Главная страница
Навигация по странице:

  • ПРАКТИЧЕСКОЕ ЗАДАНИЕ №2 по дисциплине «История и онтология науки» Реферат

  • ФИО студента Лазуто Евгений Анатольевич Направление подготовки

  • Группа ЮСТ-М-6_Д-2022-2 Москва 2022 Оглавление

  • Список литературы……………………………………………………………17 Введение

  • Основная часть Процесс становления классической науки в контексте влияния Ньютона на эти процессы.

  • Список литературы

  • История и онтология науки_ПЗ2. Реферат Роль И. Ньютона в формировании классической науки фио студента


    Скачать 47.05 Kb.
    НазваниеРеферат Роль И. Ньютона в формировании классической науки фио студента
    Дата11.01.2023
    Размер47.05 Kb.
    Формат файлаdocx
    Имя файлаИстория и онтология науки_ПЗ2.docx
    ТипРеферат
    #881502






    Российский государственный социальный университет





    ПРАКТИЧЕСКОЕ ЗАДАНИЕ №2

    по дисциплине «История и онтология науки»
    Реферат
    Роль И. Ньютона в формировании классической науки


    ФИО студента

    Лазуто Евгений Анатольевич

    Направление подготовки

    Корпоративный юрист

    Группа

    ЮСТ-М-6_Д-2022-2



    Москва 2022

    Оглавление

    Введение…………………………………………………………………………3

    Основная часть…………………………………………………………………6

    Заключение …………………………………………………………………….15

    Список литературы……………………………………………………………17

    Введение
    Классическая наука Нового времени начинает свое развитие в ХVII в. В это время происходит окончательное становление науки как самостоятельной и независимой от теологии формы духовной жизни человечества.

    Науку Нового времени характеризует открытие законов классической механики. На основе этих законов была сформулирована научная картина мира, которая получила название «классическая научная картина мира». Основной чертой классической науки является органическое соединение эксперимента и математики. Первостепенный вклад в развитие идей классической науки внесли Г. Галилей, И. Ньютон.

    Исаак Ньютон – английский математик и естествоиспытатель, механик, астроном и физик, основатель классической физики. Он сформулировал основные законы классической механики, дал математическую формулировку закона всемирного тяготения, с научной точки зрения объяснил многие опытные данные (например, морские приливы). Он создал науку, основные идеи которой господствовали более 200 лет – до начала ХХ в. [1]

    Исаак Ньютон завершил процесс становления классического естествознания, четко сформулировав механические законы всех процессов движения и взаимодействия макроскопических тел и создав для их описания математический язык бесконечно малых. В этом было отступление от атомистических воззрений, но это привело к значительному продвижению в описании и понимании природы. Несмотря на то, что в настоящее время его подход кажется естественным и очевидным на фоне абстрактных представлений современной физики, и с него начинают знакомство с этой наукой в школе, в то время понадобилось почти семьдесят лет, чтобы этот подход окончательно утвердился в умах ученых. Дав свое определение понятиям скорости, ускорения, силы, массы, Ньютон сформулировал законы динамики в виде связей между этими величинами. [2]

    Велик вклад Ньютона и в математику, и в оптику, однако, фундаментом классического естествознания стала созданная им механика, которая не только навела порядок в огромном эмпирическом материале, накопленном многими поколениями ученых, но и дала в руки людей мощный инструмент однозначного предсказания будущего в широкой области объектов и явлений природы. Причины перемещения тел в пространстве, закономерности этих перемещений, способы их адекватного описания всегда были в центре внимания человека, так как непосредственно касались наиболее близкой религиозному сознанию области естествознания, а именно – движения небесных тел.

    Поиск закономерностей этих движений был для человека не столько связан с удовлетворением научной любознательности, сколько преследовал глубокую религиозно-философскую цель: познать смысл бытия. Поэтому такое значение во все времена уделялось астрономическим наблюдениям, тщательной фиксации мельчайших подробностей в поведении небесных тел, интерпретации повторяющихся событий. [3]

    Роль Ньютона в становлении классической науки является ключевой. Идеи Ньютона распространились на разные сферы науки. Можно говорить об их влиянии на геологические представления того времени. Важнейшим фактором такого широкого резонанса явилась сквозная для творчества Ньютона тема единства мира. Также необходимо подчеркнуть, что теологическом измерении творчества Ньютона тема единства мира была тесно связана с идеей всемогущего Творца. Могущество Бога было для Ньютона первичным и куда более важным аспектом, нежели христианское сострадание и любовь, поэтому для него столь важную роль играла и тема пророчеств, — он предложил и свой вариант даты конца света. Для Ньютона соответствие пророчеств фактам доказывало всемогущество Бога. Власть Бога распространялась на человеческую историю в той же мере, в какой она охватывала и мир Природы; именно эта власть обеспечивала единство мира. Необходимо отметить также роль Ньютона, как Алхимика. В алхимической идее о способности одних элементов превращаться в другие ему были особенно важны темы единства материи и практического освоения природы. Возможности человека в познании вещества, иерархии частиц и сил ограничены только возможностями экспериментальной техники.

    Также роль Ньютона в оформлении новой парадигмы, основанной на принципе дальнодействия и новом для физики понятии силы также нельзя не оценить. Однако сила интерпретировалась им феноменологически, как неизвестная причина наблюдаемого эффекта. Ньютон отвергал «метафизическую» трактовку Г.В. Лейбницем силы внутреннего принципа самодействия монад. [4]


    Основная часть
    Процесс становления классической науки в контексте влияния Ньютона на эти процессы.
    Процессы становления классической науки тесно связаны с появлением науки в собственном значении этого слова. Первоначально наука возникает в форме экспериментально-математического естествознания. Период XVIII – XIX вв. считается периодом так называемой классической науки, и характеризуется в первую очередь мощным развитием физики, а также астрономии, химии и биологии. Наука классического периода носит объективный характер в исследованиях, как единственно верный способ познания мира, т.е. исследования объекта (предмета) самого по себе.

    Но и до XVI века были выдающиеся учёные-философы, оказавшие сильное влияние на развитие и становление классической науки. Можно даже считать, что истинный фундамент классической науки был заложен в Древней Греции, начиная примерно с VI в. до н. э., когда на смену мифологическому мышлению пришло рационалистическое. Эмпирия дополняется научной методологией: устанавливаются правила логических рассуждений, вводится понятие гипотезы , появляется целый ряд гениальных прозрений, как например теория атомизма. В Западной Европе XVI-XVII вв постепенное становление классической науки совпадает со временем перехода от феодализма к капитализму. Начавшееся бурное развитие производительных сил (промышленности, горное и военное дело, транспорт и т.п.) потребовало решения целого ряда технических задач, что в свою очередь вызвало интенсивное формирование и развитие частных наук, среди которых наиболее значительной была механика. Укрепилась идея о возможности изменения природы и приспособления её под нужды человека на основе познания её закономерностей, все больше осознается практическая ценность научного знания.

    Становление классической науки часто называется термином редукционизм. Этот термин означает методологический принцип, согласно которому сложные явления могут быть полностью объяснены с помощью законов, свойственных более простым явлениям (например, социологические явления объясняются биологическими или экономическими законами). Полученное таким образом знание становится эмпирически выверенным материалом для философии при исследовании стандартов научности и структуры самой классической науки. Классическая наука определяется совокупностью критериев:

    - научность нацелена на конкретный объект, то есть считается объективной; - наука достоверна;

    - отдаётся большой приоритет эмпирическому методу познания, то есть для получения научного знания основными методами стали: эксперимент, наблюдение, измерение;

    В период становления классической науки, учёными-философами были сделаны открытия в таких областях как: медицина, биология, астрономия, физика, математика и т.д. Биология и зоология рассматривались как части натурфилософии (философии природы). Вкупе с остальными открытиями, сформировалась теория философии науки в целом. Особенно выделились следующие научно-философские воззрения:

    а) опора на разум (мышление) «Я мыслю, следовательно, существую»;

    б) доминирование естественных наук – математика, физика («Книга природы написана на языке математики»);

    в) экспериментальный метод и его господство (мысленный эксперимент); г) поиск законов природы. Развитие науки внесло свой вклад в разработку методологии.

    Методология — это учение о методах и процедурах научной деятельности, а также раздел общей теории познания (гносеологии), в особенности теории научного познания (эпистемологии) и философии науки.

    Характерными чертами методологии классической науки стали:

    - финализм – стремление к достижению абсолютно истиной системы знания. - имперсональность – рассмотрение знания как объективно сущего, элиминация субъекта как носителя ценностей.

    - наивный реализм – признание зеркального соответствия знаний действительности. - динамизм – установка на понимание окружающего мира как жестко детерминированного, где нет места случайности. Случайность рассматривалась как отражение меры незнания.

    - сумматизм – ориентация на сведение сложного к простому. Целое рассматривается как сумма частей.

    - механицизм – преувеличение возможностей механики как способа миропонимания. Мир и человек рассматривались как машины, механизмы.

    - каузальность – всё в мире связано естественными причинами. - соединение эмпирической и практической деятельности. Эволюция этого процесса шла 14 веков.

    - гипотетико-дедуктивный метод – логический вывод утверждений из принятых гипотез и последующая их эмпирическая апробация. (Галилей: «пустотная механика», которая базировалась на принципах индукции и мысленного эксперимента). Логика мысленного эксперимента: «если бы совершенно устранить побочные эффекты эмпирического уровня, то …».

    Таким образом, наиболее выделились следующие типы классической научности:

    а) биологический тип научности (характеризуется эволюционными изменениями);

    б) математический тип научности (характеризуется ориентиром на стандарт математики); в) гуманитарный тип научности (появился при реконструкции имеющихся знаний, позволяя одновременно мыслить и познавать).

    Хронологически становление классического естествознания начинается примерно в XVI-XVII вв. и заканчивается на рубеже XIX-XX вв. Данный период можно условно разделить на 2 этапа: 1) этап механистического естествознания (до 30-х гг. XIX в.); 2) этап зарождения и формирования эволюционных идей (до конца XIX -начала XX в.).[5]

    • Этап механистического естествознания

    Начало этого этапа совпадает со временем перехода от феодализма к капитализму в Западной Европе. Начавшееся бурное развитие производительных сил (промышленности, горное и военное дело, транспорт и т.п.) потребовало целого ряда технических задач, что в свою очередь вызвало интенсивное формирование и развитие частных наук, среди которых наиболее значительной была механика. Укрепилась идея о возможности изменения природы и приспособления ее под нужды человека на основе познания ее закономерностей, все больше осознается практическая ценность научного знания.

    Этап механистического естествознания можно разделить на 2 ступени – доньютоновскую и ньютоновскую. Первая связана с революционного новыми учениями Коперника, Браге, Бруно XVII в. о существовании солнечной системы и наличия бесчисленных множеств других миров.

    Так, Н.Коперник сформулировал теорию гелиоцентрической Вселенной, а Д. Бруно - идею о единой, бесконечной и неподвижной Вселенной.

    Вторая ступень познания связана с именами Галилея, Кеплера и Ньютона XVIII в. Основные идеи их теорий заключалась в изучении проблем движения объектов.

    Впервые проблематика движения появилась в работах Г. Галилея. Р. Декарт определил природу как протяженную субстанцию и был сторонником картезианской теории движения. П.Гассенди и Х. Гюйгенссоздали атомистическую теорию движения. Важное значение на данном этапе развития науки имели также работы родоначальника эмпиризма Ф. Бэкона (наука как средство господства человека над природой, идеал науки есть техника, необходимость создания истории науки и техники, а также учета социальной значимости науки), Р.Бойля (эксперимент), Р.И. Бошковича (атомы как центры сил) и др.

    Огромную роль сыграли работы И. Ньютона. В своем основном труде «Математические начала натуральной философии» (1687) Ньютон создал сформулировал понятия и законы классической механики, дал математическую формулировку закона всемирного тяготения, теоретически обосновал законы Кеплера, а также объяснил большой объем опытный данных. Ньютон был автором многих новых физических представлений – о сочетании корпускулярных и волновых представлений о природе света, об иерархически атомизированной структуре материи, о механической причинности и т.д. Научный метод Ньютона сводится к следующим основным этапам: - проведение наблюдений, опытов, экспериментов; - выделение в чистом виде отдельных сторон естественного процесса для дальнейшего анализа; - понимание управляющих этими процессами фундаментальные закономерности и основные понятия; - осуществление математического выражения этих принципов и взаимосвязей; - построение целостной теоретической системы путем дедуктивного развертывания фундаментальных принципов; - использование сил природы для подчинения их целям людей.

    Созданная Ньютоном механическая картина мира сыграла в целом положительную роль в развитии науки и философии, так как давала естественнонаучное понимание многих явлений природы. Основные идеи заключались в следующем: вся вселенная понималась как совокупность огромного числа неделимых и неизменных частиц, взаимосвязанных силами тяготения; элементарным объектом мира выступал атом, и движение этих атомов и тел в абсолютном пространстве, сама природа представляет собой «простой» предмет (совокупность тел и атомов), «естествонаучное» знание и процессы сводились к механическим.

    Эта теория оказала сильное влияние на развитие других наук на долгие годы, давала естественнонаучное, а не мифологическое и религиозное понимание многих явлений природы. В то время такой подход можно было считать научной революцией. Однако были и проблемы, и в частности, в одностороннем подходе, заключавшемся в принятии законов механики как единственных законов природы. По мере развития науки проблемы точного естествознания стали выходить за пределы законов и методов механики. Требовались другие, немеханические, более широкие знания. Постепенно эта теория стала терять свой универсальный характер и к середине XIX в. перестала быть общенаучной.


    • Этап зарождения и формирования эволюционных идей (30-е гг. XIX в. - к. XIX -н. XX в.)


    С конца XVIII в. в естественных науках накапливались факты и богатый эмпирический материал, которые не могли соотноситься с механической картиной мира и не объяснялись ею. Процесс изменений генерировался с основном со стороны физики, геологии и биологии.

    Физика. В период XVIII - н. XIX вв. на развитии физики существенное влияние оказало, прежде всего, учение Ньютона, окончательно победившее картезианскую теорию. Особенно быстрыми темпами развивалась механика, труды Л. Эйлера, Ж. Д’Аламбера, Ж. Лагранжа, П. Лапласа заложили основу аналитической механики, развитию мат.анализа, теории дифференцирования, теории рядов, вариационному исчислению, теории вероятности, начертательной геометрии. На развитие физики важное влияние оказывал технический процесс, развитие производственных сил определило потребность в разработке физики твердых тел, исследовании законов теплоты, электричества и магнетизма. Развивается и оптика (работы Д. Брадлея). Все эти разделы оформляются в самостоятельные отрасли физики , сначала очень обособленные, и вопроса об исследовании законов превращений различных физических форм движения не возникало. Физика еще не стремилась к построению единой научной картины мира, а была нацелена на выявление и количественные исследования отдельных явлений, фактов, частных закономерностей. В первой половине XIX в. бурный рост производства, промышленные революции и перевороты, необходимость развития крупной машинной индустрии, металлургии, горнодобычи, металлообрабатывающих отраслей и т.п. определяют потребность в развитии естествознания как элемента промышленного и сельскохозяйственного производства. Это привело к быстрым темпам развития физической науки, и становления прикладных, технических отраслей. Появились новые отрасли - теплотехника, электротехника (в т.ч. гальванопластика), фотография. Ускоренными темпами стала развиваться оптика. Следует отметить такие важнейшие научные открытия, как волновая теория света (Юнг, Френель), полевая концепция (Фарадей), закон сохранения и превращения энергии (Майер, Гельмгольц, Джоуль), новая концепция пространства и времени (неевклидова геометрия Лобачевского).

    Вторая половина XIX - н. XX вв. характеризуются высокими темпами развития всех сложившихся и новых отраслей физики, особенно теории теплоты и электродинамики. Теория теплоты разрабатывалась в направлениях совершенствования термодинамики и развития кинетической теории газов. В области электродинамики важнейшим стало создание теории электромагнитного поля. Особенность физики этого периода - противоречия нового содержания науки и старых методологических установок. Развитие физики еще более тесно связано с промышленным производством, технический прогресс стал невозможен без предварительных научных исследований, открытий. Данный период был отмечен целым рядом принципиальных научных открытий: рентгеновские лучи (В. Рентген, Томсон, Резерфорд), электрон, радиоактивность (А. Беккерель, Э. Резерфорд, П. и М. Кюри), фотоэффект (Столетов), периодическая система химических элементов (Менделеев). Были сформулированы принципы термодинамики, и в связи с изучением необратимых систем произошел переход к статистической физике (Карно, Клазиус, Томсон). В работах Маха, Клиффорда дальнейшее развитие получили теории пространства и времени. Была создана теория электромагнитного поля (Максвелл, Герц).

    Астрономия. К важнейшим астрономическим открытиям XVIII - XIX вв. относятся: создание внегалактической астрономии (Гершнель, Ламберт, Сведенборг), формирование идеи развития природы, космологическая теория Канта-Лапласа. К. XIX встал своеобразным триумфом ньютоновской астрономии. В этот же период, благодаря открытию фотографии и спектрального анализа, эффекта Доплера, статистической термодинамики, происходит формирование астрофизики, призванной решить ключевую проблему строения звезд и источников их энергии. Здесь следует назвать имена Р.Майера, Г. Кирхгофа, Р. Бунзена, а также Кельвина и Гермгольца.

    Химия. Период XVIII - XIX вв. характеризуется переходом от алхимии к научной химии. Следует отметить труды Гассенди, Бойля (теория атомизма), Лавуазье (химия как общая теория), Дальтона (атомно-молекулярное учение).

    Биология. В XVIII - XIX вв. в рамках биологии появляются первые идеи эволюции (Бюффон, Линней). Принципы эволюции впервые были сформулированы Ламарком. Наиболее полным и комплексным стало учение Ч. Дарвина, окончательно утвердившееся в к. XIX в. Тогда же произошло становление учения о наследственности (генетика), были сформулированы законы наследования (Мендель). [6]

    Заключение
    Таким образом, роль Ньютона неразрывно связана с его приоритетом в систематическом применении математических методов к исследованию природы, а также в открытии закона тяготения. Ньютон упрочил основания динамики как надежной опоры механической картины мира, приложив ее законы к небесным явлениям. Достижения Ньютона в применении бесконечных рядов и в дифференциальном и интегральном исчислениях намного превосходят все, что было сделано до него, и поэтому Ньютона считают основоположником этих методов анализа.

    Что касается влияния на развитие физической науки, то его трудно преуменьшить. Только к 20 в. основные положения, на которые опирался Ньютон, потребовали коренного пересмотра. Ревизия привела к созданию теории относительности и квантовой теории. Ньютону принадлежат также многочисленные сочинения по теологии, хронологии, алхимии и химии.

    Идеи И. Ньютона оказали положительное влияние на естественные науки. Благодаря этим идеям бурно развивались физика, химия и биология.

    Исаака Ньютона можно называть основоположником и классическоймеханики и всей классической науки в целом. Его вклад в развитие научного познания мира трудно переоценить. Без него наука развивалась бы иначе.

    И. Ньютон создал науку, основные идеи которой господствовали более 200 лет – до начала ХХ в. На основе осмысления законов механики была сформирована механическая научная картина мира, которая вошла в историю как ньютоновская картина мира.

    Таким образом, уже в середине XIX в. В том числе и благодаря Ньютону было подготовлено «свержение» метафизического способа мышления, господствовавшего в естествознании.

    Список литературы

    1. Цирульников. А.М. «Цивилизация» М. 2000 г. Изд-во «Педагогика-пресс»

    2. Баженов Л. Б. Строение и функции естественнонаучной теории. – М.: Знание, 2001. – 256 с.

    3. Кохановский В. П., Золотухина Е. В., Лешкевич Т. Г., Фатхи Т. Б История науки. Учебное пособие. /. – Ростов н/Д: Феникс, 2003. – 448 с.

    4. С.В. Оболкина, ИФП УрО РАН. «Исаак Ньютон и классическая наука» 2012 г. - электронный ресурс – URL: http://www.uran.ru/node/1924 - режим доступа-свободный.

    5. Запарий В.В., Нефедов С.А. История науки и техники. Екатеринбург, 2008.

    6. Кохановский В.П. Философия: Учебное пособие для высших учебных заведений 2003 г.


    написать администратору сайта