Главная страница

реферат био. Биотехнология. 1. 1 Клеточная теория одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве единого структурного элемента живых организмов.


Скачать 18.12 Kb.
Название1. 1 Клеточная теория одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве единого структурного элемента живых организмов.
Анкорреферат био
Дата05.04.2023
Размер18.12 Kb.
Формат файлаdocx
Имя файлаБиотехнология.docx
ТипДокументы
#1039167

1.1 - Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве единого структурного элемента живых организмов.

1.2 - Культивирование аэробных микроорганизмов проводят следующим образом:

• на поверхности плотных сред или в тонком слое жидких сред, когда микроорганизмы получают кислород непосредственно из воздуха;

• в жидких средах (глубинное культивирование). В этом случае микроорганизмы используют растворенный в среде кислород. В связи с низкой растворимостью кислорода, для обеспечения роста аэробных бактерий в толще среды, требуется постоянное аэрирование.

Культивирование анаэробных микроорганизмов более сложно, чем выращивание аэробов, так как здесь должен быть сведен до минимума контакт микроорганизмов с молекулярным кислородом. Для создания анаэробных условий используют различные приемы. Их подразделяют на физические, химические и биологические. Все они основаны на том, что микроорганизмы культивируют в каком-то замкнутом пространстве.

К физическим методам создания анаэробных условий относится культивирование в микроанаэростате – вакуумном аппарате для выращивания микроорганизмов, в котором воздух замещен газовой смесью. Наиболее часто используемая смесь имеет следующий состав: азот с 5 % СО2 и 10 % Н2.

К химическим методам относится:

1) Использование химических веществ, поглощающих молекулярный кислород. В качестве поглотителей молекулярного кислорода в лабораторной практике используют щелочной раствор пирогаллола, дитионит натрия (Na2S2O4), металлическое железо, хлорид одновалентной меди и некоторые другие реактивы.

2) Использование восстанавливающих агентов, которые добавляют в большинство сред для снижения окислительно-восстановительного потенциала среды: тиогликолат натрия, цистеин, аскорбиновая кислота.

Как пример биологического способа создания анаэробных условий - выращивание совместно с аэробными или факультативно-анаэробными бактериями. Например, питательную среду в чашке Петри разделяют желобком на две половины, на одну половину засевают какой-либо аэробный микроорганизм, на другой – анаэроб. Края чашки заливают парафином. Рост анаэробного микроорганизма начнется только после полного использования кислорода аэробом.

Для культивирования анаэробных бактерий используют и другие методы, ограничивающие доступ воздуха к растущей культуре:

• выращивание в высоком слое среды;

• выращивание в толще плотной среды;

• культивирование в вязких средах, в которых диффузия молекулярного кислорода в жидкость уменьшается с увеличением ее плотности;

• заливка среды с посевом высоким слоем стерильного вазелинового масла или парафина.

2.1 - Клеточные биологи и биофизики используют четыре метода для слияния клеток. Эти четыре способа включают электрическое слияние клеток, слияние клеток с полиэтиленгликолем и слияние клеток, индуцированное вирусом Сендай.

2.2 - Поверхностное культивирование. При поверхностном культивировании микроорганизмы развиваются на поверхности питательной среды. Среды могут быть плотными, сыпучими или представлять собой тонкий слой жидкой среды. Практически метод применим только для культивирования аэробных микроорганизмов. В этом случае микроорганизмы получают кислород непосредственно из воздуха. Важным условием реализации метода является большая площадь соприкосновения поверхности питательной среды с окружающим воздухом. В жидких средах аэробные микроорганизмы часто растут, образуя на поверхности пленку. Факультативные анаэробы развиваются не только на поверхности, но и в толще жидкой среды, вызывая более или менее равномерное ее помутнение.

Глубинное культивирование. Глубинный метод культивирования является более совершенным по сравнению с поверхностным. При этом микроорганизмы растут и развиваются во всем объеме питательной среды, а не только на ее поверхности. Осуществляют его, применяя жидкие питательные среды. Метод можно использовать как при культивировании аэробов, так и анаэробов.

3.1 - В развитии генетики можно выделить 3 этапа: 1. (с 1900 по 1925 г.) – этап классической генетики. В этот период были переоткрыты и подтверждены на многих видах растений и животных законы Г.Менделя, создана хромосомная теория наследственности (Т.Г.Морган). 2. (с1926 по 1953) – этап широкого развёртывания работ по искусственному мутагенезу (Г.Меллер и др.). в это время было показано сложное строение и дробимость гена, заложены основы биохимической, популяционной и эволюционной генетики, доказано, что молекула ДНК является носителем наследственной информации (О.Эвери), были заложены основы ветеринарной генетики. 3. (начинается с 1953 г.) – этап современной генетики, для которого характерны исследования явлений наследственности на молекулярном уровне. Была открыта структура ДНК (Дж. Утсон), расшифрован генетический код (Ф.Крик), химическим путём синтезирован ген (Г. Корана). Большой вклад в развитие генетики внесли отечественные учёные. Научные генетические школы созданы Вавиловым и др. Получили искусственным путём мутации – Филиппов. Вавилов сформулировал закон гомологических рядов наследственной изменчивости. Карпеченко предложил метод преодоления бесплодия у некоторых гибридов. Четвериков – основатель учения о генетике популяций. Серебровский – показал сложное строение и дробимость гена.

3.2 - При периодическом культивировании весь объем питательной среды засевают чистой культурой, которую выращивают в оптимальных условиях определенный период времени до накопления нужного количества целевого продукта. Следует отметить, что так как культивирование ведется на не возобновляемой питательной среде (в стационарных условиях), то клетки все время находятся в меняющихся условиях. Таким образом, периодическую систему можно рассматривать как замкнутую систему.

При непрерывном культивировании культура находится в специальном аппарате, куда постоянно притекает питательная среда и с такой же скоростью отводится культуральная жидкость. Для микроорганизма создаются неизменные условия среды, поэтому непрерывную систему можно рассматривать как открытую систему.

Поверхностное культивирование может быть только периодическим, в то время как глубинное культивирование может осуществляться и периодическим, и непрерывным способом.

1. Лагфаза. В этот период культура адаптируется к новой среде обитания. Активизируются ферментные системы, возрастает количество нуклеиновых кислот, клетка готовится к интенсивному синтезу белков и других соединений. Клетки не размножаются (скорость размножения равна нулю). Концентрация живых клеток постоянна и равна количеству внесенных клеток. Продолжительность этой фазы зависит от физиологических особенностей микроорганизма и от состава питательной среды.

2. Фаза ускорения роста. Эта фаза характеризуется началом деления клеток, увеличением общей массы и постоянным увеличением скорости роста культуры. Эта фаза обычно непродолжительна.

3. Экспоненциальная (логарифмическая) фаза роста. В этот период микроорганизмы размножаются с постоянной максимальной скоростью. При этом логарифм числа клеток линейно зависит от времени. К концу этой фазы среда истощается вследствие катаболических и анаболических процессов, в среде накапливаются продукты жизнедеятельности микроорганизмов. Возникает и пространственная ограниченность, так как клетки мешают друг другу.

4. Фаза замедления роста. В этот период снижается скорость роста, небольшая часть клеток гибнет. Скорость роста выше скорости отмирания.

5. Стационарная фаза. Количество живых клеток достигает максимума. Скорость роста равна скорости отмирания клеток, поэтому концентрация жизнеспособных клеток остается постоянной.

6. Фаза ускорения отмирания. Количество отмерших клеток (скорость отмирания) становится больше количества образовавшихся клеток.

7. Фаза отмирания. Масса живых клеток значительно уменьшается, так как в среде нет питательных веществ, а запасные вещества клетки исчерпываются.

В основу способа непрерывного культивирования положено культивирование микробной популяции в условиях хемостата и турбидостата.

Рост в хемостате. Хемостат состоит из сосуда, в который вводят с постоянной скоростью питательный раствор. По мере поступления питательного раствора из него вытекает суспензия микроорганизмов с той же скоростью. При культивировании в условиях хемостата поддерживается постоянная концентрация одного из компонентов среды (например: углерода). Благодаря этому в условиях хемостата поддерживается постоянная скорость роста культуры. Культура микроорганизма находится в условиях динамического равновесия.

Рост в турбидостате. Работа турбидостата основана на поддержании постоянной концентрации живых клеток. В сосуде для культивирования все питательные вещества содержатся в избытке, а скорость роста бактерий приближается к максимальной.


написать администратору сайта