Главная страница
Навигация по странице:

  • Уильям Оккам

  • 11. Классическое естествознание и его методология.

  • Ответы к кандидатскому экзамену по философии. 1. Философия и наука, их взаимосвязь и различие


    Скачать 489.28 Kb.
    Название1. Философия и наука, их взаимосвязь и различие
    АнкорОтветы к кандидатскому экзамену по философии.docx
    Дата27.04.2017
    Размер489.28 Kb.
    Формат файлаdocx
    Имя файлаОтветы к кандидатскому экзамену по философии.docx
    ТипДокументы
    #5998
    страница7 из 22
    1   2   3   4   5   6   7   8   9   10   ...   22

    10. Становление опытной науки в новоевропейской культуре. Идея экспериментального естествознания
    В 15 веке центр разработки проблем естествознания и математики перемещается в западную Европу. В 14-16 веках естествознание уже близко подошло к созданию методов новой науки. Познание природы в этот период концентрируется в двух университетах: Оксфордском и Парижском (Р.Гроссетест, Р.Бекон, У.Оккам). Период с 1540 по 1650 г. характеризуется торжеством опытного (экспериментального) подхода к изучаемым явлениям: открытие кровообращения Гарвеем (1628), установление магнитных свойств Земли Гильбертом (1600), прогресс техники, открытие и применение телескопа и микроскопа, утверждение идеи гелиоцентризма и принципа идеализации Г. Галилеем.

    Формирование опытной науки связано с изменяющимися представлениями человека о его взаимосвязи с природой. Человек должен представить себя активным началом в исследовании природы, и это связано с зарождением идеи экспериментального исследования в культуре Нового времени.

    Принято считать, что в XIV – XV веках естествознание близко подошло к созданию методов новой науки. Этому предшествовал прогресс ремесленного производства, рост городов, успешные торговые контакты с арабским Востоком. Возрождены основные натуралистические книги Аристотеля, а также труды, содержащие методологию его натуралистического опыта и наблюдения. В результате – усиление интересов к естественнонаучным идеям и исследованиям. Модель математического объяснения становится моделью идеального знания, даже теологическая аргументация формулируется согласно математико-дедуктивному методу.

    Оксфордская школа сыграла значительную роль в развитии и распространении естествознания. Главная роль в становлении школы принадлежит францисканцу Роберту Гроссетесту (Большеголовому).

    Его научные интересы концентрировались вокруг оптики, математики (особенно геометрии), астрономии. Гроссетеста называли ярким теоретиком и практиком экспериментального естествознания. В своих работах он высказывал мысли о том, что изучение явлений начинается с опыта, посредством их анализа устанавливается некоторое общее положение, рассматриваемое как гипотеза. На основе гипотезы дедуктивно выводятся следствия, опытная проверка которых устанавливает их истинность или ложность. Эти свои идеи исследователь проводил в опытах над преломлением света. Он размышлял также над распространением звуковых колебаний, над морскими приливами, над явлениями из области медицины. Для проверки гипотез Гроссетест использовал методы фальсификации и верификации.

    Метод фальсификации используется там, где нет еще никакой рациональной теории, и естествоиспытатель вынужден произвести отбор подходящих гипотез, то есть отбросить то, что «не соответствует природе вещей». Метод верификации предполагает установление зависимостей путем наблюдения и проверку их в изолирующем эксперименте.

    В построении объяснительных схем и в выборе между ними Гроссетест руководствовался двумя общими «метафизическими» принципами:

     Принцип единообразия природы – все причины всегда единообразны в своих действиях, из разнородных действий следует вывод о разнородных причинах и наоборот.

    Этот принцип служил для отбора теорий, а также руководил процессом индукции.

     Принцип экономии – если одна вещь доказана из многих предпосылок, а другая вещь – из немногих предпосылок, одинаково ясных, то лучшая из них та, которая доказана из немногих, потому что она быстрее дает знание.

    Гроссетест пытался выработать общую методологию естественнонаучного исследования, исходя из идей Аристотеля.

    Наиболее фундаментальным достижением оксфордской школы являются теория света и оптика, которые могут пониматься как основа некоторой универсальной физической теории.

    К ученикам Гроссетеста относят английского натурфилософа и богослова Роджера Бэкона – одного из наиболее интересных, оригинальных мыслителей своего века. Мировоззрение Бэкона формировалось под влиянием естественнонаучных интересов оксфордского кружка, с одной стороны, с другой же стороны – в неприятии умозрительных рассуждения схоластиков. Схоластике Бэкон противопоставлял программу практического назначения знания, с помощью которого человек может добиться своего могущества и улучшения жизни. Ему принадлежат идеи, которые предвосхитили будущее развитие науки и техники: суда без гребцов, управляемые одним человеком, колесницы без коней, летательные аппараты и другое.

    Бэкон создает энциклопедию, в которой значительное место отводит математике (комплекс дисциплин из геометрии и арифметики, астрономии и музыки (акустика)). Он считает, что математика достоверна и несомненна, и с ее помощью необходимо проверять все остальные науки. Математика – самая легкая из наук, ибо она «доступна уму каждого», следовательно, с нее надо начинать обучение детей.

    Бэкон считал, что все науки должны познаваться с помощью математических доказательств, доходящих до истин, а не с помощью диалектических и софистических доводов. Благодаря применению математики наука может достигнуть очевидности и истинности. Но для получения истинных знаний одних только математических доказательств недостаточно. Для лучшего понимания и устранения сомнений необходим опыт.

    Роджер Бэкон выделял два основных способа познания – с помощью доказательств и из опыта. Один из них приобретается посредством внешних чувств – человек может полагаться на свои органы чувств, на свидетельства очевидцев, на специально изготовленные инструменты. Однако этого внешнего опыта недостаточно, ибо он не вполне удостоверяет относительно «телесных» вещей из-за трудности познания и совсем не касается «духовных» вещей. Поэтому необходим другой вид опыта – опыт «внутренний», который становится возможным только в мистических состояниях избранных благодаря обретению внутреннего озарения. Второй вид опыта гораздо лучше первого. Допускает Бэкон и третью разновидность опыта – праопыт, которым всемогущий бог наделил святых отцом и пророков. Бог открыл им науки через внутреннее озарение.

    По Бэкону, Бог, недовольный людьми, сообщает им только частичную истину, правду смешивает с ложью. Только опираясь на опыт, люди могут выявить истину, но в полном объеме она не может быть доступна никому.

    Бэкон подчеркивал, что «голое доказательство», не сопровождаемое опытом, не может доставить полного удовлетворения. Философ заключает: «Опытная наука – владычица умозрительных наук». Опыт включает в себя физику, в которую входят алхимия, астрономия, астрология, медицина, в известном смысле и математика. Согласно Бэкону, опытная наука, являясь источником новых истин, не входящих в эмпирическое содержание других наук, должна обеспечить верификацию (подтверждение или опровержение) умозрительных начал. Кроме того, опытная наука предписывает, как делать орудия, как ими пользоваться, рассуждает обо всех тайнах природы и повелевает остальными науками.

    Английский философ и логик Уильям Оккам внес большой вклад в развитие логического учения. Основные работы – «Распорядок», «Избранное», «Свод всей логики». В эпоху Оккама в формировании знания преобладали вербальные псевдообобщения, которые становились тормозом развития действительно научного, предметного знания. Для разрушения этого препятствия использовалась знаменитая «бритва Оккама» - утверждение: «Без необходимости не следует утверждать многого». Другая формулировка – «То, что можно объяснить посредством меньшего, не следует выражать посредством большего». В дальнейшем выработана более краткая формулировка – «Сущностей не следует умножать без необходимости», что означает, что каждый термин обозначает лишь определенный предмет.

    Оккам развивает учение о существовании двух разновидностей знания:

     знание интуитивное – наглядное, включающее в себя как ощущение, так и внутреннее переживание его. С него и начинается основанное на опыте знание. Основное назначение интуитивного знания – констатировать наличие той или иной вещи.

     Знание абстрагированное – это общее знание, которое тоже можно непосредственно постичь в душе, но оно относится к множеству единичных вещей. В отличие от интуитивного знания абстрагированное может отвлекаться от существования или несуществования вещей.

    Теорию общих понятий Оккам называет терминизмом. Термин – простейший элемент всякого знания, всегда выраженного словом. Будучи единичным, оно становится общим (в уме) в связи с тем или иным значением, которое ему придается. Различаются две разновидности терминов:

     естественные термины, которые могут быть непосредственно отнесены к соответствующим вещам;

     искусственные термины, которые условны. Словам придается то или иное значение, относимое не к одной, а ко многим вещам.

    Из двух разновидностей терминов вытекает два рода наук: реальные, трактующие о самом бытии; и рациональные, рассматривающие понятия с точки зрения их отношения не к вещам, а к другим понятиям. Пример науки второго рода – логика.


    11. Классическое естествознание и его методология.
    Хронологически этот период, а значит становление естествознания как определенной системы знания, начинается примерно в XVI—XVII вв. и завершается на рубеже XIX—XX вв. В свою очередь данный период можно разделить на два этапа: этап механистического естествознания (до 30-х гг. XIX в.) и этап зарождения и формирования эволюционных идей (до конца XIX — начала XX в.).

    I. Этап механистического естествознания.

    В свою очередь этап механистического естествознания можно условно подразделить на две ступени, — доньютоновскую и ньютоновскую – создавшими принципиально новое (по сравнению с античностью и средневековьем) понимание мира.

    Доньютоновская ступень происходила в период Возрождения, и ее содержание определило гелиоцентрическое учение Коперника. В своем труде «Об обращениях небесных сфер» он утверждал, что Земля не является центром мироздания и что «Солнце, как бы восседая на Царском престоле, управляет вращающимся около него семейством светил».

    Это был конец геоцентрической системы, которую Коперник отверг на основе большого числа астрономических наблюдений и расчетов — это и было первой научной революцией, подрывавшей также и религиозную картину мира. Кроме того, он высказал мысль о движении как естественном свойстве материальных объектов, подчиняющихся определенным законам и указал на ограниченность чувственного познания («Солнце ходит вокруг Земли»).

    Ньютоновская ступень – Чаще всего ее связывают с именами Галилея, Кеплера и Ньютона, который ее и завершил, открыв тем самым новую — посленъютоновскую ступень развития механистического естествознания.

    В учении Галилея уже были заложены достаточно прочные основы нового механистического естествознания. В центре его научных интересов стояла проблема движения. Открытие принципа инерции, исследование им свободного падения тел имели большое значение для становления механики как науки.

    Согласно Галилею, научное познание должно базироваться на планомерном и точном эксперименте — как мысленном, так и реальном. Для последнего характерно непосредственное изменение условий возникновения явлений и установление между ними закономерных причинных связей, обобщаемых посредством математического аппарата.

    Будучи одним из основателей современного экспериментально-теоретического естествознания, Галилей заложил основы классической динамики, сформулировал принцип относительности движения, идею инерции, закон свободного падения тел. Его открытия обосновали гелиоцентрическую систему Коперника в борьбе со схаластической аристотелевско-птолемеевской традицией. Он развивал принципы механистического материализма.

    Исходным пунктом познания, по Галилею, является чувственный опыт, который, однако, сам по себе не дает достоверного знания. Оно достигается планомерным и реальным или мысленным экспериментированием, опирающимся на строгое количественно-математическое описание. Критикуя непосредственный опыт, Галилей первым показал, что опытные данные в своей первозданнос-ти вовсе не являются исходным элементом познания, что они всегда нуждаются в определенных теоретических предпосылках. Иначе говоря, опыт не может не предваряться определенными теоретическими допущениями, не может не быть «теоретически нагруженным».

    Вот почему Галилей, в отличие от «чистого эмпиризма Ф. Бэкона был убежден, что «фактуальные данные» никогда не могут быть даны в их «девственной первозданности». Они всегда так или иначе «пропускаются» через определенное теоретическое «видение» реальности, в свете которого они (факты) получают соответствующую интерпретацию. Таким образом, опыт — это очищенный в мысленных допущениях и идеализациях опыт, а не просто простое описание фактов.

    Галилей выделял два основных метода экспериментального исследования природы:

    1. Аналитический — прогнозирование чувственного опыта с использованием средств математики, абстракций и идеализации. С помощью этих средств выделяются элементы реальности, не доступные непосредственному восприятию (. Иначе говоря, вычленяются предельные феномены познания, логически возможные, но не представимые в реальной действительности.

    2. Синтетически-дедуктивный — на базе количественных соотношений вырабатываются некоторые теоретические схемы, которые применяются при интерпретации явлений, их объяснении.

    Достоверное знание в итоге реализуется в объясняющей теоретической схеме как единство синтетического и аналитического, чувственного и рационального. Следовательно, отличительное свойство метода Галилея — построение научной эмпирии, которая резко отлична от обыденного опыта.

    Оценивая методологические идеи Галилея, Гейзенберг отмечал, что «Галилей отвернулся от традиционной, опиравшейся на Аристотеля науки своего времени и подхватил философские идеи Платона... Новый метод стремился не к описанию непосредственно наблюдаемых фактов, а скорее к проектированию экспериментов, к искусственному созданию феноменов, при обычных условиях не наблюдаемых, и к их расчету на базе математической теории».

    Гейзенберг выделяет две характерные черты нового метода Галилея:

    а) стремление ставить каждый раз новые точные эксперименты, создающие идеализированные феномены;

    б) сопоставление последних с математическими структурами, принимаемыми в качестве законов природы.

    На новаторский характер методологических поисков Галилея обратил внимание Фейерабенд. Он отметил, что в творчестве Галилея заключен почти неиссякаемый источник материала для методологических рассуждений. В его деятельности эмпирический опыт был заменен опытом, содержащим концептуальные элементы. «Галилей нарушает важнейшие правила научного метода, изобретенные Аристотелем и канонизированные логическими позитивистами; Галилей добивается успеха потому, что не следует этим правилам».

    Способ мышления Галилея исходил из того, что одни чувства без помощи разума не способны дать нам истинного понимания природы, для достижения которого нужно чувство, сопровождаемое рассуждением. Имея в виду прежде всего галилеевский принцип инерции, Эйнштейн и Инфельд писали: «Открытие, сделанное Галилеем, и применение им методов научного рассуждения были одним из самых важных достижений в истории человеческой мысли, и оно отмечает действительное начало физики. Это открытие учит нас тому, что интуитивным выводам, базирующимся на непосредственном наблюдении, не всегда можно доверять, т. е. они иногда ведут по ложному следу».

    Иоганн Кеплер установил три закона движения планет относительно Солнца:

    1. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

    2. Радиус-вектор, проведенный от Солнца к планете, в равные промежутки времени описывает равные площади: скорость движения планеты тем больше, чем ближе она к Солнцу.

    3. Квадраты времен обращения планет вокруг Солнца относятся как кубы их средних расстояний от него.

    Кроме того, он предложил теорию солнечных и лунных затмений и способы их предсказания, уточнил расстояние между Землей и Солнцем и др.

    Ньютон, научное наследие которого чрезвычайно глубоко и разнообразно. Главный труд Ньютона — «Математические начала натуральной философии» это, «библия новой науки», «источник дальнейшего расширения изложенных в ней методов». В этой и других своих работах Ньютон сформулировал понятия и законы классической механики, дал математическую формулировку закона всемирного тяготения, теоретически обосновал законы Кеплера (создав тем самым небесную механику), и с единой точки зрения объяснил большой объем опытных данных (неравенства движения Земли, Луны и планет, морские приливы и др.).

    Кроме того, Ньютон — независимо от Лейбница — создал дифференциальное и интегральное исчисление как адекватный язык математического описания физической реальности. Он был автором многих новых физических представлений — о сочетании корпускулярных и волновых представлений о природе света, об иерархически атомизирован-ной структуре материи, о механической причинности и др.

    В трудах Ньютона представлена первая попытка установления теоретической основы для физики и других наук. В его работах «проявлялось стремление найти для унификации всех отраслей науки теоретическую основу, образованную минимальным числом понятий и фундаментальных отношений, из которых логическим путем можно было бы вывести все понятия и соотношения отдельных дисциплин». Построенный Ньютоном фундамент, по свидетельству Эйнштейна, оказался исключительно плодотворным и до конца XIX в. считался незыблемым.

    Научный метод Ньютона имел целью четкое противопоставление достоверного естественнонаучного знания вымыслам и умозрительным схемам натурфилософии. Знаменитое его высказывание «гипотез не измышляю» было лозунгом этого противопоставления.

    Содержание научного метода Ньютона сводится к следующим основным «ходам мысли»:

    1) провести опыты, наблюдения, эксперименты;

    2) посредством индукции вычленить в чистом виде отдельные стороны естественного процесса и сделать их объективно наблюдаемыми;

    3) понять управляющие этими процессами фундаментальные закономерности, принципы, основные понятия;

    4) осуществить математическое выражение этих принципов, т. е. математически сформулировать взаимосвязи естественных процессов;

    5) построить целостную теоретическую систему путем дедуктивного развертывания фундаментальных принципов, т. е. «прийти к законам, имеющим неограниченную силу во всем космосе»;

    6) «использовать силы природы и подчинить их нашим целям в технике»

    С помощью этого метода были сделаны многие важные открытия в науках. На основе метода Ньютона в рассматриваемый период был разработан и использовался огромный «арсенал» самых различных методов. Это прежде всего наблюдение, эксперимент, индукция, дедукция, анализ, синтез, математические методы, идеализация и другие. Все чаще говорили о необходимости сочетания различных методов. Благодаря созданному им методу, «Ньютон был первым, кому удалось найти ясно сформулированную основу, из которой с помощью математического мышления можно бьшо логически вывести количественно и в соответствии с опытом широкую область явлений».

    Сам Ньютон с помощью своего метода решил три кардинальных задачи.

    1. четко отделил науку от умозрительной натурфилософии и дал критику последней. - Во-вторых, разработал классическую механику как целостную систему знаний о механическом движении тел. Его механика стала классическим образцом научной теории дедуктивного типа и эталоном научной теории вообще, сохранив свое значение до настоящего времени.

    2. Ньютон завершил построение новой революционной для того времени картины природы, сформулировав основные идеи, понятия, принципы, составившие механическую картину мира. При этом Ньютон считал, что «было бы желательно вывести из начал механики и остальные явления природы».

    Основное содержание механической картины мира, созданной Ньютоном, сводится к следующим моментам:

    1. Весь мир, вся Вселенная (от атомов до человека) понимался как совокупность огромного числа неделимых и неизменных частиц, перемещающихся в абсолютном пространстве и времени, взаимосвязанных силами тяготения, мгновенно передающимися от тела к телу через пустоту (ньютоновский принцип дальнодействия).

    2. Согласно этому принципу любые события жестко предопределены законами классической механики, так что если бы существовал, по выражению Лапласа, «всеобъемлющий ум», то он мог бы их однозначно предсказывать и предвычислять.

    3. В механической картине мира последний был представлен состоящим из вещества, где элементарным объектом выступал атом, а все тела — как построенные из абсолютно твердых, однородных, неизменных и неделимых корпускул — атомов. Главными понятиями при описании механических процессов были понятия «тело» и «корпускула».

    4. Движение атомов и тел представлялось как их перемещение в абсолютном пространстве с течением абсолютного времени. Эта концепция пространства и времени как арены для движущихся тел, свойства которых неизменны и независимы от самих тел, составляла основу механической картины мира.

    5. Природа понималась как простая машина, части которой подчинялись жесткой детерминации, которая была характерной особенностью этой картины.

    6. Важная особенность функционирования механической картины мира в качестве фундаментальной исследовательской программы — синтез естественнонаучного знания на основе редукции (сведения) разного рода процессов и явлений к механическим.

    Несмотря на ограниченность уровнем естествознания XVII в., механическая картина мира сыграла в целом положительную роль в развитии науки и философии. Она давала естественнонаучное понимание многих явлений природы, освободив их от мифологических и религиозных схоластических толкований. Она ориентировала на понимание природы из нее самой, на познание естественных причин и законов природных явлений.

    Материалистическая направленность механической картины Ньютона не избавила ее от определенных недостатков и ограниченностей. Одна из них состояла, в частности, в том, что «эта картина не охватывала ни наук о жизни, ни наук о человеке, т. е. не охватывала подавляющей части современного научного аппарата. Однако она позволила то, чего до сих пор в науке не было в сколько-нибудь значительной степени, позволила предсказывать события, предвидеть их с огромной точностью».

    Механистичность, метафизичность мышления Ньютона проявляется, в частности, в его утверждении о том, что материя — инертная субстанция, обреченная на извечное повторение хода вещей, из нее исключена эволюция; вещи неподвижны, лишены развития и взаимосвязи; время — чистая длительность, а пространство — пустое «вместилище» вещества, существующее независимо от материи, времени и в отрыве от них. Ощущая недостаточность своей картины мира, Ньютон вынужден был аппелировать к идеям творения, отдавать дань религиозно-идеалистическим представлениям.

    Несмотря на свою ограниченность, механическая картина мира оказала мощное влияние на развитие всех других наук на долгое время. Экспансия механической картины мира на новые области исследования осуществлялась в первую очередь в самой физике, но потом — в других областях знаний. Освоение новых областей потребовало развития математического формализма ньютоновской теории и углубленной разработки ее концептуального аппарата. А. Эйнштейн писал: «Значение трудов Ньютона заключается не только в том, что им была создана практически применимая и логически удовлетворительная основа механики, а в том, что до конца XIX в. эти труды служили программой всех теоретических исследований в физике», — но не только в ней, но и в других науках.

    Развитие многих областей научного познания в этот период определялось непосредственным воздействием на них идей механической картины мира. Так, в эпоху господства алхимии Р. Бойль выдвинул программу, которая переносила в химию принципы и образцы объяснения, сформулированные в механике. Бойль предлагал объяснить все химические явления, исходя из представлений о движении «малых частиц материи» (корпускул).

    Механическая картина мира оказывала сильное влияние и на развитие биологии. Так, Ламарк, пытаясь найти естественные причины развития организмов, опирался на вариант механической картины мира, включавший идею «невесомых». Он полагал, что именно последние являются источником органических движений и изменения в живых существах. Развитие жизни, по его мнению, выступает как «нарастающее движение флюидов», которое и было причиной усложнения организмов и их изменения.


    1   2   3   4   5   6   7   8   9   10   ...   22


    написать администратору сайта