Занятие № 4. Условная вероятность. Независимость.

4.1. Читатель разыскивает книгу в трёх библиотеках. Вероятности того, что книга есть или отсутствует в фонде библиотеки, а также того, что она выдана или нет, одинаковы. Что вероятнее, найдёт читатель нужную книгу или не найдет?

Ответ: 0,58.

4.2. Найти вероятность того, что при бросании трех игральных костей хотя бы на одной выпадет 6 очков, при условии, что на всех костях выпали грани с четным числом очков.

Ответ: $\frac{19}{27}$.

- **4.3.** Доказать неравенство $\mathbf{P}\left(A|B\right)\geqslant1-\frac{\mathbf{P}\left(\overline{A}\right)}{\mathbf{P}\left(B\right)}$.
- **4.4.** Доказать, что если вероятность события ${\bf P}\,(A)=0,9$, а вероятность события B равна ${\bf P}\,(B)=0,8$, то ${\bf P}\,(A|B)\geqslant 0,875$.
- **4.5.** Брошено две игральных кости. Предполагается, что все комбинации выпавших очков равновероятны. Найти условную вероятность того, что выпали две пятерки, если известно, что сумма выпавших очков делится на пять.

Ответ: $\frac{1}{7}$.

- **4.6.** Бросаются три игральные кости. Какова вероятность того, что на одной из них выпадет единица, если на всех трех костях выпали разные грани? **Ответ:** $\frac{1}{2}$.
- **4.7.** Из 100 карточек с числами 00; 01; 02; . . . ; 98; 99 случайно выбирается одна. Пусть X и Y соответственно сумма и произведение цифр на выбранной карточке. Найти условную вероятность события $\mathbf{P}(X=i|Y=0), i=0;1;2;\ldots;18$.

Ответ: $\frac{1}{19}$, i = 0; $\frac{2}{19}$, $i = 1, 2, \dots, 9$; $0, i = 10, \dots, 18$.

4.8. Известно, что при бросании 10 игральных костей появилась по крайней мере одна единица. Какова вероятность, что появились две или более единицы?

Ответ: $\mathbf{P}\left(A|B\right) = 1 - \mathbf{P}\left(\overline{A}|B\right) = 1 - \frac{10 \cdot 5^9}{6^{10} - 5^{10}} \approx 0,6147724311714088.$

4.9. Восемь различных книг расставлены наудачу на одной полке. Найти вероятность, что две определенные книги окажутся на первых двух местах, если известно, что они стоят рядом.

Ответ: $\frac{1}{7}$.

4.10. Доказать, что если $\mathbf{P}\left(A|B\right)>\mathbf{P}\left(A\right)$, то $\mathbf{P}\left(B|A\right)>\mathbf{P}\left(B\right)$.

- **4.11.** Верно ли равенство $P(A|B) + P(A|\overline{B}) = 1$?
- **4.12.** Шесть человек садятся в лифт на первом этаже 12-этажного здания. Каждый из них может выйти с одинаковой вероятностью на любом этаже, начиная со второго. Найти вероятность того, что все выйдут на разных этажах при условии, что на втором и третьем этаже никто не выходил.

Ответ: 0,113804.

4.13. Шесть пассажиров садятся на остановке в поезд, состоящий из четырех вагонов. Каждый из пассажиров может сесть с одинаковой вероятностью в любой вагон. Найти вероятность, что пассажиры сядут в один вагон при условии, что хотя бы в один вагон не сядет ни один пассажир.

Ответ: 0,00473186.

4.14. Игральная кость бросается до тех пор, пока не выпадет единица. Известно, что при первом испытании единица не выпала, найти вероятность того, что потребуется не менее трех бросаний.

Otbet: $\frac{5}{6}$.

- **4.15.** Игральная кость брошена два раза. Пусть i и j числа очков, выпавших при этих испытаниях. Будут ли независимы события $A=\{i$ делится на $j\}$ и $B=\{i+j$ делится на $2\}$?
- **4.16.** Случайная точка Z=(x,y) имеет равномерное распределение в квадрате $\Omega=\{(x,y):0\leqslant x\leqslant 1;0\leqslant y\leqslant 1\}$ (т.е. вероятность любого подмножества $A\in\Omega$ (точнее, борелевского подмножества) пропорциональна площади той части A, которая попадает внутрь $\Omega:\mathbf{P}(A)=\frac{S_{A,\Omega}}{S_{\Omega}}$). Рассмотрим события $A=\{x\leqslant \frac{1}{2}\}; B=\{y\leqslant \frac{1}{2}\}$ и $C=\{(x-\frac{1}{2})\cdot (y-\frac{1}{2})<0\}$. Показать, что любые два события из A,B,C независимы, но все три события A,B,C зависимы. Являются ли зависимыми события $A\cdot B$ и C?
- **4.17.** Монета брошена 6 раз. Зависимы или независимы следующие события: «появилось нечетное число гербов» и «появились 5 или 6 гербов»?
- **4.18.** Игральная кость брошена два раза. Пусть X и Y количество очков, выпавших при этих испытаниях. Рассмотрим следующие события:

```
A_1 = \{X делится на 2; Y делится на 3}; A_2 = \{X делится на 3; Y делится на 2}; A_3 = \{X делится на Y}; A_4 = \{Y делится на X}; A_5 = \{X + Y сумма делится на 2}; A_6 = \{X + Y сумма делится на 3};
```

Найти все пары $A_i \cdot A_j$; тройки $A_i \cdot A_j \cdot A_k$ и т. д. взаимно независимых событий.

- **4.19.** Случайная точка (x,y) имеет равномерное распределение в квадрате $\{(x,y):0\leqslant x\leqslant 1;0\leqslant y\leqslant 1\}$. При каких положительных значениях r независимы события $A_r=\{|x-y|\geqslant r\}$ и $B_r=\{x+y\leqslant 3r\}$?
- **4.20.** Доказать, что если $\mathbf{P}\left(A|B\right)=\mathbf{P}\left(A|\overline{B}\right)$, то события A и B независимы.
- **4.21.** Пусть событие A таково, что оно не зависит от самого себя. Показать, что тогда P(A) равно 0 или 1.