Коллок 5 ответы. 1. Экология как наука. Задачи экологии. Методы экологии полевой, экспериментальный, математические моделирование и другие
Скачать 83.3 Kb.
|
1. Экология как наука. Задачи экологии. Методы экологии: полевой, экспериментальный, математические моделирование и другие. Экология - наука об отношениях живых организмов и их сообществ между собой и с окружающей средой. Термин впервые предложил немецкий биолог Эрнст Геккель в 1866 году. Предметом исследования экологии являются биологические макросистемы (популяции, биоценозы, экосистемы) и их динамика во времени и пространстве. Задачи экологии: 1. Исследование влияния среды на строение, жизнедеятельность и поведение организмов. 2. Исследование закономерностей организации жизни, в том числе в связи с антропогенными воздействиями на природные системы. 3. Изучение экологических механизмов адаптации к среде. 4. Исследование процессов, протекающих в биосфере, с целью поддержания ее устойчивости. 5. Создание научной основы рациональной эксплуатации природных ресурсов, прогнозирование изменений природы под влиянием деятельности человека и управления процессами, протекающими в биосфере. 6. Прогнозирование и оценка возможных отрицательных последствий в природной среде под влиянием деятельности человека. 7. Оптимизация экономических, правовых, социальных и иных решений для обеспечения экологически безопасного, устойчивого развития. 8. Восстановление нарушенных природных систем, сохранение эталонных участков биосферы. 9. Формирование экологического мировоззрения, развитие экологического сознания и культуры у людей всех возрастов и профессий. 10. Создание новых технологий, основанных на понимании экологических возможностей данного региона, его специфичности. Методы: Полевые способы предполагают изучение экологических явлений в природной среде. Они помогают установить взаимосвязи организмов, видов и сообществ со средой, выяснить общую картину развития и жизнедеятельности биосистем. Лабораторные методы используются при проведении работ в лабораторных условиях, но пересекаются с методами полевых исследований. Эти методы дают возможность получить приблизительные результаты, которые требуют дальнейшего подтверждения в полевых условиях. Моделирование – метод опосредованного практического и теоретического оперирования объектом, когда исследуется не сам интересующий объект непосредственно, а вспомогательная, искусственная или естественная система (модель), соответствующая свойствам реального объекта. Любая модель всегда упрощена, отражает общую суть процесса. Экспериментальные методы - это методы, позволяющие изучить влияние отдельных факторов естественной или моделированной среды на естественные или моделированные биологические системы. Они применяются в сочетании как с полевыми, так и с лабораторными методами. Кроме собственных методов экология широко использует методы таких наук, как биохимия, физиология, микробиология, генетика, цитология, гистология, физика, химия, математика и др. 2. Экологические факторы. Биологический оптимум. Закон Либиха. Антропогенные факторы. Экологические катастрофы XX – XXI веков. Экологические факторы — свойства среды обитания, оказывающие какое-либо воздействие на организм. Один и тот же фактор среды имеет разное значение в жизни совместно обитающих организмов. Например, солевой режим почвы играет первостепенную роль при минеральном питании растений, но безразличен для большинства наземных животных. Элементы среды обитания, которые способны оказывать прямое или косвенное влияние на живые организмы хотя бы на одной из стадий их индивидуального развития, называются экологическими факторами. - Прямо действующие — непосредственно влияющие на организм, главным образом на обмен веществ - Косвенно действующие — влияющие опосредованно, через изменение прямо действующих факторов (рельеф, экспозиция, высота над уровнем моря и др.) Среди экологических факторов различают три группы: - Абиотические — факторы неживой природы: климатические: годовая сумма температур, среднегодовая температура, влажность, давление воздуха - Биотические — связанные с деятельностью живых организмов: фитогенные — влияние растений микогенные — влияние грибов зоогенные — влияние животных микробиогенные — влияние микроорганизмов Одни экологические факторы необходимы организму, без них невозможна жизнь; другие не являются обязательными. Все факторы, необходимые для жизни организма (популяции, сообщества), определяют условия его существования. Большинство экологических факторов (температура, влажность, интенсивность солнечной радиации, источники пищи, конкуренты, паразиты и др.), подвержены значительным колебаниям в пространстве и времени. Воздействие экологического фактора зависит от его интенсивности. В середине XIX в. немецкий ученый-агрохимик Ю. Либих изучал процессы питания растений и влияние разнообразных факторов и элементов питания на их рост. Он установил, что урожай культур зачастую ограничивается (лимитируется) не теми элементами питания, которые требуются в больших количествах, например углекислым газом и водой (обычно эти вещества присутствуют в среде в изобилии), а теми, которые необходимы в минимальных количествах, но которых и в почве очень мало (например, цинк). Закон Либиха, закон ограничивающего фактора - один из фундаментальных законов в экологии, гласящий, что наиболее значим для организма тот фактор, который более всего отклоняется от оптимального его значения. Интенсивность действия факторов называют оптимальной (opt) в том случае, если обеспечивается наиболее благоприятное существование организма. Для каждой особи, популяции, биоценоза оптимальное значение того или иного фактора различно. Оно меняется с возрастом, зависит от силы воздействия других факторов. Недостаточное или избыточное действие фактора отрицательно сказывается на жизни особи. Минимальное (min) и максимальное (max) значение действующего фактора, при которых возможна жизнедеятельность, называют пределами выносливости. Это критические точки, за пределами которых существование живого уже невозможно. Границы, за которыми наступает гибель, называют верхними и нижними пределами выносливости. Фактор среды в конкретных условиях, наиболее удаленный от оптимума, снижает возможность существования вида в данных условиях, несмотря на оптимальные сочетания остальных факторов. Такой фактор, интенсивность которого приближается к пределу выносливости или выходит за его пределы, называют ограничивающим, или лимитирующим. Ограничивающие факторы среды определяют географический ареал вида - расселение его по земной поверхности. Так, например, распространение вида на север может лимитироваться недостатком тепла, а на юг в сухие (аридные) районы - недостатком влаги и слишком высокими температурами. Ограничивающим фактором, определяющим низкую "плотность населения" в глубоководной зоне океана при всей жесткости условий, является пища, ее ограниченность. Биотические факторы также могут быть ограничивающими. Инжир, который на родине (районы Средиземноморья) опыляется одним из видов ос, завезен в Калифорнию, где стал плодоносить только после того, как туда были доставлены опылители - осы. Факторы среды могут оказаться ограничивающими в одних условиях и неограничивающими в других. Например, в условиях яркого солнечного освещения недостаток цинка в почве может быть ограничивающим фактором для растений. В тени то же количество микроэлемента для данного вида растения оказывается вполне достаточным. Сочетание всех "ограничивающих" факторов называют сопротивлением среды. Одни виды способны выдерживать значительные отклонения от оптимального значения фактора, т.е. обладают широким диапазоном выносливости (например, медведь) и могут существовать при значительных изменениях климата и пищи. Их называют эврибионтными. Другие (стенобионтные) имеют узкий диапазон выносливости и существуют в относительно постоянных условиях среды (например, форель). Иногда может происходить компенсация одного фактора другими, например, в местах, где мало кальция и много стронция, моллюски используют последний для построения раковины. Низкая температура на северном пределе распространения растительности компенсируется продолжительностью в течение суток светового периода (беспрерывный световой день летом). Компенсация одного фактора другим всегда ограничена. Ни один из необходимых для жизни факторов не может быть заменен другим. Для жизни и процветания в тех или иных условиях организм должен располагать всеми веществами, которые ему необходимы. Потребности к факторам внешней среды неодинаковы у разных видов, у одного и того же вида в разных условиях, а также на разных этапах жизненного цикла. Например, взрослые крабы из моря могут заходить в реки с достаточным содержанием в воде хлорида. Однако их личинки в реке жить не могут. Антропогенные факторы - результат воздействия человека на окружающую среду в процессе хозяйственной и другой деятельности. Антропогенные факторы можно разделить на 3 группы: · оказывающие прямое воздействие на окружающую среду в результате внезапно начинающейся, интенсивной и непродолжительной деятельности, напр. Прокладка автомобильной или железной дороги через тайгу, сезонная промысловая охота в определённом районе и т. д.; · косвенное воздействие – через хозяйственную деятельность долговременного характера и малой интенсивности, напр. Загрязнение окружающей среды газообразными и жидкими выбросами завода, построенного у проложенной железной дороги без необходимых очистных сооружений, приводящее к постепенному усыханию деревьев и медленному отравлению тяжёлыми металлами животных, населяющих окрестную тайгу; · комплексное воздействие вышеперечисленных факторов, приводящее к медленному, но существенному изменению окружающей среды (рост населения, увеличение численности домашних животных и животных, сопровождающих человеческие поселения – ворон, крыс, мышей и т. Д., преобразование земельных угодий, появление примесей в воде и т. п.). В результате в изменённом ландшафте остаются лишь растения и животные, сумевшие приспособиться к новому состоянию жизни. Напр., хвойные деревья заменяются в тайге мелколиственными породами; место крупных копытных и хищников занимают таёжные грызуны и охотящиеся на них мелкие куньи и т. П. Положительные: создание заповедников и охраняемых природных территорий, разведение в искусственных условиях особей исчезающих видов растений и животных, мелиорация, борьба с опустыниванием. Отрицательные: Экологические катастрофы 20-21 веков. 1. - Чернобыльская катастрофа, СССР — радиационное загрязнение территории Украины, частично Белоруссии и России 2. - Авария на химическом заводе в Севезо, Италия 3. - Выброс цианистых соединений в Бхопале, Индия 4. - Заражение питьевой воды, Бангладеш, Индия 5. - Гибель Аральского моря, Казахстан 6. - Повышение концентрации СО2 в воздухе, глобальное потепление и гибель кораллов 7. - Организованный иракской армией сброс нефти в Персидский залив во время войны 1991 года 8. - Канадская экологическая катастрофа 1970 г. 9. - Экологическая катастрофа в Венгрии 2010 г. — прорыв дамбы на заводе по производству алюминия, в результате чего сотни гектаров территории, а также Дунай с притоками были залиты т.н. «красным шламом». 10. - Взрыв нефтяной платформы Deepwater Horizon в Мексиканском заливе 11. - Авария на АЭС Фукусима I в Японии 3. Компоненты экологических систем: вещество, факторы, организмы. Регуляция численности популяций в экологических системах. Экосистема представляет собой природный комплекс, образованный живыми организмами (сообщество, биоценоз) и средой их обитания. Экосистема – основная функциональная единица экологии, представляющая собой единство биотических компонентов с абиотической средой, организованное потоками энергии и биологическим круговоротом веществ. Это фундаментальная общность живого и среды его обитания. Т.е. экосистема представляет собой функциональное единство живых организмов (животные, растения, грибы, микроорганизмы) и среды их обитания (климат, почва, вода). Понятие «экосистема» можно применить к объектам различной степени сложности и разного размера. Это может быть частичка почвы и капля воды, кочка на болоте и само болото, лужа, озеро и океан, луг, лес, Земля в целом. Таким образом, каждая конкретная экосистема может характеризоваться определенными границами (экосистема елового леса, экосистема низинного болота). Однако само понятие «экосистема» является безранговым, обладает признаком безразмерности, ей не свойственны территориальные ограничения. Термин «биогеоценоз» (био... + гео... + греч. koinos – общий) ввел в 1940 г. академик В.Н. Сукачев. По В.Н. Сукачеву, биогеоценоз – это элементарная ячейка насыщенных организмами слоев биосферы, маркируемая фитоценозом – растительным сообществом. Это эволюционно сложившаяся, относительно пространственно ограниченная, внутренне однородная природная система живых организмов и абиотической среды, в которой происходит постоянный обмен веществом и энергией. Любой биогеоценоз состоит из двух главных компонентов: - биологической составляющей (живая компонента); - небиологической (географической) составляющей (неживая компонента). Живая компонента, или биоценоз (сообщество) включает четыре основных функционально связанных частей: а) фитоценоз – растительное сообщество (автотрофные организмы, продуценты); б) зооценоз – животное население (гетеротрофы, консументы) в) микоценоз – грибы (гетеротрофы, редуценты); г) микробоценоз – различные микроорганизмы, представленные бактериями, простейшими (редуценты). Неживая, абиотическая, часть биогеоценоза (биотоп) слагается из таких компонентов, как: а) климатоп – совокупность климатических факторов данной территории; б) эдафотоп – почва; в) гидротоп – гидрологические факторы. Биогеоценоз и экосистема – понятия сходные, но не одинаковые. Важно понять, что каждый биогеоценоз является экосистемой, но не каждая экосистема соответствует биогеоценозу, хотя в основе обеих формулировок лежит принцип единства живых и неживых компонентов биологических систем. Понятия экосистема и биогеоценоз совершенно тождественны только для таких природных образований, как, например, лес, луг, болото, поле: лесной биогеоценоз = лесная экосистема; луговой биогеоценоз = луговая экосистема и т.п. Для природных образований, меньших или больших по объему, нежели фитоценоз, либо там, где фитоценоз выделить нельзя, применяется только понятие «экосистема». Например, кочка на болоте – экосистема, но не биогеоценоз; текущий ручей – экосистема, но не биогеоценоз. Точно также только экосистемами являются море, тундра, влажный тропический лес и т.п. В тундре, в лесу можно выделить не один фитоценоз, а множество. Поэтому это, по сути, совокупность фитоценозов, представляющих более крупное образование, нежели биогеоценоз. 4. Учение о биосфере. Современные концепции биосферы Термин «биосфера» введен австрийским геологом Э. Зюссом в 1875 г. для обозначения особой оболочки Земли, образованной совокупностью живых организмов, что соответствует биологической концепции биосферы. В указанном смысле названный термин используют ряд исследователей и в настоящее время. Представление о широком влиянии живых существ на протекающие в природе процессы было сформулировано В.В. Докучаевым, который показал зависимость процесса почвообразования не только от климата, но и от совокупного влияния растительных и животных организмов. В. И Вернадский развил это направление и разработал учение о биосфере как глобальной системе нашей планеты, в которой основной ход геохимических и энергетических превращений определяется живым веществом. Он распространил понятие биосферы не только на сами организмы, но и на среду их обитания, чем придал концепции биосферы биогеохимический смысл. В противоположность приведенной трактовке В.И. Вернадский представляет ноосферу не как нечто внешнее по отношению к биосфере, а как новый этап в развитии биосферы, заключающийся в разумном регулировании отношений человека и природы. Ноосфера («мыслящая оболочка», сфера разума) – высшая стадия развития биосферы. Это «сфера взаимодействия природы общества, в пределах которой разумная человеческая деятельность становится главным, определяющим фактором развития» Биосферой называют оболочку Земли, которая населена и активно преобразуется живыми существами. Согласно В.И. Вернадскому, биосфера — это такая оболочка, в которой существует или существовала в прошлом жизнь и которая подвергалась или подвергается воздействию живых организмов. Она включает: 1) живое вещество, образованное совокупностью организмов; 2) биогенное вещество, которое создается и перерабатывается в процессе жизнедеятельности организмов (газы атмосферы, каменный уголь, нефть, сланцы, известняки и др.); 3) косное вещество, которое образуется без участия живых организмов (продукты тектонической деятельности, метеориты); 4) биокосное вещество, представляющее собой совместный результат жизнедеятельности организмов и абиогенных процессов (почвы). Границы биосферы определяются областью распространения организмов в атмосфере, гидросфере и литосфере. Верхняя граница биосферы проходит примерно на высоте 20 км. Таким образом, живые организмы расселены в тропосфере и в нижних слоях стратосферы. Лимитирующим фактором расселения в этой среде является нарастающая с высотой интенсивность ультрафиолетовой радиации. Практически все живое, проникающее выше озонового слоя атмосферы, погибает. В гидросферу биосфера проникает на всю глубину Мирового океана, что подтверждает обнаружение живых организмов и органических отложений до глубины 10—11 км. В литосфере область распространения жизни во многом определяет уровень проникновения воды в жидком состоянии — живые организмы обнаружены до глубины примерно 7,5 км. Атмосфера. Эта оболочка состоит в основном из азота и кислорода. В меньших концентрациях она содержит углекислый газ и озон. Состояние атмосферы оказывает большое влияние на физические, химические и особенно биологические процессы на земной поверхности и в водной среде. Наибольшее значение для биологических процессов имеют кислород атмосферы, используемый для дыхания организмов и минерализации омертвевшего органического вещества, углекислый газ, расходуемый при фотосинтезе, а также озон, экранирующий земную поверхность от жесткого ультрафиолетового излучения. Вне атмосферы существование живых организмов невозможно. Это видно на примере лишенной жизни Луны, у которой нет атмосферы. Гидросфера. Вода является важной составной частью всех компонентов биосферы и одним из необходимых факторов существования живых организмов. Основная ее часть (95%) заключена в Мировом океане, который занимает примерно 70% поверхности Земного шара. Общая масса океанических вод составляет свыше 1300 млн. км3. Около 24 млн. км3 воды содержится в ледниках, причем 90% этого объема приходится на ледяной покров Антарктиды. Столько же воды содержится под землей. Поверхностные воды озер составляют приблизительно 0,18 млн. км3 (из них половина соленые), а рек—0,002 млн. км3. Количество воды в телах живых организмов достигает примерно 0,001 млн. км3. Из газов, растворенных в воде, наибольшее значение имеют кислород и углекислый газ. Количество кислорода в океанических водах изменяется в широких пределах в зависимости от температуры и присутствия живых организмов. Концентрация углекислого газа также варьирует, а общее количество его в океане в 60 раз превышает его содержание в атмосфере. Гидросфера формировалась в связи с развитием литосферы, выделившей за геологическую историю Земли значительный объем водяного пара и так называемых ювенильных (подземных магматических) вод. Литосфера. Основная масса организмов, обитающих в пределах литосферы, сосредоточена в почвенном слое, глубина которого обычно не превышает нескольких метров. Почвы, будучи, по терминологии В.И. Вернадского, биокосным веществом, представлены минеральными веществами, образующимися при разрушении горных пород, и органическими веществами — продуктами жизнедеятельности организмов. Главная функция биосферы заключается в обеспечении круговоротов химических элементов. Глобальный биотический круговорот осуществляется при участии всех населяющих планету организмов. Он заключается в циркуляции веществ между почвой, атмосферой, гидросферой и живыми организмами. Благодаря биотическому круговороту возможно длительное существование и развитие жизни при ограниченном запасе доступных химических элементов. Используя неорганические вещества, зеленые растения за счет энергии Солнца создают органическое вещество, которое другими живыми существами (гетеротрофами — потребителями и деструкторами) разрушается, с тем чтобы продукты этого разрушения могли быть использованы растениями для новых органических синтезов. С именем В.И. Вернадского связано также формирование социально-экономической концепции биосферы, отражающей ее превращение на определенном этапе эволюции в ноосферу(см. гл. 25)вследствие деятельности человека, которая приобретает роль самостоятельной геологической силы. Учитывая системный принцип организации биосферы, а также то, что в основе ее функционирования лежат круговороты веществ и потоки энергии, современной наукой сформулированы биохимическая, термодинамическая, биогеоценотическая, кибернетическая концепции биосферы. Биологическая концепция :самые ранние представлениия о биосфере как совокупности живых организмов. Милль и Зюсс: « Биосфера – совокупность живых существ» Ошибка концепции: исследователи отделяли живое от неживого. Биогеохимическая концепция. Немецкий ученый Малишотт выдвинул идею о том, что биосфера выражается прежде всего в круговороте веществ с участием живых существ. Докучаев писал о совместном действии климата, живых организмов, минеральной среды в образовании почвы. Наиболее распростарненная концепция. Термодинамическая концепция. Биосфера – система, которая обменивается с космосом энергией и подчиняется Ворому Закону термодинамики. Кибернетическая концепция. Биосфера – система саморегулирующаяся, которую можно моделировать и изучать протекающие в ней процессы. Геохимическая концепция. Живые организмы взаимодействуют между собой и с окружающей средой. При этом создаются глубокие метаболические связи с геохимическими факторами. Минеральные вещества идут на построении е скелета, регуляцию осмоса, функции кровеносной системы, велючается в обмен веществ. Изменяется среда – изменяется состав организмов. Дальнейшая разработка концепции принадлежит Вернадскому. Его заслуга в том, что он разработал учение о биосфере как глобальной системе Земли, в которой основной ход геохимических и энергетических превращений определяется живыми организмами. Распространил понятие «биосфера» на живые организмы и среду их обитания. Создал теорию о живом веществе и геохимической роли живых организмов. создал учение о преобразовании биосферы в ноосферу, как результат действий человека. |