

Лаборатория Неорганической Кристаллохимии Кафедра Неорганической Химии, Химический Факультет МГУ

Рентгеновское излучение (РИ). Источники РИ. Взаимодействие РИ с веществом. Дифракция РИ. Дифракция на 3D кристалле

Москва 2020.

1. Рентгеновское излучение (РИ)

### 2. Источники РИ. Спектральный состав РИ.

- 2.1 Характеристическое рентгеновское излучение. Закон Мозли.
- 2.2 Рентгеновские трубки. Спектр рентгеновской трубки.
- 2.3 Синхротронные источники. Изотопные источники.

### 3. Взаимодействие РИ с веществом

- 3.1 Упругое рассеяние.
- 3.2 Комптоновское рассеяние.
- 3.3 Фотоэффект. Рентгеновская флуоресценция.
- 3.4 Линейный коэффициент поглощения. Уравнения Гамильтона Дарвина.
- 3.5 Дифракция рентгеновского излучения.
- 3.6 Дифракция на 3D кристалле. Закон Брэгга.

## 1. Рентгеновское излучение (РИ)

РИ (X-Rays, Röntgenstrahlung) – электромагнитное излучение с  $\lambda = 5 \times 10^{-2} \div 10^2$  Å. (*E* = 250 кэВ – 100 эВ).







#### В.К.Рентген

1-я Нобелевская премия по физике (1901)

# 1. Рентгеновское излучение (РИ)

Как и всякое ЭМ излучение, РИ характеризуется:

1. Волновым вектором **k** 

 $|k| = 2\pi/\lambda = \omega/c$ 

2. Амплитудой А

(а точнее, амплитудами Е и Н)

3. Поляризацией

В комплексном виде:  $\hat{a}(t) = A \exp i(\omega t + \varphi) = \hat{A} \exp i\omega t$  $I \sim |\hat{A}|^2$ 



Кстати: В теории дифракции РИ часто считают $|k| = 1/\lambda$ 

Это все для когерентного монохроматического излучения 🔗.

- 1. Когерентные источники РИ (рентгеновский лазер) ☺....
- 2. Обычно РИ имеет протяженный спектр, некогерентно.
- 3. Длина когерентности РИ ~ 1 мкм.

Энергия связи электронов на низшей (К) оболочке атомов:

Н: 13.6 эВ (= Ry) → Be: 115.6 эВ → <u>Cu: 8.983 кэВ</u> → Pu: 121.768 кэВ

#### Характеристическое РИ:



 $E(K\alpha) = E_{1s} - E_{2p}$ 

 $\begin{array}{l} \mathsf{K}\alpha_1 = 2p_{3/2} \rightarrow 1s \\ \mathsf{K}\beta_1 = 3p_{3/2} \rightarrow 1s \\ L\alpha_1 = 3d_{3/2} \rightarrow 2p_{1/2} \end{array}$ 





Закон Мозли (для К – серии)

$$E(Z) = Ry \times (Z-1)^2 \times (1-\frac{1}{n^2}), n = 2,3...$$

### Обозначения линий характеристического РИ

| К-серня                                                                                                                                                            |                 | L-серия                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | М-серия                                                                                                                                                                                                                                                                                                                               |                                                                                           | Уровень электрона в                                                                                                                                                                                                                                                                |                                                                                               |                                                                                                                                                                               |                                                                                                              |                                                                             |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|
| Переход                                                                                                                                                            | Индекс<br>линин | Переход                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Индекс<br>линии                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Переход                                                                                                                                                                                                                                                                                                                               | Индекс                                                                                    | атоме                                                                                                                                                                                                                                                                              | 1s∽<br>K                                                                                      | 28<br>L1                                                                                                                                                                      | $\frac{2p_{1}}{L_{11}}$                                                                                      | $\frac{2p_{s_{12}}}{L_{111}}$                                               | 3s<br>M1                                |
| $\begin{array}{c} K L_{III} \\ K M_{III} \\ K M_{III} \\ K M_{IV} \\ K M_{IV} \\ K N_{IV} \\ K N_{II} \\ K N_{III} \\ K N_{IV} \\ K N_{IV} \\ K N_{V} \end{array}$ |                 | $\begin{array}{c} L_{1} - M_{II} \\ L_{I} - M_{IV} \\ L_{I} - M_{V} \\ L_{I} - M_{V} \\ L_{I} - N_{II} \\ L_{I} - N_{II} \\ L_{I} - O_{II} \\ L_{I} - O_{II} \\ L_{I} - O_{II} \\ L_{I} - M_{I} \\ L_{II} - M_{I} \\ L_{III} - M_{V} \\ L_{III} - M_$ | $ \begin{array}{l} \beta_{4} \\ \beta_{5} \\ \beta_{10} \\ \beta_{9} \\ \gamma_{2} \\ \gamma_{3} \\ \gamma_{4} \\ \gamma_{13} \\ \gamma_{13} \\ \gamma_{13} \\ \gamma_{13} \\ \gamma_{15} \\ \gamma$ | $\begin{array}{c} M_{\rm III} - N_{\rm V} \\ M_{\rm IV} - N_{\rm III} \\ M_{\rm IV} - \\ - N_{\rm VI,V} \\ II \\ M_{\rm IV} - \\ - O_{\rm II, III} \\ M_{\rm V} - N_{\rm II} \\ M_{\rm V} - N_{\rm II} \\ M_{\rm V} - \\ - N_{\rm II, III} \\ M_{\rm V} - N_{\rm VI} \\ M_{\rm V} - N_{\rm VI} \\ M_{\rm V} - N_{\rm VI} \end{array}$ | Υδ<br>β<br>η<br>ξ <sub>1</sub><br>ξ <sub>2</sub><br>ξ<br>α <sub>2</sub><br>α <sub>1</sub> | Уровень электрона в<br>атоме<br>Терм уровня<br>Интенсивности<br>серии связ<br>определ<br>Например, для С<br>$I\alpha_1:I\alpha$<br>Си $K$<br>$\lambda_{\alpha 1}$ = 1.5406 Å<br>$\lambda_{\alpha 2}$ = 1.5444 Å<br>$\lambda_{\beta 1}$ = 1.3930 Å<br>$\lambda_{\alpha}$ = 1.5418 Å | <sup>3р</sup> ,<br><sub>М</sub><br>і лин<br>заны<br>енны<br><u>и <i>К</i>-</u><br>2: <i>І</i> | $3p_{*/*}$<br>$M_{III}$<br>ий вн<br>межд<br>ім обр<br><u>сериі</u><br>$\mathcal{B}_1 \approx 1$<br>$\mathcal{D}_1 \approx 1$<br>$\mathcal{A}_1$<br>Ag<br>Mo<br>Co<br>Fe<br>Cr | 3d <sub>*/</sub> ,<br>M <sub>IV</sub><br>утри  <br>у соб<br>оазом<br>4:<br>0:5<br>0.70<br>1.70<br>1.9<br>2.2 | за.,<br>Му<br>кажд<br>ой<br>:<br>2<br>1я<br>594<br>)93<br>890<br>360<br>897 | н т. д.<br>н т. д.<br>ой<br>Ќ<br>Ќ<br>Ќ |



Многокомпонентный анод (Си с примесью W):



### Синхротронные источники:

- Сихротронное излучение излучение релятивистских электронов, движущихся с ускорением.
- Интенсивность в 10<sup>6</sup> 10<sup>20</sup>(!) раз выше, чем у рентгеновской трубки.
- Протяженный гладкий спектр.
- Поляризованное излучение.

### Изотопные источники:

- Распад К захватом:
- <sup>55</sup>Fe + e<sup>-</sup> → <sup>55</sup>Mn + ν<sub>e</sub> (τ<sub>1/2</sub> = 2.6 года)
- Практически чистая *К* серия (без тормозного излучения).
- Таких изотопов сравнительно немного, например <sup>26</sup>Al (Mg K), <sup>59</sup>Ni (Со K) и т.п.





(по Г.В.Фетисов, 2007)

## 3. Взаимодействие РИ с веществом.

### Взаимодействие РИ с веществом



#### Типичный спектр рассеянного излучения



#### Упругое рассеяние

#### • Релеевское рассеяние

 $\lambda_P = \lambda_S$ 

#### Неупругое рассеяние

• Комптоновское рассеяние – взаимодействие со слабо связанным электроном

$$\lambda_{s} = \lambda_{P} + \frac{h}{m_{e}c}(1 - \cos\alpha)$$

• Фотоэффект и последующая рентгеновская флуоресценция

$$\lambda_P > \lambda_S = \lambda_{K,L,M..}^X$$

#### Упругое когерентное рассеяние

• Дифракция

$$\lambda_P = \lambda_S$$

для когерентного рассеяния первичного пучка

# 3.1 Упругое (релеевское/томсоновское) рассеяние

#### Томсоновское рассеяние – упругое рассеяние на заряженных частицах.

Рассеяние происходит упруго - с сохранение длины волны:

$$\lambda_P = \lambda_S$$

Полное сечение рассеяния:  $\sigma$ 

$$T = \frac{8\pi}{3} \left( \frac{q^2}{4\pi\varepsilon_0 mc^2} \right)^2$$

Очевидно, что σ<sub>N</sub><< σ<sub>p</sub><< σ<sub>e-</sub> *рассеяние происходит, в основном, на электронах* 

Рассеянная (сферическая) волна

Палаюшая волна

Интенсивность рассеянного излучения (нет зависимости от  $\lambda$ !):

$$\frac{d\varepsilon}{d\Omega} = I_0 n \left(\frac{q^2}{4\pi\varepsilon_0 mc^2}\right)^2 \frac{1 + \cos^2 2\theta}{2}$$

Рассеянное излучение – сферическая волна.

Рассеянное излучение поляризовано (параллельно ускорению частицы).

# 3.2 Комптоновское рассеяние



## 3.3 Фотоэффект. Рентгеновская флуоресценция.

Взаимодействие электрона с К-оболочки с квантом РИ.

+  $e^{-}(E = hv - \varepsilon_{1s})$ 



# 3.3 Фотоэффект. Рентгеновская флуоресценция.

Какова зависимость вероятности фотоэффекта от энергии кванта?



Край полосы поглощения ( $h_V = E_{K,L,M...}$ )



Наибольшая вероятность поглощения кванта - у сильно связанных электронов (Куровень). Закон Бугера-Ламберта-Бэра:

 $\frac{\partial I_{S}}{\partial \mathbf{t}_{S}} = \mu I_{S} + \sigma_{1} I_{P}$ 

$$I(x) = I_0 e^{-\mu x}$$
 Линейный коэффициент поглощения  $\mu$  – сумма всех видов взаимодействий

Очевидно, что  $\mu = \mu (\lambda$ , материал).  $[\mu] = MM^{-1} = 10 \text{ см}^{-1} = (1000 \text{ м}^{-1})$ 

Для более детального описания взаимодействия РИ с веществом применяют т.н. **уравнения Гамильтона – Дарвина**:  $\frac{\partial I_P}{\partial t_P} = \mu I_P + \sigma_2 I_S \qquad I_P -$ интенсивность первичного пучка с направлением распространения  $t_P$ ,

 $I_P$  – интенсивность первичного пучка с направлением распространения  $t_P$ ,  $I_S$  – интенсивность вторичного пучка с направлением распространения  $t_S$ ,  $\sigma$  – сечение рассеяния для векторов  $t_P$ ,  $t_S$ .

**Зачастую принимают:**   $\frac{\partial I_P}{\partial \mathbf{t}_P} = \mu I_P - пренебрежение$ т.н. «экстинкцией» $<math display="block">\frac{\partial I_S}{\partial \mathbf{t}_S} = \mu I_S + \sigma I_P$ 

Эти уравнения понадобятся нам при расчете коэффициентов абсорбции, количественном РФА, исследовании тонких пленок...

### <u>Дифракция рентгеновского излучения – когерентное упругое рассеяние</u> <u>рентгеновского излучения с интерференцией вторичных волн</u>



При упругом рассеянии от точечного объекта <u>– сферическая волна</u>

В результате *когерентного* рассеяния от множественных объектов – интерференция сферических волн, и в результате, появление в <u>пространственном</u> распределении интенсивности (амплитуды) <u>максимумов и</u> минимумов

$$\rho(\mathbf{r}) = \int_{\Omega} \Psi(\mathbf{r}_1, \sigma_1, \mathbf{r}_2, \sigma_2, ..., \mathbf{r}_N, \sigma_N) d\mathbf{r}_2 ... d\mathbf{r}_N d\sigma_1 ... d\sigma_N$$

## 3.5. Дифракция рентгеновского излучения

Дифракция на протяженном объекте:

$$\rho(\mathbf{r}) = \int_{\Omega} \Psi(\mathbf{r}_1, \sigma_1, \mathbf{r}_2, \sigma_2, \dots, \mathbf{r}_N, \sigma_N) d\mathbf{r}_2 \dots d\mathbf{r}_N d\sigma_1 \dots d\sigma_N$$

Пусть  $\rho(\mathbf{r}) = !, k$  – волновой вектор первичного пучка, k' – волновой вектор дифрагированного пучка



Дифракция на протяженном объекте:



Здесь q = k - k'

Интегрируем комплексную амплитуду по объему (точнее, по всему множеству радиусвекторов) и пренебрегая постоянным фазовым сдвигом (считаем его нулевым):

 $\hat{A}(\mathbf{q}) = \hat{A}_0 \int_V \rho(\mathbf{r}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r} \longrightarrow$  амплитуда рассеянного излучения пропорциональна соответствующей Фурье-компоненте электронной плотности

#### Хорошие новости:

1. Амплитуда рассеянного излучения зависит только от вектора рассеяния

$$\hat{A}(\hat{A}_0,\mathbf{k},\mathbf{k}') \rightarrow \hat{A}(\mathbf{q} \equiv \mathbf{k} - \mathbf{k}') = \hat{A}_0 \int \rho(\mathbf{r}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r}$$

2. Амплитуда рассеянного излучения пропорциональна амплитуде первичного пучка

$$\hat{A}(\mathbf{q}) = \hat{A}_0 \int_V \rho(\mathbf{r}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r} = \hat{A}_0 F(\mathbf{q})$$

3. Рассеивающий фактор взаимно однозначно связан с электронной плотностью

$$F(\mathbf{q}) \leftrightarrow \rho(\mathbf{r})$$

4. Все плюсы преобразования Фурье:

$$F(k_1\rho_1 + k_2\rho_2) = k_1F(\rho_1) + k_2F(\rho_2)$$
$$F(\rho_1 \times \rho_2) = F(\rho_1) * F(\rho_2), F(\rho_1 \times \rho_2) = F(\rho_1) \times F(\rho_2)$$

Приближения кинематической теории дифракции РИ

- 1)  $A_0 = \text{Const}$
- 2) Взаимодействие с ЭМ излучением не вносит возмущений в  $\rho(r)$
- 3) Вторичное излучение не дифрагирует
- 4) Комптон и фотоэффект не вносят возмущений в упругое рассеяние



$$\hat{A} = \hat{A}_0 \int_V \rho(\mathbf{r}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r}$$
$$(\mathbf{q} = \mathbf{k} - \mathbf{k'})$$

амплитуда рассеянного излучения пропорциональна соответствующей Фурьекомпоненте электронной плотности

### 3.5. Дифракция РИ на единичном атоме

Рассеяние протяженным объектом сферической симметрии (атомом).



### 3.5. Дифракция РИ на протяженной системе

 $2\theta$ 



Система точечных рассеивателей (электронов):

$$\frac{d\varepsilon}{d\Omega} = I_0 n \left(\frac{q^2}{4\pi\varepsilon_0 mc^2}\right)^2 \frac{1+\cos^2 2\theta}{2}$$

С учетом интерференции вторичных волн:

$$A \mid \propto \frac{\sin N\phi}{\sin \phi}, \phi = 2\pi \frac{a(1-\cos 2\theta)}{\lambda}$$

(Фактически, работаем с Фурьеобразом суммы δ-функций)

$$\hat{A}(\mathbf{q}) = \hat{A}_0 \int_V \rho(r) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r}$$

## 3.5. Дифракция РИ на протяженной системе



Как будет выглядеть «дифрактограмма» от бесконечной системы электронов?



Рассеиватели точечные – без учета поляризационного фактора интенсивности максимумов не зависят от угла Как будет рассеиваться РИ на системе атомов?

Предположим, что электронная плотность системы:

Тогда Фурье-образ электронной плотности:

$$\rho(\mathbf{r}) = \sum_{j} \rho_{atom}^{j} (\mathbf{r}_{atom} + \mathbf{r}_{j})$$

$$F(\mathbf{q}) = \int_{V} \rho(\mathbf{r}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r} = \int_{V} \sum_{j} \rho^{j}_{atom} (\mathbf{r}_{atom} + \mathbf{r}_{j}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r} = \sum_{j} e^{i\mathbf{q}\mathbf{r}_{j}} \int_{V} \rho^{j}_{atom} (\mathbf{r}_{atom}) e^{iqr_{atom}} d\mathbf{r} = \sum_{j} e^{i\mathbf{q}\mathbf{r}_{j}} F^{j}_{atom} (\mathbf{q})$$

Т.е. амплитуда рассеяния на системе из атомов:

$$\hat{A}(\mathbf{q}) = \hat{A}_0 \sum e^{i\mathbf{q}\mathbf{r}_j} F_{atom}^{j}(\mathbf{q})$$



Рассеиватели протяженные – интенсивность максимумов спадает как *F*<sub>atom</sub> Все функции физ. величин в кристалле обладают периодичностью:

$$T_{nmp}(\rho(\mathbf{r})) = \rho(T_{nmp}(\mathbf{r})) = \rho(\mathbf{r}) \forall n, m, p \in \mathbb{Z}$$

Каково Фурье-представление трехмерной периодической функции? Э-э-э... М.б. сначала – для одномерной?

$$T_n[g(x)] = g(T_n[x]) = g(x)$$

$$\mathbf{x}' = T_n(\mathbf{x}) = \mathbf{x} + n\mathbf{a}, \quad n \in \mathbb{Z}$$



$$f_0 = 0, f_1 = 1, f_2 = 1, f_3 = 1, f_4 = 0...$$

Периодические функции могут быть представлены рядом Фурье:

$$g(x) = \sum_{h} f_{h} e^{2\pi i \frac{h}{a}x}$$
$$f_{h} = \frac{1}{a} \int_{0}^{a} g(x) e^{-2\pi i \frac{h}{a}x} dx$$

### 3.6 Дифракция РИ на 3D кристалле



Так Фурье-представление-то каково?

$$g(x) = \sum_{h} f_{h} e^{-2\pi i k_{h} x}$$
$$F(q) = \int_{-\infty}^{+\infty} g(x) e^{2\pi i q x} = \sum_{h} f_{h} \int_{-\infty}^{+\infty} e^{2\pi i q x} e^{-2\pi i k_{h} x} = \sum_{h} f_{h} \delta(q - k_{h})$$

$$f_h = \frac{1}{a} \int_0^a g(x) e^{2\pi i k x} dx$$

Итак, Фурье-представление периодической функции есть сумма дельтафункций. Положение максимумов зависит от периода.



А что меняется для трехмерной функции?  $T_{nmp}(\rho(\mathbf{r})) = \rho(T_{nmp}(\mathbf{r})) = \rho(\mathbf{r}) \forall n, m, p \in \mathbb{Z}$  $\mathbf{r}' = T_{nmp}(\mathbf{r}) = \mathbf{r} + n\mathbf{a} + m\mathbf{b} + p\mathbf{c}, \quad n, m, p \in \mathbb{Z}$ 

И опять Фурье-ряд – только трехмерный.

$$g(\mathbf{r}) = \sum_{\mathbf{k}} f_k e^{-2\pi i \mathbf{k} \mathbf{r}}$$
$$\mathbf{k} \cdot \mathbf{r}_{mnp} = \mathbf{k}(m\mathbf{a} + n\mathbf{b} + p\mathbf{c}) \in Z$$

Последнее условие – просто условие периодичности на решетке.

Как определить множество векторов k в трехмерном случае?

Обратное пространство: пространство с базисом из <u>обратных векторов a\*, b\*, c\*</u>

$$a^* \cdot a = b^* \cdot b = c^* \cdot c = 1$$
  
 $a^* \cdot b = a^* \cdot c = b^* \cdot a = b^* \cdot c = c^* \cdot a = c^* \cdot b = 0$ 

Исходя из указанных условий, получаем:

$$\mathbf{a}^{*} = \frac{\left[\mathbf{b} \times \mathbf{c}\right]}{\mathbf{a} \cdot \left[\mathbf{b} \times \mathbf{c}\right]}, \mathbf{b}^{*} = \frac{\left[\mathbf{c} \times \mathbf{a}\right]}{\mathbf{b} \cdot \left[\mathbf{c} \times \mathbf{a}\right]}, \mathbf{c}^{*} = \frac{\left[\mathbf{a} \times \mathbf{b}\right]}{\mathbf{c} \cdot \left[\mathbf{a} \times \mathbf{b}\right]}$$
  
тогда  $\mathbf{k}_{hkl} = h\mathbf{a}^{*} + k\mathbf{b}^{*} + l\mathbf{c}^{*}$   
 $\mathbf{k}_{hkl} \cdot \mathbf{r}_{mnp} = \left(h\mathbf{a}^{*} + k\mathbf{b}^{*} + l\mathbf{c}^{*}\right) \cdot \left(m\mathbf{a} + n\mathbf{b} + p\mathbf{c}\right) = hm + kn + lp$ 

Очевидно, что взаимная ориентация прямого и обратного пространства кристалла однозначна. Обратные вектора = обратная решетка.

 $\mathbf{a}^* = \frac{1}{a} \mathbf{e}_a, \mathbf{b}^* = \frac{1}{b} \mathbf{e}_b, \mathbf{c}^* = \frac{1}{c} \mathbf{e}_c$  - для орторомбической сингонии

Распределение амплитуд рассеянного излучения есть Фурье-образ электронной плотности

 $\hat{A} = \hat{A}_0 \int_V \rho(\mathbf{r}) e^{i\mathbf{q}\mathbf{r}} d\mathbf{r}$ 

Обратное пространство – также пространство дифракционных векторов q

$$\rho(\mathbf{r}) = \sum_{h,k,l} f_{hkl} e^{2\pi i \mathbf{k}_{hkl} \mathbf{x}}$$

$$F\rho(\mathbf{r}) = \sum_{h,k,l} f_h \delta(\mathbf{q} - \mathbf{k}_{hkl})$$

Закон Брегга в векторной форме:

$$\mathbf{k'} - \mathbf{k} = \mathbf{q} = \mathbf{q}_{hkl}$$

где q<sub>hkl</sub> – вектор обратной решетки кристалла

<u>Уравнения Лауэ</u>  $a(\cos \alpha_1 - \cos \alpha_2) = h\lambda$  $b(\cos \beta_1 - \cos \beta_2) = k\lambda$  $c(\cos \gamma_1 - \cos \gamma_2) = l\lambda$  Сфера Эвальда – удобный геометрический образ для описания дифракции на монокристалле

- 1. Сфера волновых векторов условие упругого рассеяния
- 2. Разность между волновыми векторами вектор обратной решетки



<u>Кристаллографические плоскости –</u> параллельные плоскости, пересекающие все(!) узлы кристаллической решетки



Индексы кристаллографической плоскости (*hkl*)– число долей, на которые делит плоскость оси a,b,c

 $h,k,l \in Z$ 

Индексы (*hkl*) – индексы Миллера

- 1. Реальных плоскостей в кристалле не существует!
  - 2. Кристаллографические плоскости параллельны друг другу

 Расстояние между кристаллографическими плоскостями – т.н. межплоскостное расстояние d<sub>hkl</sub> – важный параметр в теории дифракции

## 3.6 Обратное пространство – пространство плоскостей.

Как рассчитать межплоскостное расстояние для набора плоскостей (*hkl*)?

Можно показать, что  $d_{\rm hkl} = 1/d*_{\rm hkl}$ , где

$$d_{hkl}^* = |ha^* + kb^* + lc^*|$$

Например, для кубической ячейки:

$$a^{*} = (1/a, 0, 0)$$

$$b^{*} = (0, 1/a, 0)$$

$$c^{*} = (0, 0, 1/a)$$

$$d^{*}_{hkl} = (h^{2}/a^{*}|^{2} + k^{2}/b^{*}|^{2} + l^{2}/c^{*}|^{2})^{1/2} =$$

$$d^{*}_{hkl} = a/(h^{2} + k^{2} + l^{2})^{1/2}$$

$$(h^{2} + k^{2} + l^{2})^{1/2}/a$$

С другой стороны, вектора a\*,b\*,c\* - вектора обратной ячейки! В обратном пространстве каждый узел (*h*,*k*,*l*) соответствует набору плоскостей (*hkl*) в прямом пространстве

Очевидно, что  $1/d_{hkl} = |q_{hkl}|$ 

### Закон Брегга-Вульфа:

- 1. Дифракцию можно рассматривать как отражение от кристаллографических плоскостей
- 2. Положение максимумов (рефлексов) выражается следующим образом:

$$2d_{hkl}\sin\theta_{hkl} = n\lambda$$



# Summary

- Рентгеновское излучение (РИ) коротковолновое (0.05 100 Å) ЭМ излучение. РИ возникает при переходах во внутренних оболочках атомов (характеристическое РИ).
- 2. Источники РИ: рентгеновская трубка, синхротрон, изотопы...
- 3. Взаимодействие с веществом РИ комплексное: упругое и неупругое рассеяние, фотоэффект...
- 4. В кинематическом приближении протяженные системы рассеивают как  $\hat{A} = F(\mathbf{q})\hat{A}_0, \quad F(\mathbf{q}) = \int_V \rho(\mathbf{r})e^{i\mathbf{q}\mathbf{r}}d\mathbf{r}$
- 5. Для системы, состоящей из атомов

$$F(\mathbf{q}) = \sum_{j} e^{i\mathbf{q}\mathbf{r}_{j}} F_{atom}^{j}(\mathbf{q})$$

6. Для 3D кристалла мы можем рассчитать положения максимумов:

 $d_{hkl}$ 

$$\mathbf{a}^{*} = \frac{\left[\mathbf{b} \times \mathbf{c}\right]}{\mathbf{a} \cdot \left[\mathbf{b} \times \mathbf{c}\right]}, \mathbf{b}^{*} = \frac{\left[\mathbf{c} \times \mathbf{a}\right]}{\mathbf{b} \cdot \left[\mathbf{c} \times \mathbf{a}\right]}, \mathbf{c}^{*} = \frac{\left[\mathbf{a} \times \mathbf{b}\right]}{\mathbf{c} \cdot \left[\mathbf{a} \times \mathbf{b}\right]}$$
$$\mathbf{k}' - \mathbf{k} = \mathbf{q}_{hkl}, \quad \mathbf{q}_{hkl} = h\mathbf{a}^{*} + k\mathbf{b}^{*} + l\mathbf{c}^{*}$$
$$\frac{1}{d} = |\mathbf{q}_{hkl}|, \quad 2d\sin\theta = \lambda$$