Главная страница
Навигация по странице:

  • Газлифтная скважина

  • Технологические режимы Газлифтной скважины.

  • Оборудование газлифтных скважин

  • Газлифт. 1. Газлифтная скважина 4 Технологические режимы 5


    Скачать 131.79 Kb.
    Название1. Газлифтная скважина 4 Технологические режимы 5
    Дата07.10.2020
    Размер131.79 Kb.
    Формат файлаdocx
    Имя файлаГазлифт.docx
    ТипРеферат
    #141595

    Содержание

    Введение 3

    1. Газлифтная скважина 4

    2. Технологические режимы 5

    3. Оборудование газлифтной скважины 6

    Введение
    При добыче нефти одним из самых распространенных способов по подъему ресурсов на поверхность являются газлифтные скважины, позволяющие использовать специальный газ для искусственного поднятия горючей жидкости. Данный способ актуален для подъема большого количества жидкости, а также при работе с большим количеством песчаных слоев. Для работы необходимо собрать более легкую, нежели для газлифтовой откачки, конструкцию, а добыча нефти отличается меньшими потерями в процессе добычи. Используемый для подъема газ можно использовать вторично, хотя это требует нового процесса сбора и компрессии.

    На сегодняшний день газлифтный способ эксплуатации скважин – самый распространенный и эффективный. Рассмотрим принцип его работы.

    После прокладки скважины нефть, находящаяся в земных недрах под высоким давлением, начинает фонтанировать (поднимается наверх). Обычно скважина фонтанирует только в начале своей эксплуатации – после завершения бурения. Затем давление понижается, фонтанирование нефти прекращается.

    В таком случае переходят на газлифтный способ добычи нефти. При этом методе специальные газлифтные трубы подводят к скважине дополнительную энергию – газ под высоким давлением.

    Газлифт – это механизированная система, которая состоит из обсадной (эксплуатационной) трубы и опущенных в нее труб насосно-компрессорного типа (НКТ), подъем жидкостных сред в ней производится с помощью сжатого газа. Также данная система называется газовым (воздушным) подъемником. Эксплуатация скважин таким способом называется газлифтной.

    Конструктивно газлифт бывает компрессорным и безкомпрессорным – это зависит от подаваемого источника (газ или воздух). По виду функционирования существуют непрерывные и периодические газлифты.

    В пространство трубы нагнетается газ высокого давления. При этом в затрубном пространстве текущий уровень жидкости снизится, а в НКТ повысится. Сжатый газ поступает в НКТ, смешиваясь с жидкостью – это происходит при перемещении жидкости до нижнего уровня НКТ. В результате этого газожидкостная смесь будет иметь плотность меньшую, чем жидкость, которая поступает из пласта – уровень НКТ начнет повышаться. Плотность смеси будет тем меньше, чем больше будет введено в нее газа. Таким способом смесь начнет подниматься на поверхность, при этом газлифтные трубы непрерывно подают газ в скважину, а новая жидкость из пласта поступает прямо в скважину.

    Дебит отдельной скважины находится в прямой зависимости от глубины погружения в жидкость труб насосно-компрессорного типа, параметра вязкости самой жидкости, давления подаваемого газа и т.д.

    Газлифтный метод разработки скважин – это экономически эффективный, надежный и полностью автоматизированный метод.

    Единственными недостатками газлифтного метода добычи нефти являются высокая капиталоемкость и металлоемкость.


    Газлифтная скважина
    Газлифтные скважины – разновидность, которая требует подвода специально подобранного газа по выделенному каналу. Данный газ позволяет разгазировать нефть и получить максимальное количество продукта. После того, как обнаруженное месторождение прекращает фонтанировать, производится устройство газлифта, поскольку нехватка энергии пластов вынуждает прибегать к искусственному подъему жидкости. Дополнительную стимуляцию создает собственно газ, который вводится в сжатом виде внутрь. Основной принцип работы заключается в подаче газа к башмаку колонны, где он перемешивается с нефтью. Данная консистенция поднимается по специально подготовленным трубам наверх. Вводимый газ усиливает давление пластов, которое может меняться со временем при постепенном истощении скважины.

    Чаще всего газлифтный способ добычи используется в скважинах с высоким дебитом, а также сильным забойным давлением. Также газлифтные скважины могут быть устроены в песчаных грунтах с высокой сыпучестью, с наличием других отягощающих процесс добычи факторов. К таким факторам относится постоянная подтопляемость, непосредственная близость к болоту или водоему и т.д. Высокая эффективность позволяет максимально быстро извлечь большую часть нефти без энергозатрат и потерь самой жидкости. Отсутствие трущихся элементов в конструкции позволяет снизить затраты и на обслуживание скважины.
    Работы по исследованию газлифтной скважины должны проводиться для решения следующих задач:

    • Выявление режима функционирования с наименьшим расходом используемого газа.

    • Снятие линии индикатора и выявление показателей притока.

    • Вычисление, на какую глубину будет вводиться оборудование в газлифтную скважину.

    В рамках исследования газлифтной скважины часто можно наблюдать некоторую пульсацию, при которой жидкость и газ выбрасываются наружу по очереди. Газовый расход при этом будет значительно сильнее, и чтобы бороться с эффектом пульсации, необходимо устанавливать на конце специальный клапан.

    При исследовании газлифтной скважины необходимо выявить оптимальный режим функционирования, для чего специалисты изучают дебиты и отслеживают их изменения. Последнее выявляется посредством сравнения уровня газа при подаче и непосредственно в скважине: несовпадения объема приводят к нарушению пропускной способности оборудования. Подобный дефект провоцирует изменения баланса между жидкостью, которая появляется из пластов, и самим подъемником, поэтому жидкость либо скапливается, либо уходи из пространства за трубами. В результате исследования наблюдается перепад давлений, и это напрямую влияет на количество возможной добычи нефти из газлифтной скважины.

    Когда режим функционирования газлифтной скважины установлен стабильно, следует спустить манометр и выяснить, каково в данный момент забойное давление. Измерения проводятся несколько раз, и на основании полученных данных можно узнать, как меняется дебит, насколько перспективны те или иные газлифтные скважины. Манометрические измерения позволяют получить максимально точные результаты исследования, однако сам спуск вызывает затруднения во многих случаях. Ввиду этого измерения чаще касаются параметров рабочего давления, расхода средств, вычислением удельного веса газа, используемого в том или ином режиме, и дебитов. Чаще всего используются сверхчувствительные приборы и уловители, в том числе пеленгаторы шума. Последний тип устройства представляет собой микрофон, и его опускают в скважину, чтобы определить посторонние явления и их характер по акустическому шуму.
    Технологические режимы Газлифтной скважины.
    Для определения оптимального режима работы газлифтной скважины нужно провести ее исследование, которое позволяет установить зависимости дебита нефти и воды от забойного давления и от расхода рабочего агента и определить коэффициент продуктивности.

    Забойное давление замеряют с помощью глубинного манометра или по давлению нагнетаемого рабочего агента. Чаще применяется способ исследования скважин при постоянном противодавлении на устье скважины, изменяя расход рабочего агента. В этом случае вначале устанавливают режим работы скважины при минимальном расходе газа, когда еще идет подача жидкости из скважины. Установленный расход газа поддерживается постоянно в течение нескольких часов для того, чтобы режим работы скважины установился. После этого замеряют дебит нефти, воды и газа в скважине и определяют расход сжатого газа. После этого увеличивают расход рабочего агента и вновь проводят те же самые замеры. Дебит жидкости возрастает с увеличением расхода рабочего агента, но до определенного предела, после которого дальнейшее увеличение расхода рабочего агента дебит скважины уменьшается. В этой связи исследование скважины заканчивают после того, как при последующих двух-трех режимах дебит нефти будет снижаться, а расход агента увеличиваться. По данным исследования строят кривые зависимости дебита скважины от расхода рабочего агента.



    Кривая зависимости дебита жидкости, удельного расхода газа и рабочего давления от количества нагнетаемого рабочего агента:

    1 - дебит жидкости;

    2 - рабочее давление;

    3 - удельный расход газа.

    На этом графике строят кривую удельного расхода рабочего агента, показывающую, что при различных отборах жидкости изменяется количество нагнетаемого газа, необходимого для подъема из скважины 1 тонны нефти. На графике видно, что наименьший удельный расход газа получается не при максимальном дебите, а при меньшем отборе. По кривым 1 и 2 определяют количество рабочего агента, необходимого для работы данной скважины. Режим работы скважины устанавливают в зависимости от допускаемого отбора жидкости и производительности компрессорной станции. Если количество сжатого газа достаточно для полного обеспечения всех скважин на нефтепромысле без ограничения дебитов, то работают на режимах максимального дебита скважин, который показан наивысшей точкой на кривой 1. А если сжатого газа на нефтепромысле недостаточно или отбор жидкости из скважины ограничен, тогда работают на режимах минимального удельного расхода газа. Режим работы скважин ежемесячно уточняется в зависимости от состояния разработки месторождения.
    Оборудование газлифтных скважин
    Арматура, устанавливаемая на устье газлифтных скважин, аналогичная фонтанной арматуре и имеет то же назначение - герметизацию устья, подвеску подъемных труб и возможность осуществления различных операций по переключению направления закачивания газа, операций по промывке скважины и пр.

    На газлифтных скважинах часто используется фонтанная арматура, остающаяся после фонтанного периода эксплуатации, но обычно применяется специальная упрощенная и более легкая арматура, поскольку возможные неполадки в ней не угрожают открытым фонтаном. Часто арматуру приспосабливают для нагнетания газа либо только в межтрубное пространство, либо в центральные трубы. Когда эксплуатация газлифтных скважин сопровождается интенсивным отложением парафина, арматура устья дополнительно оборудуется лубрикатором, через который в НКТ вводится скребок, спускаемый на проволоке для механического удаления парафина с внутренних стенок труб. Для борьбы с отложением парафина применяются и другие методы, как, например, остеклованные или эмалированные трубы, на гладкой поверхности которых парафин не удерживается и уносится потоком жидкости. На устье газлифтных скважин устанавливается регулирующая аппаратура - обычно клапан-регулятор давления с мембранным исполнительным механизмом, регулирующим давление после себя, для поддержания постоянного давления нагнетаемого в скважину газа, так как в магистральных линиях часто наблюдаются колебания давления, нарушающие нормальную работу скважин, а иногда вызывающие и их остановку. В системах централизованного газоснабжения регуляторы давления, различные расходомеры, а также запорная арматура устанавливаются на газораспределительных пунктах (ГРП). При такой централизации контроля и управления за работой газлифтных скважин улучшается надежность и качество их обслуживания.



    Рис. 3.1. Последовательность операций при извлечении газлифтного клапана

    из кармана эксцентричной камерыс помощью канатной техники

    Важнейшим достижением в области газлифтной эксплуатации было создание н освоение так называемой техники и технологии спуска н извлечения газлифтных клапанов через НКТ, устанавливаемых в специальных эксцентричных камерах, размещенных на колонне насосно-компрессорных труб на расчетных глубинах. Это исключило необходимость извлечения колонны труб для замены пусковых или рабочих клапанов при их отказе или поломке.

    В расчетных местах на колонне труб устанавливаются специальные эксцентричные камеры с карманом для ввода в него газлифтного клапана. В посадочном кармане спускаемый в него клапан уплотняется с помощью верхних и нижних колец из нефтестойкой резины и стопорной пружинной защелки. На внешней стороне эксцентричной камеры в месте расположения клапана между его уплотнительными кольцами делаются сквозные отверстия. Через эти отверстия газ из межтрубного пространства проходит в посадочный карман, а затем через боковые отверстия в самом клапане и его седло - в насосно-компрессорные трубы. Эксцентричная камера делается таким образом, что проходное сечение колонны труб и их соосность полностью сохраняются. В верхней части эксцентричной камеры (рис. 3.1) устанавливается специальная направляющая втулка, ориентирующая инструмент, на котором спускается клапан так, чтобы он при отклонении точно попадал в посадочный карман. На нижнем конце сборки посадочного инструмента имеется захватное пружинное устройство, которое освобождает головку клапана после его посадки в карман

    Газлифтная установка ЛН
    Существует две основные разновидности газлифта — периодический и непрерывный. При этом газ может подаваться в скважину по кольцевому пространству (кольцевая система) или по НКТ (центральная система).

    Газлифтная установка ЛН (рисунок 3.2) предназначена для добычи газлифтным способом из условно-вертикальных и наклонно-направленных скважин. Рабочая среда —нефть, газ, пластовая вода с содержанием СО2 до 1 % и механических примесей до 0.1 г/л.

    Оборудование предусматривает возможность перевода скважин с фонтанного способа эксплуатации на газлифтный без подъема скважинного оборудования.

    Установка включает в себя скважинные камеры КТ1, газлифтные клапаны 2Г или 5Г, пакер 2ПД-ЯГ с гидравлическим управлением, ниппель, глухую и циркуляционную пробки.

    В период фонтанирования скважины в карман скважинных камер устанавливаются пробки. При переводе скважины на газлифтный способ эксплуатации пробки заменяются газлифтными клапанами.

    После спуска скважинного оборудования, монтажа фонтанной арматуры и посадки пакера, а также замены глухих пробок на газлифтные клапаны в затрубное пространство скважины через отвод трубной головки нагнетается газ. Под давлением нагнетаемого газа и гидростатического столба жидкости в скважине все газлифтные клапаны открываются и жидкость перетекает из затрубного пространства в подъемные трубы.

    Так как давление закрытия первого верхнего клапана меньше давления открытия второго клапана, первый клапан закрывается. Нагнетаемый газ начинает поступать в подъемные трубы через второй клапан. Столб жидкости выше второго клапана аэрируется и выносится на поверхность.  Давление в подъемных трубах на глубине расположения второго клапана уменьшается, что приводит к дальнейшему перетоку жидкости из затрубного пространства в подъемные трубы через последующие клапаны. Уровень жидкости в затрубном пространстве понижается и достигает третьего клапана. Нагнетаемый газ начинает поступать в подъемные трубы через третий клапан. Уровень жидкости в затрубном пространстве продолжает понижаться и в момент обнажения третьего клапана закрывает второй.



    Рис. 3.2 — Газлифтная установка ЛН

    1 — фонтанная арматура; 2 — скважинная камера; 3 — колонна насосно‑компрессорных труб; 4 — газлифтный клапан; 5 — пакер; 6 — приемный клапан; 7 — ниппель приемного клапана.

    Технические характеристики

     

    Условный диаметр эксплуатационной колонны, мм

    146, 168

    Условный диаметр насосно-компрессорных труб, мм

    60, 73, 89

    Рабочее давление, МПа (кгс/см2)

    21 (210), 35 (350)

    Максимальная глубина спуска скважинного оборудования

    2500, 5000

    Температура рабочей среды, К

    373 — 393

    Угол отклонения ствола скважины от вертикальных, град

    55

    Габаритные размеры, мм

     

    длина

    15135 ¸ 15285

    диаметр

    118 ¸ 145

    Масса, кг

    309 ¸ 496

     

    Работа скважины на заданном технологическом режиме осуществляется через нижний клапан.

    Наиболее широко применяются газлифтные установки ЛН рассчитаны на рабочее давление 21 и 35 МПа, максимальную глубину спуска скважинного оборудования — 5000 м, температуру скважинной среды до 120 °С и имеют массу от 185 до 585 кг.

    Периодический газлифт осуществляется путем прерывной подачи агента в скважину, т.е. циклами.

    Для повышения эффективности периодического газлифта может применяться плунжер — своеобразный поршень, движущийся в трубах одноразмерной колонны с минимальным зазором 1.5 ¸ 2.0 мм, чтобы уменьшить величину отекания жидкости по стенкам труб и отделяющий поднимаемый столб жидкости от газа. При ударе о верхний амортизатор, расположенный в плунжере, клапан автоматически открывается, плунжер падает вниз, а при ударе о нижний амортизатор происходит закрытие клапана и плунжер готов к следующему циклу. Плунжерный лифт может работать также с периодической подкачкой газа в затрубное пространство.

    Плунжерный лифт можно использовать также при непрерывном газлифте и фонтанной эксплуатации скважины.

    В других установках, например, при эксплуатации скважин гидропакерным автоматическим поршнем, последний не имеет проходного отверстия и после перемещения к устью скважины нагнетательным газом падает вниз после прекращения подачи газа. Зазор между поршнем и колонной НКТ — 2.5 ¸ 4 мм. Дебит скважин — 1 ¸ 20 т/сут.

    В настоящее время распространение установок периодического газлифта невелико.


    написать администратору сайта