 1,4$ при $m = 4$
$k \approx 1,3$ при $m = 3$
$k \approx 1,2$ при $m=2$

$$u_{C,B} = \sqrt{\sum_{i=1}^{m} \frac{\theta_i^2}{3}}$$

и с. в - суммарная

стандартная неопределенность по типу В однократного измерения.

Если несколько НСП заданы по формуле:

$$\theta(p) = k \sqrt{\sum_{i=1}^{m} \theta_i^2}, \text{To}$$

$$\theta(p) = k \sqrt{\sum_{i=1}^{m} \frac{\theta_i^2(p_i)}{k_i^2}}$$

 $\theta(p)$ - доверительная граница НСП результата однократного измерения.

 k_i зависит от p_i каждой НСП.

$$u_{C,B} = \sqrt{\sum_{i=1}^{m} \frac{\theta_i^2(p_i)}{k_i^2 \cdot 3}}$$

суммарная стандартная неопределенность по типу В однократного измерения.

б) Систематической погрешностью пренебрегаем (из-за ее малости) при однократном измерении.

Если несколько СКО \mathbf{Si} случайной погрешности (СП)

$$S(\bar{x}) = \sqrt{\sum_{i=1}^{m} S_i^2}$$

Доверительная граница СП

$$\varepsilon(p) = t \cdot S(x)$$
$$S(x) = \frac{\varepsilon}{t}$$

Если доверительная граница СП состоит из нескольких $\mathcal{E}(p)$ с одной и той же вероятностью, то

$$\varepsilon(p) = \sqrt{\sum_{i=1}^{m} \varepsilon_i^2(p)}$$
$$S(\bar{x}) = \frac{\varepsilon(p)}{t}$$

4	1_1	_ 1	п	
ι —	коэффициент	ГФУНКЦ	ии лап	ласа

$$t = 2$$
; если $p = 0.95$

$$t = 2.6$$
; если $p = 0.99$

Если доверительная граница СП состоит из нескольких

 $\mathbf{\mathcal{E}}_{i}(p_{i})_{c}$ разными вероятностями, то

$$\epsilon(p) = \sqrt{\sum_{i=1}^{m} \frac{\epsilon_{i}^{2}(p_{i})}{t_{i}^{2}}}$$

\boldsymbol{t}_i - зависит от вероятности \boldsymbol{p}_i

Связь погрешности и неопределенности результатов измерений.

- 1. СКО случайной погрешности $\leftrightarrow u_A$
- 2. СКО неисключенной систематической погрешности $\leftrightarrow \mathbf{u_B}$
- 3. СКО суммарной погрешности $\leftrightarrow u_C$
- 4. Доверительные границы погрешности $\leftrightarrow U$

$$v_{9\phi} = (n-1) \left[1 + \frac{u_B^2 \%}{u_A^2 \%} \right]^2$$

Соотношение погрешностей результатов измерений.

а) Если
$$\frac{\theta}{S(\overline{x})}$$
 $\langle 0, 8$, то $\Delta = \epsilon(p) = t S(x_{cp})$,

b) Если
$$\frac{\theta}{S(\overline{x})}$$
 > 8 , то $\Delta = \theta = k \sqrt{\sum_{i=1}^{m} \theta_i^2}$,

$$_{\rm c)\ Eeли}\ 0.8\langle \frac{\theta}{S(x)}\langle 8_{,\ {
m to}}\ \Delta_{\Sigma}=k\cdot S_{\Sigma},$$

$$\Delta_{\sum} = k [\theta(p) + \epsilon(p)]$$

k = 0,76, при p = 0,95, k = 0,83, при p = 0,99

Пример обработки прямых однократных измерений.

$$\theta(p) = k \sqrt{\sum_{i=1}^{m} \frac{\theta_i^2(p_i)}{k_i^2}}$$

 k_{i} зависит от p_{i} и закона распределения

$$\theta_{\text{CH}} = \pm 1,5\%$$
, p = 0,95

$$\theta_{\text{си.маг.поля}} = \pm 0,75\%$$
 , $p = 0,99$

$$\theta_{\rm cut} = \pm 0.50\%$$
, p = 0.95

Распределение нормальное.

Используется табл. 1

		•

При m < 4, коэффициент «k» выбирается из таблицы 1.

J	0	0,15	1	2	3	4	5	6	7	8
m=2	0,90	1,21	1,27	1,21	1,16	1,14	1,09	1,07	1,05	1,04
m=3	1,27	1,34	1,36	1,31	1,24	1,18	1,14	1,11	1,09	1,08
m=4	1,36	1,39	1,14	1,36	1,28	1,23	1,17	1,15	1,13	1,10

$$\mathbf{J}=rac{ heta_1}{ heta_2}$$
 , $\; heta_1$ - составляющая по числовому значению наиболее

отличающаяся от других, $\,\theta_2\,$ - ближайшая к $\,\theta_1\,$.

Косвенные однократные измерения. Случайной погрешностью пренебрегаем

$$\theta_{p} = k \sqrt{\sum_{i=1}^{m} \left(\frac{df}{dx_{i}}\right)^{2} \theta_{i}^{2}}$$

Например:

$$J = \frac{V}{R}, \frac{dJ}{dV} = \frac{1}{R},$$
$$\frac{dJ}{dR} = -\frac{V}{R^2}$$

«**k**» зависит от **P** и **m** таблица 1.

Косвенные измерения с многократными измерениями.

$$\theta_{p} = k \sqrt{\sum_{i=1}^{m} \left(\frac{df}{dx_{i}}\right)^{2} \theta_{i}^{2}}$$

$$\mathbf{S}\begin{pmatrix} \circ \\ \Delta \end{pmatrix} = \sqrt{\sum_{i=1}^{m} \left(\frac{df}{dx_{i}}\right)^{2} \mathbf{S}_{i}^{2}}$$

$$\varepsilon \left(\stackrel{\circ}{\Delta} \right) = \pm t \cdot S \left(\stackrel{\circ}{\Delta} \right)$$

Результат:

$$\Delta_{\Sigma}(\mathbf{p}) = \mathbf{k}_{i} \left[\theta(\mathbf{p}) + \varepsilon \begin{pmatrix} \circ \\ \Delta \end{pmatrix} \right]$$

$$k_{i} = \frac{\varepsilon + \theta}{S(\Delta) + \sqrt{\sum_{i=1}^{m} \frac{\theta^{2}}{3}}}$$
$$U = \Delta_{\Sigma}(p)$$

-	
	-

Законодательная метрология.

- Основы обеспечения единства измерений (ОЕИ):
 - организационная;
 - экономическая;
 - правовая.
- Структура ГСИ РК:

<u>В структуру государственной системы обеспечения единства измерений</u> входят:

- 1) Правительство Республики Казахстан;
- 2) уполномоченный орган;
- 3) государственные органы в пределах своей компетенции;
- 4) государственный научный метрологический центр;
- 5) физические и юридические лица;
- Объекты ГСИ РК:
- <u>1) единицы величин;</u>
- 2) государственные эталоны единиц величин;
- 3) эталоны единиц величин;
- 4) средства измерений;
- 5) стандартные образцы;
- б) методики поверки средств измерений;
- 7) методики выполнения измерений;
- 8) методики калибровки средств измерений;
- 9) нормативные правовые акты, технические регламенты, документы по стандартизации в области обеспечения единства измерений.

Деятельность МС юридических лиц:

- проведение систематического анализа состояния измерений на всех участках, осуществляющих измерения (СТ РК 2.237);
- участие в оценке состояния измерений в аналитических, испытательных и измерительных лабораториях (СТ РК 2.254);
- оценка МО испытаний продукции для целей ПС (СТ РК 2.183);
- установление принадлежности тех средств к СИ (СТ РК 2.178);
- проверка соблюдения требований к помещениям поверочных лабораторий (СТ РК 2.128);
- участие в аттестации ИО (СТ РК 2.75);
- организация проведения МЭ документации (СТ РК 2.71);
- организация обучения кадров, осуществляющих измерения, поверку, калибровку (СТ РК 2.45, правила аттестации поверителей и технических экспертов);

- аттестация РМП (СТ РК 2.38);
- организация MA, испытаний, поверки и калибровки СИ (СТ РК 2.4, СТ РК 2.30, СТ РК 2.21; СТ РК 2.12);
- ведение учета всех используемых и неиспользуемых СИ (СТ РК 2.8);
- организация разработки, исследования и МА, МВИ (при необходимости) (СТ РК 2.18);
- осуществление МК за состоянием измерений, состоянием и применением СИ, за правильностью оценки неопределенности результатов измерений (СТ РК 2.15).

Учредительные

Объекты ГМК (Ст.22 ЗРК «Об обеспечении единства измерений»)

Статья 22. Объекты государственного метрологического контроля

- 1. Объектами государственного метрологического контроля являются:
- 1) государственные эталоны единиц величин;
- 2) эталоны единиц величин и средства измерений;
- 3) стандартные образцы;
- 4) нормативные правовые акты, технические регламенты;
- 5) методики выполнения измерений и методики поверки средств измерений;
- 6) количество продукции, отчуждаемой при совершении торговых операций;
- 7) количество фасованной продукции в упаковках любого вида при ее реализации.

Сфера ГМК (ст. 23 ЗРК «Об обеспечении единства измерений»

ИСКЛЮЧЕНА!!!)

Государственный метрологический контроль Ст. 24 ЗРК «Об обеспечении единства измерений»

Государственный метрологический контроль за объектами, указанными в <u>пункте 1</u> статьи 22 настоящего Закона, осуществляется в форме внеплановой проверки и профилактического контроля в соответствии с Предпринимательским кодексом Республики Казахстан и настоящим Законом.

2. Профилактический контроль без посещения за объектами, указанными в <u>пункте 1</u> статьи 22 настоящего Закона, осуществляется в соответствии с <u>Предпринимательским кодексом</u> Республики Казахстан и настоящим Законом.

Целями профилактического контроля без посещения субъекта контроля являются своевременное пресечение и недопущение нарушений, предоставление субъекту контроля права самостоятельного устранения нарушений, выявленных по результатам профилактического контроля без посещения субъекта контроля, и снижение на него административной нагрузки.

Профилактический контроль без посещения субъекта контроля осуществляется путем изучения, анализа, сопоставления сведений, полученных из различных источников информации, в том числе на основе сведений:

- 1) представленных субъектами государственного контроля и надзора, государственными органами и иными организациями;
 - 2) полученных из информационных систем;
- 3) полученных из средств массовой информации и иных открытых источников, обращений физических и юридических лиц.

Административная ответственность за нарушение законодательства РК об обеспечении единства измерений ст. 419 Кодекса РК «Об административных нарушениях».

Статья 415-1. Нарушение законодательства Республики Казахстан об аккредитации в области оценки соответствия при проведении аккредитации, процедур подтверждения и (или) оценки соответствия, поверки средств измерений, установленных техническими регламентами, нормативными правовыми актами и документами по стандартизации

- 1. Нарушение законодательства Республики Казахстан об аккредитации в области оценки соответствия при проведении аккредитации, процедур подтверждения и (или) оценки соответствия, поверки средств измерений, установленных техническими регламентами, нормативными правовыми актами и документами по стандартизации, совершенное в виде:
- 1) нарушения правил проведения процедур подтверждения и (или) оценки соответствия, поверки средств измерений;
- 2) недостоверности результатов испытаний при проведении подтверждения и (или) оценки соответствия, поверки средств измерений;
- 3) выдачи документов, подтверждающих соответствие, и выдачи сертификата о поверке средств измерений без проведения обязательных процедур;
- 4) поверки средств измерений, метрологической аттестации методик выполнения измерений юридическими лицами без аккредитации;
- 5) применения субъектами аккредитации эталонов единиц величин, не прошедших калибровку или поверку;
- б) нарушения порядка проведения работ по аккредитации,
- влечет штраф на физических лиц в размере девяноста, на должностных лиц, субъектов малого предпринимательства или некоммерческие организации в размере ста девяноста пяти, на субъектов среднего предпринимательства в размере трехсот десяти, на субъектов крупного предпринимательства в размере шестисот месячных расчетных показателей, с приостановлением аттестата аккредитации и аттестата эксперта-аудитора по подтверждению соответствия, сертификата поверителя средств измерений на срок шесть месяцев.

- 2. Действие (бездействие), предусмотренное частью первой настоящей статьи, совершенное повторно в течение года после наложения административного взыскания,
- влечет штраф на физических лиц в размере ста тридцати пяти, на должностных лиц, субъектов малого предпринимательства или некоммерческие организации в размере трехсот шестидесяти, на субъектов среднего предпринимательства в размере шестисот, на субъектов крупного предпринимательства в размере тысячи двухсот месячных расчетных показателей, с лишением аттестата аккредитации и аттестата экспертааудитора по подтверждению соответствия, сертификата поверителя средств измерений.»;

Статья 419. Нарушение законодательства Республики Казахстан об обеспечении единства измерений

- 1. Нарушение законодательства Республики Казахстан об обеспечении единства измерений, совершенное в виде:
- 1) нарушения обязательных метрологических требований к измерениям, средствам измерений, стандартным образцам, методикам выполнения измерений, установленных в перечнях измерений, относящихся к государственному регулированию, и нормативных правовых актах;
- 2) выпуска в обращение, применения средств измерений, подлежащих государственному метрологическому контролю, не прошедших испытания для целей утверждения типа или метрологическую аттестацию, а также поверку и (или) не включенных в реестр государственной системы обеспечения единства измерений;
- 3) применения методик выполнения измерений, подлежащих государственному метрологическому контролю и не прошедших метрологическую аттестацию и регистрацию в реестре государственной системы обеспечения единства измерений,
- влечет штраф на физических лиц в размере тридцати, на должностных лиц, субъектов малого предпринимательства или некоммерческие организации в размере двухсот тридцати, на субъектов среднего предпринимательства в размере трехсот десяти, на субъектов крупного предпринимательства в размере тысячи шестисот месячных расчетных показателей.
- 2. Действие (бездействие), предусмотренное частью первой настоящей статьи, совершенное повторно в течение года после наложения административного взыскания,
- влечет штраф на физических лиц в размере девяноста, на должностных лиц, субъектов малого предпринимательства или некоммерческие организации в размере четырехсот шестидесяти, на субъектов среднего предпринимательства в размере шестисот двадцати, на субъектов крупного предпринимательства в размере двух тысяч месячных расчетных показателей.»;

Прикладная метрология.

- 1. Лаборатории должны соответствовать требованиям ГОСТ ISO/IEC 17025;
- 2. Эталоны и СИ используемые в аккредитованных лабораториях юридических лиц должны быть откалиброваны.
- 3. ИО должно быть аттестовано (первичная, периодическая, внеочередная аттестация);
- 4. СИ, подлежащие поверке, должны пройти испытания или МА, внесены в реестр РК и в процессе эксплуатации поверены;
- 5. поверку может проводить ПЛ юридического лица, аккредитованные РГП «НЦА» на право поверки;
- 6. поверку проводит физическое лицо, аттестованное в установленном порядке, имеющие сертификат поверителя (Приказ № 935 от 27.12.18 г.);
- 7. пять видов поверки: первичная, периодическая, внеочередная, инспекционная, экспертная;
- 8. положительные результаты оформляются сертификатов и/или наносится рисунок поверительного клейма (СТ РК 2.4-2019) как написано в НД;
- 9. межповерочный интервал устанавливает уполномоченный орган;
- 10. можно проводить по требованию заказчика поверку не по всем диапазонам и не по всем физическим величинам;
- 11. поверка может проводится в стационарных, передвижных лабораториях, на месте нахождения прибора, на КПП владельца СИ;
- 12. СИ, не подлежащие поверке калибруются;
- 13. калибровку проводят КЛ юридических лиц, которые могут аккредитовываться на добровольной основе;
- 14. калибровку проводят лица, имеющие подготовку, подтверждаемую документами об окончании соответствующих курсов;
- 15. методики калибровки разрабатываются заводом-изготовителем СИ или пользователем СИ или по заказу, согласовываются с заказчиком и утверждаются руководителем юридического лица, исполнителем разработки;
- 16. оформление сертификата на СИ, калибруемых сторонним юридическим и физическим лицом, обязательно;
- 17. при установлении непригодности СИ сторонним организациям выдается протокол, который подписывается специалистом и руководителем калибровочной лаборатории.

Техника вычислений.

- Числовые значения результатов измерений на шкале СИ, фиксируются с ограниченной точностью, при отсчитывании допускается так как погрешность считывания. Если отсчет производится до цены деления, то погрешность считывания обычно принимают равной ½ от цены деления. Если же отсчет производится до ½ цены деления, то погрешность считывания обычно принимается до ¼ цены деления.
- Погрешность считывания согласуется с погрешностью Например, если цена деления 0,01, а погрешность измерений может достигать 0,02, то отсчитывание долей цены деления на больших участках шкалы нецелесообразно. Если же погрешность измерений значительно меньше цены деления, то погрешность считывания играет основную роль.
- Математические действия над точными числами могут привести к приближенному числу. Действия \pm и умножение точных чисел приводят к получению точного результата, но действия с делением, нахождением корня и т.д. приводят к получению приближенного результата.

Например: 1/3 = 0.333... $\sqrt{3} = 1.732$

- Приближенными бывают многие методы измерений.
- Многие константы являются приближенными (например: П=3,14) хотя они даются с большим количеством цифр, для расчета берется ограниченное количество цифр. Точные числа необходимо выделять среди приближенных записью слова «точно».
- Для оценки степени приближения числа X к точному А используется понятие «абсолютная погрешность приближенного числа» $\Delta_{\mathbf{x}}$, которая равна разности приближенного числа и точного $\Delta_{\mathrm{X}} = \mathrm{X} - \mathrm{A}$.
- Если принять, что точное значение A существует, то $\Delta_{\mathbf{x}}$ будет иметь предельные значения и можно рассчитывать верхнюю границу модуля абсолютной погрешности, которая называется «предельная абсолютная погрешность приближенного числа».

Например: $\sqrt{10}$ имеет приближенное число 3,16 и тогда 3,16 $\langle \sqrt{10} \langle 3,17 \rangle$ и предельная абсолютная погрешность $\Delta_{a_{\rm nper}} = 0.01$. Если же взять за $3,16\langle\sqrt{10}\langle3,1623$ и приближенное число $\sqrt{10} = 3{,}1623$, то получим лучшая оценка предельной абсолютной погрешности $\Delta_{a_{\text{прел}}} = 0.0023$.

Если результат измерений равен 2,3002 и если достаточно иметь три знака после запятой, то результат записывается 2,300, тогда предельная приближенного абсолютная погрешность числа будет равна $\Delta_{\rm X}{}_{\rm прел} = 0.5 \cdot 10^{-3}$. Если достаточно иметь два знака после запятой (2,30), тогда $\Delta_{\rm X}{}_{\rm прел} = 0,5 \cdot 10^{-2}$. Нули справа значащие цифры. Если же результат измерения получен прибором с ц.д. 0,2, то результат записывается $\Delta_{\mathrm{X}_{\mathrm{пред}}} = 0.5 \cdot 10^{-1}$. Поэтому все приближенные числа необходимо

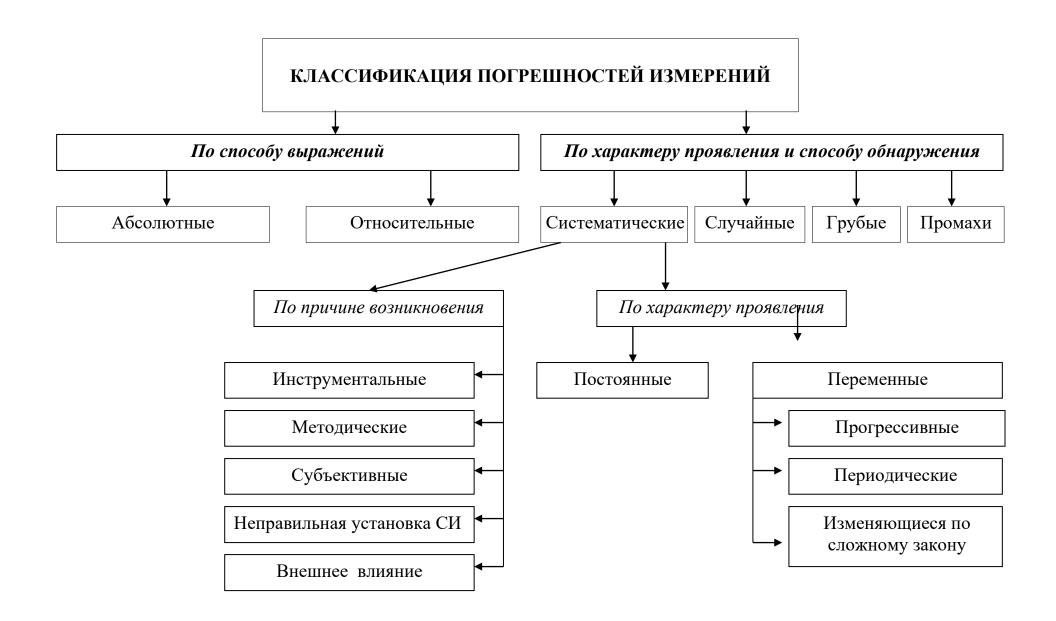
- записывать так, чтобы вид числа показывал его предельную абсолютную погрешность, которая не должна превосходить половины единицы последнего разряда при записи, т.е. $0.5 \cdot 10^{-m}$.
- Цифра называется верной, если абсолютная погрешность приближенного числа $\Delta_{\rm X}$ не превосходит половины единицы того разряда, в котором записана эта цифра.

Например: x = 27.8 с $\Delta_x = 0.03$ все цифры верны, так как 0.03 < 0.05.

ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ В ОБЛАСТИ МЕТРОЛОГИИ

- ➤ *Метрология* это наука об измерениях, методах и средствах обеспечения единства измерений и способах достижения требуемой точности.
- *Теоретическая метрология* − это раздел метрологии, предметом которого является разработка фундаментальных основ метрологии.
- *Законодательная метрология* это раздел метрологии, относящийся к деятельности уполномоченного органа и содержащий государственные требования, касающиеся единиц, методов, средств измерений и измерительных лабораторий.
- **Прикладная метрология** это раздел метрологии, предметом которого являются вопросы практического применения разработок теоретической метрологии и положений законодательной метрологии.
- **▶ Физическая величина** это характеристика физического объекта, общая в качественном отношении для многих физических объектов, но в количественном отношении индивидуальная для каждого из них.
- *Размер физической величины* − это количественная определенность физической величины, присущая конкретному материальному объекту, системе, явлению или процессу.
- *> Значение физической величины* − это выражение размера физической величины в виде некоторого числа принятых для нее единиц.
- *У Истинное значение физической величины* − это значение физической величины, которое идеальным образом характеризовало бы в качественном и количественном отношении соответствующую физическую величину.
- *Действительное значение физической величины* − это значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.
- *Система единиц величин* − это совокупность основных и производных единиц величин, образованная в соответствии с принятыми принципами для заданной системы физических величин.
 - № <u>Измерение</u> процесс экспериментального получения одного или более количественных значений величины, которые могут быть обоснованно приписаны величине.
- **Равноточные измерения** это ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью.

- *Неравноточные измерения* это ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в различных условиях.
- *> Многократное измерение* − это измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т.е. состоящее из ряда однократных измерений.
- *Статическое измерение* − это измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения.
- *Динамическое измерение* − это измерение изменяющейся по размеру физической величины.
- *Прямое измерение* − это измерение, при котором искомое значение физической величины получают непосредственно.
- ➤ *Косвенное измерение* это определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной.
- ➤ <u>Средство измерений</u> техническое средство, предназначенное для измерений и имеющее метрологические характеристики.
- *Принятое опорное значение* − значение, которое служит в качестве согласованного эталона для сравнения и которое представляется как:
 - а) теоретическое или установленное значение, основанное на научных принципах;
 - б) приписанное или сертифицированное значение, основанное на экспериментальных данных некоторых национальных или международных организаций;
 - в) согласованное (на основе консенсуса) или аттестованное значение, основанное на совместной экспериментальной работе, проводимой научным или инженерным коллективом;
 - г) математическое ожидание измеряемой величины, т.е. среднее значение заданной совокупности результатов измерений лишь в случае, когда а), б) и в) недоступны.
- *Точность* − степень близости результата измерений к принятому опорному значению величины.
- > Прецизионность близость между независимыми результатами испытаний, полученными при определенных принятых условий.
- *Стандартизованное средство измерений* − это средство измерений, изготовленное и применяемое в соответствии с требованиями стандарта.
- *Нестандартизованное средство измерений* − это средство измерений, стандартизация требований к которому признана нецелесообразной.
- *Метод измерений* это прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений.
- *Погрешность средств измерений* это разность между показанием средств измерений и истинным (действительным) значением измеряемой физической величины.


- *Систематическая погрешность измерений* − это составляющая погрешности результата измерения, остающаяся постоянной или же закономерно изменяющаяся при повторных измерениях одной и той же физической величины.
- *Случайная погрешность измерений* − это составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку или значению) при повторных измерениях, проведенных с одинаковой тщательностью, одной и той же физической величины.
- ➤ **Неопределенность измерений** это параметр, связанный с результатом измерений и характеризующий рассеяние значений, которые могли бы быть обоснованно приписаны измеряемой величине.
- ➤ Приведенная погрешность средства измерений это относительная погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона.
- *> Основная погрешность средства измерений* − это погрешность средства измерений, применяемого в нормальных условиях.
- *Дополнительная погрешность средства измерений* это составляющая погрешности средства измерений, возникающая дополнительно к основной погрешности вследствие отклонения какой-либо из влияющих величин от нормального ее значения или вследствие ее выхода за пределы нормальной области значений.
- ➤ Условия повторяемости условия, при которых независимые результаты испытаний получены одним методом на идентичных образцах испытаний в одной лаборатории одним оператором с использованием одного оборудования и за короткий интервал времени.
 - ▶ Повторяемость прецизионность в условиях повторяемости.
 - **Воспроизводимость** прецизионность в условиях воспроизводимости.
- Условия воспроизводимости условия, при которых результаты испытаний получены одним методом на идентичных образцах испытаний в различных лабораториях, разными оператором с использованием различного оборудования
- *У Испытательное оборудование* − средство испытаний, представляющее собой техническое устройство для воспроизведения условий испытаний.
- **Единство измерений** состояние измерений, при котором результаты этих измерений выражены в допущенных к применению единицах величин, а показатели точности измерений не выходят за установленные границы
- Референтная методика выполнения измерений методика выполнения измерений, используемая для получения результатов измерений, которые могут быть применены для оценки правильности измеренных значений величины, полученных с помощью других методик выполнения измерений величин того же рода, а также для калибровки средств измерений или для определения характеристик стандартных образцов
- *Методика калибровки средств измерений* документ, устанавливающий порядок и процедуры проведения калибровки эталона единицы величины или средства измерений
- **Калибровка эмалона единицы величины или средства измерений** совокупность операций, устанавливающих соотношение между значением величины, полученным с помощью данного эталона единицы величины или средства

измерений, и соответствующим значением величины, определенным с помощью эталона единицы величины более высокой точности, в целях определения действительных значений метрологических характеристик эталона единицы величины или средства измерений

- *Поверка средств измерений* совокупность операций, выполняемых в целях подтверждения соответствия средств измерений обязательным метрологическим требованиям;
- ➤ Методика поверки средств измерений описание совокупности операций, выполнение которых позволяет определить и подтвердить соответствие средств измерений установленным требованиям к метрологическим характеристикам;
- ▶ Метрологическая аттестация средств измерений установление (подтверждение) соответствия средств измерений, выпускаемых в обращение в единичных экземплярах, требованиям законодательства Республики Казахстан об обеспечении единства измерений;
- Утверждение типа средства измерений решение уполномоченного органа о разрешении применения средства измерения утвержденного типа на территории Республики Казахстан на основании положительных результатов испытаний;
- ➤ *Испытания средств измерений* это совокупность операций, проводимых для определения степени соответствия средств измерений установленным нормам с применением к объектам испытаний различных испытательных воздействий.
- ➤ *Погрешность результата измерений* это отклонение результат измерения от истинного (действительного) значения измеряемой величины
- *Метрологическая экспертиза* анализ и оценивание правильности и полноты применения метрологических требований, правил и норм, связанных с единством измерений;
- ➤ <u>Метрологическая характеристика (средства измерений)</u> характеристика одного из свойств средства измерений, влияющая на результат измерений
- ➤ <u>Стандартный образец материал (вещество) с установленными</u> показателями точности измерений и метрологической прослеживаемостью, достаточно однородный и стабильный в отношении определенных свойств для того, чтобы использовать его при измерении или при оценивании качественных свойств в соответствии с предполагаемым назначением;
 - ▶ Метрологические требования требования к влияющим на результат и показатели точности измерений характеристикам (параметрам) измерений, эталонов единиц величин, стандартных образцов, средств измерений, а также условиям, при которых эти характеристики (параметры) должны быть обеспечены;
 - ▶ Метрологическая прослеживаемость свойство результата измерения, в соответствии с которым результат может быть соотнесен с государственным эталоном единицы величины через документированную неразрывную цепь поверок и калибровок;
 - *Государственная система обеспечения единства измерений* совокупность объектов, органов государственного управления, физических и юридических лиц, осуществляющих в пределах своей компетенции работы в области обеспечения единства измерений

Реестр государственной системы обеспечения единства измерений - документ учета регистрации объектов, участников работ и документов в области обеспечения единства измерений.

Термины и **определения** в области метрологии изложены в **СТ РК 2.1** и дополнены в соответствии с изменениями к Закону «Об обеспечении единства измерений»

ЕДИНИЦЫ

физических величин ГОСТ 8.417-02

Основные единицы Производные единицы «имеющие» специальные наименования

Производные единицы, наименование которых образованы из наименований основных единиц

Внесистемные, допущенные к применению наравне с единицами СИ Единицы временно допущенные к применению

Длина – м

Масса - кг

Время – с

Сила эл.тока – А

Термодинамическя температура — К

> Количество вещества – моль

Сила света - кд

Частота - Гп Сила, вес - Н Лавление - Па Энергия - Дж Мощность - Вт Кол-во электричества - Кл Эл.напряжение - В Эл.емкость - Ф Эл.сопротивление - Ом Эл.проводимость - См Поток маг.индукции - Вб Плотность маг. потока -Тл Индуктивность - Гн Световой поток - лм Освещенность - лк Активность Радионуклида - Бк Поглощенная доза ионизир. Излучения - Гр Эквивалентная доза излучения - Зв Плоский угол – рад Телесный угол - ср

Плошаль - м2 Объем, вместимость - м³ Скорость - м/с Ускорение - м/c² Угловая скорость - рад/с Угловое ускорении - рад/с² Волновое число - м-1 Плотность - кг/м3 Удельный объем - м³/кг Плотность электрического тока - A/м² Напряженность магнитного поля - А/м Молярная Концентрация - моль/м³ Поток ионизирующих **Частиц** - с⁻¹ Плотность ионизирующих **Частин** - с⁻¹· м⁻² Яркость - кд/м²

Массат Времямин ч сут Плоский угол 0/// Объемл Длинаа.е. св.год ПК Оптическая сила.....дптр Площадьга ЭнергияэВ Полная мошность В А Реактивная мощностьвар

Длина
миля (1852 м)

Масса
карат (2·10⁻⁴кг)

Линейная
плотность
текс (10⁻⁶кг/м)

Скорость

Скорость уз (0,514м/с)

Давление бар (10⁵Па)

Частота вращения об/мин, об/с

ПРИСТАВКИ К ЕДИНИЦАМ ФИЗИЧЕСКИХ ВЕЛИЧИН

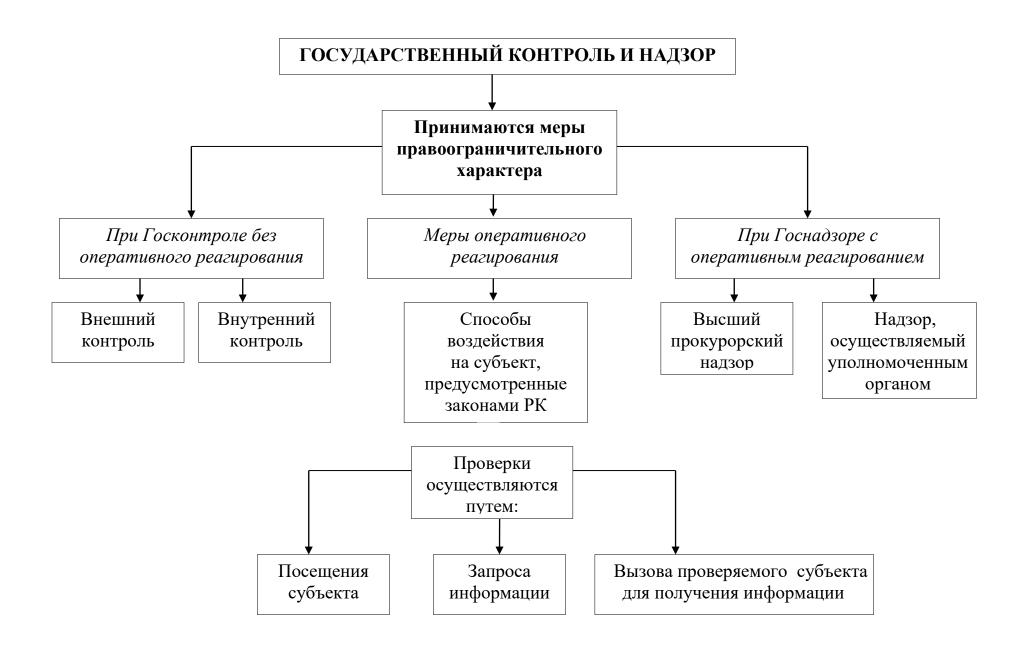
10 ²⁴	иотта	Y	И	10-24	иокто	y	И
10 ²¹	зетта	Z	3	10-21	зепто	Z	3
10 ¹⁸	экса	Е	Э	10-18	атто	a	a
10 ¹⁵	пета	P	П	10-15	фемто	F	ф
10 ¹²	тера	T	Т	10-12	пико	p	П
10 ⁹	гига	G	Γ	10-9	нано	n	Н
106	мега	M	M	10-6	микро	M	МК
10 ³	кило	k	К	10-3	мили	m	M
10 ²	гекто	h	Γ	10-2	санти	c	c
10 ¹	дека	da	да	10-1	деци	d	Д

СИМВОЛЫ ОСНОВНЫХ ЕДИНИЦ

L	длина	M
M	масса	КГ
T	время	c
I	электрический ток	A
θ	термодинамическая температура	К
J	сила света	kg
N	количество вещества	МОЛЬ

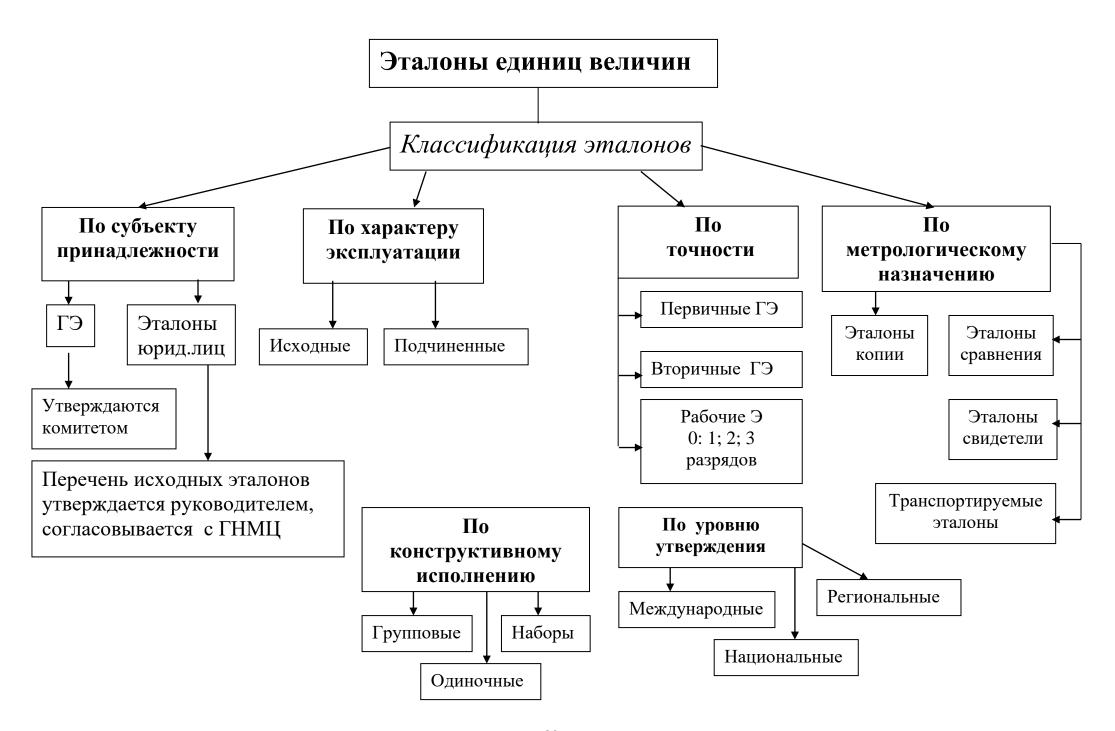
Функция Ф(t) называется интегралом вероятностей (интегралом Лапласа)

t	Φ(t)	t	Φ(t)	t	Φ(t)	1-Φ(t)	t	$\Phi(t)$	1-Ф(t)
0,00	0,000	0,95	0,6579	1,85	0,9357	0,0643	2,75	0,9940	6,0.10-3
0,05	0,0399	1,00	0,6827	1,90	0,9426	0,0574	2,80	0,9949	5,1·10 ⁻³
0,10	0,0797	1,05	0,7063	1,95	0,9488	0,0512	2,85	0,9956	4,4·10-3
0,15	0,1192	1,10	0,7287	2,00	0,9545	0,0455	2,90	0,9963	3,7·10 ⁻³
0,20	0,1585	1,15	0,7499	2,05	0,9596	0,0404	2,95	0,9968	3,2·10 ⁻³
0,25	0,1974	1,20	0,7699	2,10	0,9643	0,0357	3,0	0,9973	$2,7\cdot10^{-3}$
0,30	0,2357	1,25	0,7887	2,15	0,9684	0,0316	3,1	0,9987	1,9·10-3
0,35	0,2737	1,30	0,8064	2,20	0,9722	0,0278	3,2	0,9986	1,4·10 ⁻³
0,40	0,3108	1,35	0,8230	2,25	0,9756	0,0244	3,3	0,99904	9,6·10-4
0,45	0,3473	1,40	0,8385	2,30	0,9786	0,0214	3,4	0,99932	7,8·10-4
0,50	0,3829	1,45	0,8529	2,35	0,9812	0,0186	3,5	0,99954	$4,6\cdot10^{-4}$
0,55	0,4177	1,50	0,8664	2,40	0,9836	0,0174	3,6	0,99968	$3,2\cdot10^{-4}$
0,60	0,4515	1,55	0,8789	2,45	0,9857	0,0143	3,7	0,99978	$2,2\cdot10^{-4}$
0,65	0,4843	1,60	0,8904	2,50	0,9876	0,0124	3,8	0,99986	$1,4\cdot10^{-4}$
0,70	0,5161	1,65	0,9011	2,55	0,9892	0,0108	3,9	0,99990	1.10-4
0,75	0,5467	1,70	0,9109	2,60	0,9907	0,0093	4,0	0,999936	$6,4\cdot10^{-5}$
0,80	0,5763	1,75	0,9199	2,65	0,9920	0,0080	4,5	0,999994	6.10-6
0,85	0,6047	1,80	0,9281	2,70	0,9931	0,0069	5,0	0,9999994	6.10-7
0,90	0,6319								


$\Phi(t)$	1-Φ(t)	t	$\Phi(t)$	1-Φ(t)	t
0,50	0,50	0,675	0,992	0,008	2,652
0,60	0,40	0,842	0,993	0,007	2,697
0,70	0,30	1,036	0,994	0,006	2,748
0,75	0,25	1,150	0,995	0,005	2,807
0,80	0,20	1,282	0,996	0,004	2,878
0,85	0,15	1,440	0,997	0,003	2,968
0,90	0,10	1,645	0,998	0,002	3,090
0,95	0,05	1,960	0,999	0,001	3,291
0,96	0,04	2,054	0,9995	5.10-4	3,481
0,97	0,03	2,170	0,9999	1.10-4	3,891
0,98	0,02	2,326	0,99999	1.10-5	4,417
0,99	0,01	2,576	0,999999	1.10-6	4,892
0,991	0,009	2,612	0,9999999	1.10-7	5,327

Коэффициент Стьюдента, зависящий от количества измерений и доверительной вероятности и приведен в таблице

n	3 начения t_c при P_c										
	0,5	0,6	0,7	0,8	0,9	0,95	0,98	0,99	0,995	0,999	
2	1,000	1,376	1,963	3,08	6,31	12,71	31,8	63,7	127,3	637,2	
3	0,816	1,061	1,336	1,886	2,92	4,30	6,96	9,92	14,1	31,6	
4	0,765	0,978	1,250	1,638	2,35	3,18	4,54	5,84	7,5	12,94	
5	0,741	0,941	1,190	1,533	2,13	2,77	3,75	4,60	5,6	8,61	
6	0,727	0,920	1,156	1,476	2,02	2,57	3,36	4,03	4,77	6,86	
7	0,718	0,906	1,134	1,440	1,943	2,45	3,14	3,71	4,32	5,96	
8	0,711	0,896	1,119	1,415	1,895	2,36	3,00	3,50	4,03	5,40	
9	0,706	0,889	1,108	1,397	1,860	2,31	2,90	3,36	3,83	5,04	
10	0,703	0,883	1,110	1,383	1,833	2,26	2,82	3,25	3,69	4,78	
11	0,700	0,879	1,093	1,372	1,812	2,23	2,76	3,17	3,58	4,59	
12	0,697	0,876	1,088	1,363	1,796	2,20	2,72	3,11	3,50	4,49	
13	0,695	0,873	1,083	1,356	1,782	2,18	2,68	3,06	3,43	4,32	
14	0,694	0,870	1,079	1,350	1,771	2,16	2,65	3,01	3,37	4,22	
15	0,692	0,868	1,076	1,345	1,761	2,14	2,62	2,98	3,33	4,14	
16	0,691	0,866	1,074	1,341	1,753	2,13	2,60	2,95	3,29	4,07	
17	0,690	0,865	1,071	1,337	1,746	2,12	2,58	2,02	3,25	4,02	
18	0,689	0,863	1,069	1,333	1,740	2,11	2,57	2,90	3,22	3,96	
19	0,688	0,862	1,067	1,330	1,734	2,10	2,55	2,88	3,20	3,92	
20	0,688	0,861	1,066	1,328	1,729	2,09	2,54	2,86	3,17	3,88	
∞	0,674	0,842	1,036	1,282	1,645	1,96	2,33	2,58	2,81	3,29	


Критерий Фишера Числовые значения F — критерия Фишера зависящий от количества измерений (f_1, f_2) и доверительной вероятности P=95% приведены в таблице

	f_1										
f_2	1	2	3	4	5	6	8	12	24	∞	
1	161,45	199,50	215,72	224,57	230,17	233,97	238,89	243,91	294,04	254,32	
2	18,50	19,00	19,16	19,25	19,30	19,33	19,37	19,41	19,45	19,50	
3	10,13	9,55	9,28	9,12	9,01	8,94	8,84	8,74	8,64	8,53	
4	7,71	6,94	6,59	6,39	6,26	6,16	6,04	5,91	5,77	5,63	
5	6,61	5,79	5,41	5,19	5,05	4,95	4,82	4,68	4,53	4,36	
6	5,99	5,14	4,76	4,53	4,39	4,28	4,15	4,00	3,84	3,67	
7	5,59	4,74	4,35	4,12	3,97	3,87	3,73	3,57	3,41	3,23	
8	5,32	4,46	4,07	3,84	3,69	3,58	3,44	3,28	3,12	2,93	
9	5,12	4,26	3,86	3,63	3,48	3,37	3,23	3,07	2,90	2,71	
10	4,96	4,10	3,71	3,48	3,33	3,22	3,07	2,91	2,74	2,54	
11	4,84	3,98	3,59	3,36	3,20	3,09	2,95	2,79	2,61	2,40	
12	4,75	3,88	3,49	3,26	3,11	3,00	2,85	2,69	2,50	2,30	
13	4,67	3,80	3,41	3,18	3,02	2,92	2,77	2,60	2,42	2,21	
14	4,60	3,74	3,34	3,11	2,96	2,85	2,70	2,53	2,35	2,13	
15	4,54	3,68	3.29	3,06	2,90	2,79	2,64	2,48	2,29	2,07	
16	4,49	3,63	3,24	3,01	2,85	2,74	2,59	2,42	2,24	2,01	
17	4,45	3,59	3,20	2,96	2,81	2,70	2,55	2,38	2,19	1,96	
18	4,41	3,55	3,16	2,93	2,77	2,66	2,51	2,34	2,15	1,92	
19	4,38	3,52	3,13	2,90	2,74	2,63	2,48	2,31	2,11	1,88	
20	4,35	3,49	3,10	2,87	2,71	2,60	2,45	2,28	2,08	1,84	
21	4,32	3,47	3,07	2,84	2,68	2,57	2,42	2,25	2,05	1,81	
22	4,30	3,44	3,05	2,82	2,66	2,55	2,40	2,23	2,03	1,78	
23	4,28	3,42	3,03	2,80	2,64	2,53	2,38	2,20	2,00	1,76	
24	4,26	3,40	3,01	2,78	2,62	2,51	2,36	2,18	1,98	1,73	
25	4,24	3,38	2,99	2,76	2,60	2,49	2,34	2,16	1,96	1,71	

СРЕДСТВА ИЗМЕРЕНИЙ

