Главная страница

Кык. Лабораторная работа 7 взаимодействие гаммаизлучения с веществом. Определение коэффициентов поглощения гаммаизлучения


Скачать 0.69 Mb.
НазваниеЛабораторная работа 7 взаимодействие гаммаизлучения с веществом. Определение коэффициентов поглощения гаммаизлучения
Дата24.12.2022
Размер0.69 Mb.
Формат файлаpdf
Имя файлаLab7-Ru.pdf
ТипЛабораторная работа
#861532

1 1
ЛАБОРАТОРНАЯ РАБОТА №7
ВЗАИМОДЕЙСТВИЕ ГАММА-ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ.
ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ ПОГЛОЩЕНИЯ ГАММА-ИЗЛУЧЕНИЯ
ВЕЩЕСТВОМ И ОЦЕНКА ЭНЕРГИИ ГАММА-КВАНТОВ.
Глава 1. ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ
1. Цели и задачи работы.
Ознакомиться с основами эксперимента по изучению взаимодействия гамма-излучения с веществом и измерению характеристик ослабления потока гамма-квантов при прохождении через вещество (линейный и массовый коэффициенты поглощения, эффективное сечение поглощения).
Оценить величины эффективных сечений поглощения гамма-излучения применяемого радиоактивного источника для некоторых веществ, а затем определить энергию гамма-квантов этого источника по известной для этих веществ экспериментальной зависимости этих сечений от энергии гамма-излучения.
Перед выполнением работы рекомендуется еще раз прочитать «Введение в физпрактикум по ядерной физике», уделив дополнительное внимание пунктам: 2.1., 2.2., 3.2., 4.2., 4.3., 4.4., 5.1., 5.2.,
5.3.
2. Вступление.
Гамма-излучение – это «жесткое» (значительной энергии) электромагнитное излучение, испускаемое атомными ядрами при разрядке возбужденных ядерных энергетических уровней (см. п. 2.1. «Введения в физпрактикум»). В шкале электромагнитных волн оно следует в сторону коротких длин волн за рентгеновским излучением, испускаемым при электронных переходах в глубоких слоях атомных оболочек. Область энергий

-излучения: от нескольких кэВ
(килоэлектронвольт) до нескольких МэВ (мегаэлектронвольт), т.е.

-кванты имеют длины волн меньше, чем 1
Å
= 10
-8
см (ангстрем – характерное межатомное расстояние в веществе) и во взаимодействии с веществом проявляют и волновой и корпускулярный характер [1].
Гамма-излучение, как и излучение нейтральных частиц, является значительно более проникающим через вещество, чем излучение заряженных частиц (альфа-частицы, протоны, электроны и т.п.). Поскольку

-кванты имеют нулевую массу покоя и движутся всегда со скоростью света, то о процессе постепенной потери энергии, аналогичном процессу постепенного торможения заряженных частиц, движущихся в веществе, для

-квантов, проникающих в вещество, говорить нельзя (характерное заблуждение некоторых студентов). Гамма-кванты при прохождении через вещество взаимодействуют с атомами вещества и, либо поглощаются
(фотоэффект, рождение электрон-позитронных пар, для энергий квантов, превышающих соответствующие пороговые значения [2], [3]), либо рассеиваются (комптон-эффект) с изменением направления движения и энергии, причем рассеянный квант – это, фактически, новый квант, рожденный в процессе рассеяния исходного (см. п. 3.2. «Введения в физпрактикум»). Как при поглощении, так и при рассеянии, вся энергия падающего на вещество излучения, (или часть ее), поглощается веществом, преобразуясь в другие виды энергии, а в конечном итоге в энергию структурных преобразований вещества и в тепловую энергию.
Вопросы прохождения гамма-излучения через вещество представляют не только академический интерес в науке и физическом образовании. Радиоактивные гамма-источники находят широкое применение в промышленности, сельском хозяйстве, медицине, науке и т.п., вплоть до криминалистики (гамма-уровнемеры и плотномеры, гамма-реле, гамма-дефектоскопия, ионизация воздуха для снятия статической электризации материалов, защитные устройства от гамма-излучения, гамма-облучение некоторых сельхозпродуктов для предотвращения развития микроорганизмов, гамма-терапия при онкозаболеваниях, радиоктивные метки и многое другое).
Во всех этих применениях гамма-излучения необходимо знать характеристики прохождения гамма-квантов через вещество.

2 2
3. Схема основного эксперимента по изучению взаимодействия излучения с веществом.
Изучение взаимодействия частиц (или квантов) какого-либо излучения с веществом выполняется, как правило, в геометрии эксперимента, предложенного еще Резерфордом при изучении рассеяния

-частиц. Источник излучения (при необходимости в защитном контейнере с отверстием для выхода излучения) располагается перед коллиматором излучения – достаточно толстая пластина хорошо поглощающего излучение вещества со сравнительно узким отверстием, коллимирующим излучение в виде однородного потока (пучка) параллельно (с относительно малым разбросом по углам) летящих частиц (квантов), направленного перпендикулярно на однородный слой вещества, поглощающие и рассеивающие характеристики которого исследуются и за которым располагается детектор излучения. Детектор либо небольшого размера, либо тоже коллимированный, чтобы выделять определенное направление рассеянного излучения, может располагаться за поглотителем либо под различными углами к направлению исходного потока – изучение рассеяния излучения (частично с поглощением), либо на направлении потока – изучение
поглощения излучения (частично с рассеянием). Поперечный размер пучка должен быть сравнительно малым, с тем, чтобы «засвеченная» исходным пучком область образца
«поглотителя-рассеивателя» могла считаться приблизительно точечным источником рассеянного излучения, т.е. ее размеры были малы по сравнению с расстоянием до детектора.
Толщина исследуемого образца вещества также должна быть сравнительно небольшой, чтобы обеспечить относительно простую модель преимущественно однократного рассеяния. По регистрируемой детектором интенсивности излучения, прошедшего через поглотитель, определяются искомые характеристики взаимодействия излучения с исследуемым веществом и даже более фундаментальные вещи, такие как строение атома (опыты Резерфорда), взаимодействия элементарных частиц и т.п.
При изучении вопроса только о пропускании (или, соответственно, поглощении) данным веществом излучения (как в данной лабораторной работе и в лаб. раб. №6), угловые измерения не нужны и детектор (при необходимости со своим коллиматором) устанавливается по направлению исходного пучка. При этом детектор регистрирует только излучение, прошедшее через поглотитель. Рассеянное излучение не регистрируется, так как поглощается коллиматором [4].
4. Основные закономерности взаимодействия потока излучения с веществом.
Линейный и массовый коэффициенты ослабления излучения. Сечение взаимодействия.
Представленная выше геометрия эксперимента позволяет для описания интенсивности потока любого излучения, прошедшего сквозь образец вещества-поглотителя в направлении оси пучка, применить следующую простую математическую модель. Направим ось Х вдоль оси пучка с началом координат на передней для излучения поверхности поглотителя.
Интенсивность I параллельного пучка излучения (в данной лабораторной работе

- квантов) определяется плотностью потока излучения, т.е. числом квантов, проходящих в единицу времени через единичную площадку, нормальную к направлению пучка. Взаимодействие излучения с веществом приводит к уменьшению интенсивности за счет выбывания квантов из пучка либо вследствие поглощения, либо вследствие рассеяния. Интенсивность I(Х) по мере углубления внутрь вещества поглотителя падает. Ввиду поглощения и однократного рассеяния
(двух, и тем более многократное рассеяние маловероятно для сравнительно «тонких» образцов исследуемого вещества) очевидно, что при прохождении слоя dX вещества уменьшение интенсивности dI пропорционально интенсивности I пучка в точке с координатой X и толщине последующего слоя dX, т.е. dI = -

∙I∙dX, где

- коэффициент пропорциональности, определяющий «прозрачность» данного вещества для

-квантов данной энергии и называемый
линейным коэффициентом ослабления потока излучения. Знак минус связан с тем, что dI

0.
Величина

зависит от свойств вещества и энергии

-квантов. Для немонохроматического излучения необходимо учитывать зависимость этого коэффициента от энергии излучения. Гамма- излучение применяемого в лабораторной работе радиоактивного источника считаем монохроматическим
Интегрируя, получим интенсивность потока моноэнергетических квантов экспоненциально спадающую после прохождения слоя вещества толщиной Х, в следующем виде:

3 3
I = I
0
∙е
-

∙Х
, где I
0
= I(0) – интенсивность пучка, падающего на вещество, т.е. интенсивность в точке
Х = 0.
Измеряя в эксперименте величины: I
0
– интенсивность регистрации излучения коллимированного пучка, когда поглотитель отсутствует (или до поглотителя), I – интенсивность регистрации излучения этого же коллимированного пучка после поглотителя и Х = d – фактически полная толщина образца поглотителя, можно определить

= (1/d)·ln(I
0
/I), а затем, например, по известным справочным экспериментальным зависимостям

от энергии

-излучения для данного вещества, либо по другим, однозначно связанным с

величинам, определить эту энергию, что и является основной целью лабораторной работы.
Необходимо подчеркнуть, что экспоненциальный закон ослабления

-излучения неверен для широких и расходящихся пучков квантов, для сравнительно «толстых» слоев вещества поглотителя и для немоноэнергетического излучения.
Из приведенных выше формул легко усмотреть физический смысл величины

- линейного коэффициента ослабления потока излучения, имеющего, очевидно, размерность обратной длины.
Величина

= (1/dX)∙(|dI|/I) численно равна относительной доле

-квантов, выбывающих из параллельного пучка на единице длины пути излучения в веществе, как за счет поглощения
(фотоэффект, рождение пар для квантов больших энергий), так и за счет рассеяния (комптон- эффект). Образец толщиной Х = 1/

ослабляет поток

-квантов в е раз, т.е. величина 1/

есть средний свободный пробег

-кванта в веществе до взаимодействия, так как величина е
-

∙Х
определяет, фактически, вероятность для

-кванта пройти путь Х в веществе без взаимодействия
[5]. Отметим также, что оговоренная выше достаточная «тонкость» образца означает, что уменьшение интенсивности излучения этим образцом должно быть сравнительно невелико, т.е.

∙Х << 1 [6]. Для характеристики вещества по прохождению потока

-излучения через вещество часто используют величину слоя половинного ослабления

. Величина

определяет толщину слоя вещества (в единицах длины), ослабляющего интенсивность исходного потока

-излучения
(или любого другого излучения) в 2 раза. Очевидно, что

= ln2/

[7].
Степень ослабления пучка излучения данной энергии в рассматриваемом случае «тонких» образцов поглотителей определяется количеством поглощающих и рассеивающих центров на пути этого пучка, т.е. количеством данных атомов или, фактически, электронов атомных оболочек соответственно виду взаимодействия

-квантов радиоактивного источника с веществом поглотителя-рассеивателя (фотоэффект, комптон-эффект). Эффект рождения пар в данной лабораторной работе отсутствует, т. к. энергия

-квантов применяемого радиоактивного источника ниже необходимого порога реакции. Ослабление определяется количеством вещества на пути пучка вне зависимости от распределения вещества вдоль этого пути, т.е. мерой толщины образца может служить его поверхностная плотность – величина массы вещества образца на единицу облучаемой площади. Домножив и разделив показатель экспоненты в формуле I = I
0
∙е
-

∙Х
на плотность вещества

, введем в рассмотрение поверхностную плотность поглотителя D = X·

и массовый коэффициент ослабления потока излучения М =

/

. Соответствующие, обычно используемые, размерности этих величин: [D] = г/см
2
и [M] = см
2
. Массовый коэффициент ослабления М в отличие от линейного коэффициента

не зависит от продольного распределения плотности вещества (например, степени сжатия в направлении потока излучения для неоднородно-слоистых веществ, «пушистых» веществ и т.п.) и поэтому удобен в соответствующих экспериментах и расчетах по защите от излучения. Поверхностную плотность поглотителя с достаточной точностью и сравнительно просто можно измерить с помощью взвешивания поглотителя известной площади.
Введенные в рассмотрение коэффициенты ослабления излучения

и М зависят не только от количества поглощающих (рассеивающих) частиц в образце (на единицу длины или единицу площади соответственно), но и от свойств взаимодействия кванта данной энергии с одной частицей (атомом, электроном). Характеристикой вероятности этого взаимодействия

-кванта и атома служит понятие эффективного сечения взаимодействия. Именно величиной сечения

4 4 взаимодействия того или иного вида принято характеризовать различные физические процессы при прохождении излучений через вещество.
Если I
0
– интенсивность излучения, падающего на исследуемый образец вещества, а I – интенсивность излучения, прошедшего сквозь него, то разность ∆I = I
0
- I – есть изменение интенсивности за счет различных процессов выбывания частиц (квантов) из пучка (поглощение, рассеяние и пр.), а ∆I/I = (I
0
– I)/ I
0
= 1 - е
-

∙Х
– есть относительное изменение этой интенсивности или, по определению понятия вероятность, есть вероятность выбывания частиц (квантов) из пучка за счет какого-либо взаимодействия [8]. Эту величину, экспериментально определяемую по измерениям I
0
и I, принято называть
макроскопическим эффективным сечением
взаимодействия Σ данного излучения с веществом данного образца поглотителя-рассеивателя. В рассматриваемой лабораторной работе – это взаимодействие гамма-квантов радиоактивного источника (фотоэффект, комптон-эффект) с различными образцами веществ, перекрывающих поток излучения. Имеем: Σ
=
(I
0
– I)/ I
0
= 1 - е
-

∙Х


∙Х. Последнее приближенное равенство
(использовано разложение экспоненты с удержанием первого линейного по Х члена) справедливо для случая

∙Х << 1, т.е. для «тонких» образцов, в которых атомы вещества не «затеняют» друг друга (тонкого не буквально, а именно в этом смысле). Поскольку взаимодействия разных атомов вещества с гамма-квантами потока излучения независимы друг от друга, то на основании теории вероятностей, макроскопическое эффективное сечение является суммой микроскопических
эффективных сечений взаимодействия

для отдельного атома этого вещества [9].
Макроскопическое сечение – аддитивная безразмерная величина. Пусть в образце на единицу его площади имеется n атомов, вещества, с которыми взаимодействуют кванты излучения.
Размерность [n] = атом/см
2
(фактически см
-2
). Тогда связь макроскопического и микроскопического эффективных сечений определяется соотношением: Σ = n·

. Размерность величины [

] = см
2
и по физическому смыслу микроскопическое эффективное сечение взаимодействия определяет эффективную площадь атома вещества поглотителя-рассеивателя из единицы его площади, которая «работает» на взаимодействие с излучением. Классически, микроскопическое эффективное сечение наглядно трактуется как эффективная площадь поперечного сечения частицы мишени, находящейся на единице площади облучаемого образца, с которой осуществляется взаимодействие при попадании в эту единицу площади бомбардирующей частицы.
Имеем для «тонкого» образца поглотителя-рассеивателя толщиной Х:

= Σ/n =

∙Х/n =

/(n/Х) =

/n
0
, где n
0
= n/Х – число атомов в единице объема вещества образца. Размерность [n
0
] =
атом/см
3
(фактически см
-3
). Для толщины «тонкого» поглотителя-рассеивателя, равной единице длины, величины n и n
0
численно совпадают. Величина n
0
определяется очевидным соотношением
n
0
= (

·N
A
)/A, где A – атомный вес вещества поглотителя-рассеивателя (предполагаются одноатомные молекулы, например, металлов и т.п.), N
A
– число Авогадро [10].
Итак, после определения из эксперимента величины линейного коэффициента ослабления потока излучения

= (1/Х)·ln(I
0
/I), можно найти величину массового коэффициента ослабления
М =

/

и величину микроскопического эффективного сечения взаимодействия излучения с веществом (ослабление потока излучения атомами вещества за счет поглощения излучения и рассеяния)

= (

∙A)/ (

·N
A
) или

= (М A)/N
A
. Обычно справочные экспериментальные данные по взаимодействию различных излучений с веществом представлены величиной микроскопического эффективного сечения взаимодействия, выраженной в единицах барн (барн на атом или
барн/атом), где 1 барн = 10
-24
см
2
(порядок величины, соответствующей поперечному сечению атомного ядра). Если исследуют гамма-излучение, для которого взаимодействие с веществом сводится только к фотоэффекту или комптон-эффекту, иногда вводят единицу измерения
барн/электрон, которая в Z раз меньше (Z – число электронов в атоме, с которыми, собственно и идет взаимодействие в данном случае) [11].
Отметим, что линейный коэффициент поглощения излучения

, массовый коэффициент поглощения М, эффективное сечение поглощения (и макроскопическое Σ,
и микроскопическое

) отражают по сути одно и то же свойство взаимодействия данного излучения с данным веществом,

5 5 но имеют различные физические размерности (и, конечно, численные значения), в зависимости от того, в какой размерности представлена «толщина» поглотителя-рассеивателя.
Аналогично введенному микроскопическому эффективному сечению полного ослабления излучения

, можно ввести эффективное сечение только поглощения, только рассеяния, рассеяния на данный угол (дифференциальное эффективное сечение) и т.п. сечения, описывающие частные случаи взаимодействия какого-либо излучения с веществом. Любое сечение взаимодействия может быть измерено экспериментально в соответствующей геометрии эксперимента и рассчитано теоретически на основе определенной модели взаимодействия для того или иного процесса и результат расчета сопоставлен с экспериментом. Очевидно, что введенное выше
полное микроскопическое сечение

равно сумме сечений всех независимых процессов поглощения квантов веществом, а в данной лабораторной работе – это сумма сечений фото- и комптон-эффектов:

=

ф
+

к
При измерениях интенсивности какого-либо излучения необходимо учитывать практически постоянную фоновую составляющую этой интенсивности. Для ионизирующего излучения фоном, воспринимаемым детектором кроме излучения исследуемого пучка, является излучение радиоактивных изотопов земной коры, космическое излучение и, вообще, фон окружающей среды, например, фон рассеянного в окружающих предметах излучения самого используемого радиоактивного источника (если источник недостаточно защищен, то гамма-кванты, испускаемые им в разные стороны, могут испытывать комптон-эффект в веществе окружающих предметов, а рассеянные при этом кванты попадать на детектор и регистрироваться им). Учитывая фоновую интенсивность I
фон
в формуле для определения линейного коэффициента поглощения излучения

, получим, что формула

= (1/d)·ln(I
0
/I) переходит в следующую формулу расчета
результатов эксперимента:

= (1/d)·ln((I
0
-I
фон
)/(I-I
фон
)). Здесь d – толщина слоя вещества, ослабляющего интенсивность потока

-излучения от I
0
до I. Условия измерения величины I
фон
определяются соответственно каждой экспериментальной ситуации при полностью перекрытом пучке излучения.
Отметим, что величину

можно вычислить по результатам измерений интенсивности I(d) для двух заданных толщин исследуемого вещества d
1
и d
2
(без измерений величин I
0
и I
фон
), но при определенных условиях проведения эксперимента [12].
5. Элементы теории фотоэффекта и комптон-эффекта.
Фотоэффект – процесс поглощения

-кванта атомом, сопровождающийся вылетом электрона атомной оболочки за пределы атома (и за пределы вещества при внешнем фотоэффекте). Энергия кванта расходуется на работу по разрыву связи электрона с ядром атома и на сообщение кинетической энергии этому электрону, покидающему атом. В соответствии с законом сохранения импульса ионизированный атом приобретает пренебрежимо малую (в силу своей относительно большой массы) энергию отдачи, так что общий баланс энергии с достаточной степенью точности имеет вид: Е
кин
= Е
γ
– J, где Е
кин
– кинетическая энергия электрона (для внешнего фотоэффекта необходимо еще учесть величину работы выхода электрона из данного вещества), Е
γ
энергия

-кванта, J – потенциал ионизации данной электронной оболочки атома.
Необходимо подчеркнуть, что процесс фотоэффекта возможен только на связанных атомных электронах. Поглощение

-кванта свободным электроном (с приобретением им энергии и импульса кванта) невозможно без участия третьего тела (атомного ядра) в силу невозможности удовлетворить законам сохранения энергии и импульса одновременно [13]. Очевидно, что фотоэффект на данной электронной оболочке атома возможен только, если Е
γ
> J для данной оболочки, причем сечение фотоэффекта для данной оболочки максимально при Е
γ
≥ J (больше и приближенно равно). В силу этого зависимость сечения

ф
фотоэффекта от энергии, в целом спадающая обратно пропорционально энергии кванта, имеет скачки (резко возрастает) в точках, соответствующих потенциалу ионизации К-оболочки атома, L-оболочки, М-оболочки и т.д.
Расчеты сечения фотоэффекта методами квантовой электродинамики показали, что он происходит главным образом (около 80% случаев) на К-оболочке, если Е
γ
> J
к
, что реализуется для

- излучения большинства радиоактивных источников даже для «тяжелых» атомов конца периодической системы элементов, для которых J
к
несколько десятков кэВ и более [14]. Сечение

6 6 фотоэффекта

ф
очень сильно растет при переходе к тяжелым многоэлектронным элементам, пропорционально Z
5
, где Z – заряд ядра. Именно поэтому относительно распространенный в природе свинец и используют в качестве защитного материала от ионизирующих излучений.
Фотоэффект сопровождается характеристическим излучением атома (свойственным данному химическому элементу) в результате перехода электронов на вакантные места в его электронной оболочке. Характеристическое излучение металлов анода рентгеновской трубки используют для изучения структуры различных веществ. Фотоэлектроны для "мягкого"

- излучения (до нескольких десятков кэВ) вылетают в основном в направлении близком к перпендикулярному к направлению распространения излучения [15]. С ростом энергии (и, соответственно, импульса)

-кванта вылет фотоэлектрона осуществляется в направлении "вперед" все более близком к направлению распространения излучения [16].
Комптон-эффект – некогерентное (без сохранения фазы) рассеяние

-квантов на свободных электронах вещества с изменением энергии кванта (в отличие от когерентных рэлеевского и томсоновского рассеяний). В противоположность фотоэффекту, проявляющемуся при взаимодействии

-кванта со связанными электронами атомов, комптон-эффект возможен при взаимодействии

-кванта со свободным электроном. Строго говоря полностью свободных электронов в веществе нет в том числе и в металлах [17], но при энергиях

-квантов много больших энергии связи электрона в атоме (т.е. при Е
γ
>> J) электроны можно считать для данных квантов свободными. При небольших энергиях квантов (рентгеновское излучение, «мягкое»

- излучение), комптоновское рассеяние происходит, в основном, на относительно небольшом количестве слабо связанных электронов внешних оболочек атома, и в определенной степени поэтому, сечение комптон-эффекта меньше сечения фотоэффекта в этой области энергий. С ростом энергии

-излучения "свободных" в указанном смысле электронов в веществе становится все больше и, следовательно, комптон-эффект, вероятность которого в целом падает, начинает играть все большую роль по сравнению с быстрее спадающим также с ростом этой энергии фотоэффектом (удаление от резонансных уровней энергии ионизации К, L, М, и т.д. оболочек). В области энергий порядка от нескольких сотен кэВ до единиц Мэв комптон-эффект становится преобладающим во взаимодействии

-квантов с веществом. При энергиях

-квантов, больших порога рождения электрон-позитронных пар и более, возрастает вероятность именно рождения пар [18]. Законы сохранения энергии и импульса (здесь, очевидно, строго релятивистский случай) позволяют рассчитать энергии и углы вылета относительно направления импульса исходного гамма-кванта и рассеянного кванта и электрона. Угловое распределение рассеянных квантов и комптоновских электронов симметрично (каждое) относительно направления импульса исходного кванта и вытянуто вперед по этому направлению тем сильнее, чем больше энергия исходных квантов [19]. Для электронов угол рассеяния лежит в пределах от нуля до ± 90 0
, для гамма-квантов этот угол лежит в пределах от нуля до ± 180 0
. В отличие от электронов, всегда имеется некоторая доля квантов, рассеянных назад, большая для меньших энергий исходных квантов. Полное эффективное сечение комптон-эффекта, определяющее долю рассеянных

-квантов, выбывших из первичного пучка, дается формулой Клейна-Нишины-Тамма квантовой электродинамики, устанавливающей достаточно сложную зависимость этого сечения от энергии квантов исходного пучка с учетом поляризационных эффектов и угловых распределений.
Завершая рассмотрение комптон-эффекта отметим, что, главным образом, именно комптоновские кванты при недостаточной коллимации нарушают "хорошую" геометрию эксперимента.
Глава 2. КРАТКОЕ ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ
Блок-схема установки, используемой для исследования взаимодействия

-излучения с веществом, представлена ниже на соответствующем рисунке.
1 – источник

-излучения, радиоактивный изотоп Cs
137
или Co
60
, или другой изотоп, энергия гамма-квантов которого и должна быть определена в лабораторной работе;

7 7
2 – исследуемое вещество, ослабляющее интенсивность потока

-квантов, набор исследуемых веществ-поглотителей различной толщины предоставляется преподавателем;
3 – коллиматор излучения, толстостенный цилиндр с осевым отверстием;
4 – детектор

- квантов – счетчик Гейгера-Мюллера (см. лаб. раб. №1). В качестве детектора в данной лабораторной работе может быть использован и сцинтилляционный детектор

- квантов
(см. лаб. раб. №2) при соответствующих источниках питания [20];
5 – предварительный усилитель сигнала счетчика БГС-3 (блок газовых счетчиков) с устройством для крепления счетчика, счетчик Гейгера вставлен слева непосредственно в блок БГС-3. В качестве предварительного усилителя отрицательного сигнала счетчика может быть использован любой ламповый или транзисторный (или на микросхеме) усилитель (достаточно небольшого коэффициента усиления) с высоомным входом и низкоомным выходом (катодные или эмиттерные повторители). В качестве источника питания предварительного усилителя может использоваться соответствующее напряжение блока питания применяемого пересчетного прибора (обычно в пересчетном приборе имеется отдельный выход такого питания).
6 – пересчетный прибор ПС02-08, (может быть использован любой другой счетчик импульсов);
7 – источник питания счетчика Гейгера, в качестве которого используется стабилизированный регулируемый источник питания УИП-1 (универсальный источник питания). В качестве источника питания счетчика может использоваться любой регулируемый стабилизированный источник постоянного напряжения (диапазон регулирования от нуля или от нескольких десятков вольт до, примерно, 600 вольт) небольшой мощности (ток выхода до нескольких миллиампер).
8 – секундомер, часы с секундной стрелкой и т.п. (желательно собственный). Секундомер или часы необходимы, если пересчетный прибор не имеет собственного встроенного генератора для автоматического задания времени экспозиции счета импульсов.
Действие установки заключается в следующем. Поток

-квантов радиоактивного источника, ослабленный образцом исследуемого вещества и ограниченный коллиматором, попадает на детектор. Сигналы регистрации детектором

-квантов после усиления отсчитываются пересчетным прибором.
Таким образом, с помощью пересчетного прибора регистрируется некоторое количество отсчетов

-квантов за определенное время экспозиции, что дает интенсивность

-излучения, прошедшего слой исследуемого вещества, т.е. описываемая установка позволяет получить результаты, необходимые для расчета коэффициента ослабления

-излучения данным поглотителем.
Глава 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ
Идентифицировать все приборы и блоки установки и разобраться с их соединением между собой согласно блок-схеме. Действуя в соответствии с указаниями пунктов «Порядка выполнения работы», реализовать выполнение следующих основных экспериментальных заданий.
1. Провести измерения величин I
0
и I
фон
с заданной статистической погрешностью.
2. Провести измерения зависимости I(d) с заданной статистической погрешностью для определенного преподавателем набора образцов различных веществ известной толщины d.
3. Определить линейный

и массовый М коэффициенты ослабления

-излучения, а также величину микроскопического эффективного сечения взаимодействия излучения с веществом

для каждого из исследуемых веществ. Дать сравнительную оценку их защитных свойств по отношению к данному излучению.
4. Пo таблице приложения определить энергию

-излучения исследуемого радиоактивного изотопа.
5. Привести соображения по наличию, степени важности, путям устранения различных систематических погрешностей в данном эксперименте.

8 8
Глава 4. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ
1). Проверить включение, а при необходимости подключить к сети 220 В лаборатории
кабели питания приборов установки.
Оформление лабораторной работы должно соответствовать требованиям пункта 1
«Введения в физпрактикум».
2). Порядок работы с пересчетным прибором ПС02-08 (упрощенное название: пересчетка).
Прибор способен подсчитывать электрические импульсы любой полярности с амплитудой, превышающей порог срабатывания прибора. Время набора импульсов (время экспозиции) задается по секундомеру экспериментатора.
Включить прибор, нажав кнопку «Сеть». Должна загореться световая индикация декатронов.
Система декатронов осуществляет десятичную запись числа зарегистрированных импульсов
(справа-налево: единицы, десятки, сотни и т.д.). После прогрева в течение 1

2 мин. прибор готов к работе.
В приборе предусмотрена проверка правильности его работы, путем подсчета электрических импульсов сетевого напряжения частотой 50 Гц, которые вырабатываются самим прибором,
(осуществляется нажатием кнопки «Проверка»). По «ГОСТу» отклонение частоты сети от номинального значения не должно превышать 0,5% от ее величины.
Подсчет внешних импульсов, в данном случае сигналов со счетчика Гейгера, осуществляется нажатием кнопки «Пуск». Сигналы со счетчика в пересчетку заводятся не на передний разъем
«Вход», а на задний разъем по одному из проводов, соединяющих блок БГС-3 и пересчетку.
Остановка счета производится нажатием кнопки «Стоп». Сброс показаний от любого предшествующего подсчета осуществляется нажатием кнопки «Сброс». Правильность сброса
(световая индикация всех декатронов должна установиться на значении «0») необходимо проверять, а в случае неправильного сброса – повторить его.
В приборе предусмотрен подсчет внешних импульсов различной полярности, положительной или отрицательной (включается нажатием – отжатием соответствующей кнопки). При правильно нажатой кнопке подсчет поступающих на пересчетку импульсов происходит с гораздо большей интенсивностью, чем в противном случае (см. дифференцирующие цепочки в курсе радиотехники), в чем легко убедиться.
Подсчет импульсов малой и большой амплитуды осуществляется при соответственно нажатой (отжатой) кнопке 1

1 или 1

5. Рекомендуется работать с установкой этой кнопки в положении 1

1.
Установка верхнего или нижнего значения кнопок полярности и величины амплитуды соответствует установке кнопки «Сеть».
Определение интенсивности регистрируемых импульсов производится по формуле I = N/t, где N – число сигналов (импульсов), зарегистрированных пресчеткой за некоторое, выбранное экспериментатором время t от момента нажатия на кнопку “Пуск” (или “Проверка” – в режиме проверки) до момента нажатия на кнопку “Стоп”.
Провести проверку правильности работы пересчетной схемы прибора ПСО2-08 с
регистрацией всех необходимых величин в протоколе измерений (оформлении лаб. раб.).
Удобную форму регистрации измеряемых величин выбрать самостоятельно (здесь и в дальнейшем). Принять, что несинхронность момента нажатия кнопки пересчетки с ходом секундомера (секундной стрелки часов), как в момент пуска, так и в момент остановки составляет в среднем для оператора величину порядка 0,1 сек. (среднее время реакции человека без специальной тренировки). Общее время набора импульсов проверки за одно или несколько измерений имеет смысл выбрать таким, чтобы погрешность отсчета времени не превышала погрешности частоты сети, даваемой «ГОСТом». Убедитесь в том, что время проведения одного измерения с указанной выше точностью должно быть не менее 40 сек. Среднее значение из, например, 4-х результатов измерений по 10 сек. будет иметь такую же точность.
Отметим, предпочтительность нескольких коротких измерений перед одним продолжительным, равным сумме времен коротких, при измерении величин со случайной

9 9 статистической погрешностью. Результаты коротких измерений можно сопоставить друг с другом, получая уверенность в стабильности работы установки, а результат одного измерения сравнить не с чем (возможна ситуация плохой или неправильной работы установки в процессе этого измерения). При измерении же какой-либо зависимости случайной величины с заданной точностью, (например, I(d) – зависимость интенсивности счета от толщины поглотителя), нет необходимости в нескольких измерениях при данной толщине, так как есть возможность сопоставления соседних результатов измерений.
Полученный усредненный результат I
пров.
не должен отличаться от значения 50 имп./сек на величину, превышающую суммарную погрешность измерения времени и частоты сети, указанную выше. Подтвердить это соответствующими расчетами в протоколе измерений. В противном случае пересчетный прибор работает неверно (обратиться к преподавателю).
3). Порядок работы с универсальным источником питания УИП-1. Прибор УИП-1 обеспечивает на выходе стабилизированное регулируемое напряжение постоянного тока.
Величина выходного напряжения регистрируется вольтметром прибора. Для питания счетчика
Гейгера используется регулируемый выход 20

600В; отрицательный полюс источника заземлен
(см. схему включения счетчика в лаб. раб. №1). Во всех описываемых в инструкции соединениях, подключениях и установках приборов желательно непосредственно убеждаться при выполнении лабораторной работы. Необходимое напряжение устанавливается оператором с помощью ручек грубой регулировки, скачками, (должно быть реализовано четкое переключение скачком, а не попытка плавного поворота рукоятки, при котором контакты переключателя замыкаются неверно) и плавной регулировки, с контролем по вольтметру прибора (тумблер вольтметра должен быть включен вправо, т.е. вольтметр подключен к выходу 20

600 В). Выход 0

400 В в данной работе не используется. Отметим, что вообще возможности достаточно мощного прибора УИП-1 в данной лабораторной работе используются в весьма незначительной степени (см. лаб. раб. №1).
Убедившись в том, что ручки регулировки напряжения используемого выхода 20

600 В установлены соответственно минимальному выходному напряжению (выведены влево до упора) включить сетевой тумблер прибора УИП-1 и, при необходимости, тумблер «Анод»
(рекомендуется включение любого источника питания производить при минимальных установках выходного напряжения, а затем вводить необходимые напряжения). После 1-2 мин. прогрева прибора ввести напряжение 400 В, что приблизительно соответствует середине области счетного плато используемого счетчика Гейгера (см. лаб. раб. №1).
4). Нажать кнопку «Пуск» пересчетного прибора ПС02-08 и убедиться в том, что пересчетная схема производит подсчет импульсов естественного (природного) фона ионизирующих излучений. Естественный фон обусловлен регистрацией счетчиком частиц и квантов радиоактивного излучения Земли и космического излучения.
Определить приближенно (грубо) интенсивность (или уровень) регистрируемого
«фона» данного счетчика (данной лабораторной установки) по одному – двум коротким (время экспозиции 10 – 20 с) измерениям и обсудить полученное значение с преподавателем, которому известен порядок этой величины для всех установок лаборатории, чтобы получить уверенность в работоспособности установки. Отметим, что полученное значение «фона» не является объективной характеристикой этой величины (зависит от конкретного датчика и свойств установки в целом). Представление об объективной характеристике величины природного радиационного фона будет дано в лабораторной работе №3.
5). Получить у преподавателя радиоактивный источник для данной лабораторной
работы, коллиматор и набор поглотителей. Проверить работоспособность установки. Для этого поднести радиоактивный источник поближе к счетчику и убедиться в том, что пересчетка начала считать импульсы регистрации счетчиком квантов радиоактивного излучения препарата
(«вращение» световой индикации декад пересчетки проходит намного быстрее, чем для «фона»), т.е. работа установки осуществляется нормально. Попробуйте различные варианты расположения источника относительно детектора, сравните качественно скорости регистрации, осмыслите результаты.

10 10
Радиоактивный источник с коллиматором на нем установись под серединой счетчика так, чтобы центр источника, ось коллиматора и ось счетчика Гейгера находились в одной вертикальной плоскости. В дальнейшем, при смене образцов исследуемых веществ, следить за воспроизведением положения источника и коллиматора относительно счетчика (в противном случае Ваши результаты измерений будут зависеть не только от параметров поглотителя- рассеивателя, но и от небрежности в установке источника и коллиматора под счетчиком).
6). Выполнить п. 1 экспериментальной части лабораторной работы с регистрацией всех
необходимых величин в протоколе измерений и краткими пояснениями.
Провести измерения величин I
0
и I
фон
с заданной статистической погрешностью.
При измерения величины I
0
коллиматор должен быть пустым (поглощением и рассеянием в воздухе пренебрегаем), при измерении I
фон
в коллиматоре должна находиться длинная свинцовая заглушка, практически полностью перекрывающая прямой пучок излучения (степень перекрытия пучка можно в дальнейшем уточнить по полученной в работе величине

для свинца). Время одного измерения и количество измерений выбрать таким, чтобы средняя статистическая погрешность определения интенсивностей I
0
и I
фон
не превышала заданной величины, например, относительная погрешность была не более 2% (дополнительно уточнить у преподавателя).
Погрешностью в определении времени (по секундомеру часов) пренебречь.
Абсолютная ошибка (погрешность) измерения любой дискретной случайной величины,
(например N – число импульсов, отсчитанных пересчеткой за определенное время, выбранное
экспериментатором), распределение которой есть распределение Пуассона, соответствует
дисперсии распределения и равно в данном случае ∆ =
N
= N
1/2
(см. лаб. раб. №4).
Относительная ошибка этого измерения
δ
=
N
/N = N
1/2
/N = N
-1/2
. Для уменьшения этой
ошибки нужно либо увеличивать N, т.е. время отдельного измерения, либо сделать несколько,
например, n более коротких измерений и тогда относительная ошибка среднего из этой серии
измерений равна N
ср.1/2
/(N
ср.
∙n
1/2
), т.е. в корень из n раз меньше ошибки одного измерения. Так как
все измеренные N
i
не слишком сильно различаются между собой (отличия порядка N
i
1/2
), то по
первой измеренной величине N можно вычислить n, необходимое для реализации заданной ошибки
измерений. Очевидно также, что
δ =
N
i
)
-1/2
Отметим, что согласно статистике Пуассона, при нормальной работе установки в
одинаковых условиях, примерно 68% измерений лежат в интервале N
ср.
± N
ср.1/2
, а практически
100% измерений лежат в интервале N
ср.
± 3∙N
ср.1/2
. Выход за указанные интервалы связан либо с
нестационарностью исследуемых процессов, либо с неисправностями в установке (обратитесь к
преподавателю).
Измеренная величина I
фон
существенно превышает оценку «фона» данного счетчика, полученную выше (см. п. 4 «Порядка…»), так как наличие радиоактивного источника, даже перекрытого по направлению к счетчику толстым слоем поглощающего вещества, не исключает попадания в счетчик комптоновски рассеянных в окружающих установку телах (приборах, мебели и т.п.) гамма-квантов источника, вылетающих из него вбок и вниз, где у источника нет «толстой защиты». Защитные свойства самого коллиматора также могут оказаться недостаточными.
7). Выполнить п. 2 экспериментальной части лабораторной работы с регистрацией всех
необходимых величин в протоколе измерений и краткими пояснениями.
Провести измерения зависимости I(d) с заданной статистической погрешностью для
определенного преподавателем набора образцов различных веществ известной
толщины d.
Время одного измерения и количество измерений выбрать таким, чтобы средняя статистическая погрешность определения интенсивностей I(d) не превышала заданной величины, например, относительная погрешность была не более 2% (дополнительно уточнить у преподавателя). Погрешностью в определении времени (по секундомеру часов) пренебречь.

11 11
8). Выполнить п. 3 экспериментальной части лабораторной работы с регистрацией всех
необходимых величин в протоколе измерений и краткими пояснениями.
Определить линейный

и массовый М коэффициенты ослабления

-излучения, а
также величину микроскопического эффективного сечения взаимодействия излучения
с веществом

для каждого из исследуемых веществ. Дать сравнительную оценку их
защитных свойств по отношению к данному излучению.
При выполнении данного и предыдущего пунктов работы использовать данные следующей таблицы:
Вещества
Физич. велич.
Углерод,
(графит) (C)
Алюминий
(Al)
Медь
(Cu)
Олово
(Sn)
Свинец
(Pb)
Атомный номер
6 13 29 50 82
Плотность, г/см
3
≈ 2,23 2,699 8,94 7,295 11,34
Атомная масса, г/моль
12,011 26,982 63,546 118,71 207,2
Толщина образцов для измерений,
(по указанию препод.), мм.
10 17 25 5
10 15 20 25 0,5 1,0 1,5 2,0 2,5 0,5 1,0 1,5 2,0 2,5 0,14 0,28 0,42 0,56 0,7
9). Выполнить п.п. 4 и 5 экспериментальной части лабораторной работы с
регистрацией всех необходимых величин в протоколе измерений и краткими пояснениями.
Пo
таблице
приложения
определить
энергию

-излучения
исследуемого
радиоактивного изотопа (при необходимости провести интерполяцию).
Привести соображения по наличию, степени важности, путям устранения различных
систематических погрешностей в данном эксперименте.
Результаты лабораторной работы представить в виде следующей таблицы:
Вещества
Физич. велич.
Углерод,
(графит) (C)
Алюминий
(Al)
Медь
(Cu)
Олово
(Sn)
Свинец
(Pb)

(см
-1
)
М (см
2
/г)

(барн/атом)
Е
γ
Е
γ ср.
10). Выключить тумблеры «Сеть» приборов лабораторной работы, привести в порядок рабочее место. Сдать радиоактивный источник для данной лабораторной работы,
коллиматор и набор поглотителей преподавателю.
11). Оформить лабораторную работу и отчитаться по ней перед преподавателем.

12 12
Приложение:
Зависимость
микроскопического эффективного сечения
σ
(барн/атом)
взаимодействия γ-квантов с веществом
(рассеяние + поглощение или комптон-эффект + фотоэффект)
от энергии квантов
E
γ
для некоторых веществ
E
γ
МэВ
C
Углерод (графит)
Al
Алюминий
Cu
Медь
Sn
Олово
Pb
Свинец
0,01 45,28 1179,46 22761,2 26934 43925,7 0,02 8,62 152,33 3555,6 4169,4 29328,9 0,03 5,072 49,69 1138,6 8026 10292,5 0,04 4,132 25,18 509,0 3810 4875,3 0,05 3,725 16,39 273,4 2094,7 2713,9 0,06 3,497 12,40 167,3 1288,8 1698,8 0,08 3,206 9,028 79,76 593,4 815,4 0,10 3,014 7,619 47,82 327,6 1901,3 0,15 2,689 6,169 23,22 119,31 691,8 0,20 2,451 5,475 16,35 63,73 341,7 0,30 2,129 4,666 11,744 32,07 137,27 0,40 1,905 4,150 9,895 22,59 78,79 0,50 1,733 3,781 8,796 18,336 54,72 0,60 1,602 3,491 8,027 15,934 42,4 0,80 1,411 3,062 6,954 13,084 30,14 1,00 1,270 2,748 6,214 11,371 24,17 1,50 1,031 2,235 5,030 9,008 17,358
Примечание: в суммарном сечении взаимодействия учтены незначительные вклады когерентного (рэлеевского, томсоновского) рассеяния при малых энергиях гамма-квантов и рождения пар при энергии квантов, большей пороговой.
Данные таблицы приведены по «Справочнику по ядерной физике», издательство «Наукова думка», 1975 г. Указаны значащие цифры, приведенные в справочнике.


написать администратору сайта