Гистология за 3 дня. 1. история развития гистологии. Развитие гистологии в россии в истории развития гистологии можно выделить три основных периода домикроскопический, микроскопический и современный
Скачать 306.65 Kb.
|
3) эндокринная функция. Плацента – это эндокринный орган. Она синтезирует гормоны и биологически активные вещества, которые играют очень большую роль в нормальном физиологическом протекания беременности и развития плода. К этим веществам относятся прогестерон, хорионический соматомаммотропин, фактор роста фибробластов, трансферрин, пролактин и релаксин. Кортиколиберины определяют срок родов; 4) детоксикация. Плацента способствует детоксикации некоторых лекарственных препаратов; 5) плацентарный барьер. В состав плацентарного барьера входят синцитиотрофобласт, цитотрофобласт, базальная мембрана трофобласта, соединительная ткань ворсины, базальная мембрана в стенке капилляра плода, эндотелий капилляра плода. Гематоплацентарный барьер препятствует контакту крови матери и плода, что очень важно для защиты плода от влияния иммунной системы матери. Структурно-функциональной единицей сформировавшейся плаценты является котиледон. Он образован стволовой ворсиной и ее разветвлениями, содержащими сосуды плода. К 140-му дню беременности в плаценте сформировано около 10 – 12 больших, 40 – 50 мелких и до 150 рудиментарных котиледонов. К 4-му месяцу беременности формирование основных структур плаценты заканчивается. Лакуны полностью сформированной плаценты содержат около 150 мл материнской крови, полностью обменивающейся в течение 3 – 4 мин. Общая поверхность ворсин составляет около 15 м 2 , что обеспечивает нормальный уровень обмена веществ между организмами матери и плода. Строение и функции децидуальной оболочки Децидуальная оболочка образуется на всем протяжении эндометрия, но раньше всего она образуется в области имплантации. К конце 2-й недели внутриутробного развития эндометрий полностью замещается децидуальной оболочкой, в которой можно выделить базальную, капсулярную и пристеночные части. Децидуальная оболочка, окружающая хорион, содержит базальную и капсулярную части. Другие отделы децидуальной оболочки выстланы пристеночной частью. В децидуальной оболочке выделяют губчатую и компактные зоны. Базальная часть децидуальной оболочки входит в состав плаценты. Она отделяет плодное яйцо от миометрия. В губчатом слое много желез, сохраняющихся до 6-го месяца беременности. Капсулярная часть к 18-му дню беременности полностью смыкается над имплантированным плодным яйцом и отделяет его от полости матки. По мере роста плода капсулярная часть выпячивается в полость матки и к 16-й неделе внутриутробного развития срастается с пристеночной частью. При доношенной беременности капсулярная часть хорошо сохраняется и различима только в нижнем полюсе плодного яйца – над внутренним маточным зевом. Капсулярная часть не содержит поверхностного эпителия. Пристеночная часть до 15-й недели беременности утолщается за счет компактной и губчатой зон. В губчатой зоне пристеночной части децидуальной оболочки железы развиваются до 8-й недели беременности. К моменту слияния пристеночной и капсулярной частей количество желез постепенно уменьшается, они становятся неразличимыми. В конце доношенной беременности пристеночная часть децидуальной оболочки представлена несколькими слоями децидуальных клеток. С 12-й недели беременности поверхностный эпителий пристеночной части исчезает. Клетки рыхлой соединительной ткани вокруг сосудов компактной зоны резко увеличены. Это молодые децидуальные клетки, которые по своему строению сходны с фибробластами. По мере дифференцировки размеры децидуальных клеток увеличиваются, они приобретают округлую форму, их ядра становятся светлыми, клетки более тесно прилегают друг к другу. К 4 – 6-й неделе беременности преобладают крупные светлые децидуальные клетки. Часть децидуальных клеток имеет костномозговое происхождение: по-видимому, они участвуют в иммунном ответе. Функцией децидуальных клеток является продукция пролактина и простагландинов. III. Дифференцировка мезодермы . В каждой мезодермальной пластинке, происходит дифференцировка ее на три части: 1) дорзсальную часть (сомиты); 2) промежуточную часть (сегментные ножки, или нефротомы); 3) вентральную часть (спланхиотому). Дорзсальная часть утолщается и подразделяется на отдельные участки (сегменты) – сомиты. В свою очередь, в каждом сомите выделяют три зоны: 1) периферическую зону (дерматому); 2) центральную зону (миотому); 3) медиальную часть (склеротому). По сторонам зародыша образуются туловищные складки, которые отделяют зародыш от внезародышевых органов. Благодаря туловищным складкам кишечная энтодерма сворачивается в первичную кишку. Промежуточная часть каждого мезодермального крыла также сегментируется (за исключением каудального отдела – нефрогенной ткани) на сегментные ножки (или нефротомы, нефрогонотомы). Вентральная часть каждого мезодермального крыла не сегментируется. Она расщепляется на два листка, между которыми располагается полость – целом, и носит название «спланхиотома». Следовательно, спланхиотома состоит из: 1) висцерального листка; 2) париентального листка; 3) полости – целома. IV. Дифференцировка эктодермы . Наружный зародышевый листок дифференцируется на четыре части: 1) нейроэктодерму (из нее разминается нервная трубка и ганглиозная пластинка); 2) кожная эктодерма (развивается эпидермис кожи); 3) переходная пластика (развивается эпителий пищевода, трахеи, бронхов); 4) плакоды (слуховая, хрусталиковая и др.). V. Дифференцировка энтодермы . Внутренний зародышевый листок подразделяется на: 1) кишечную (или зародышевую), энтодерму; 2) внезародышевую (или желточную), энтодерму. Из кишечной энтодермы развиваются: 1) эпителий и железы желудка и кишечника; 2) печень; 3) поджелудочная железа. Органогенез Развитие подавляющего большинства органов начинается с 3 – 4-й недели, т. е. с конца 1-го месяца существования зародыша. Органы образуются в результате перемещения и сочетания клеток и их производных, нескольких тканей (например, печень состоит из эпителиальной и соединительной тканей). При этом клетки разных тканей оказывают индуктивное влияние друг на друга и тем самым обеспечивают направленный морфогенез. Критические периоды в развитии человека В процессе развития нового организма существуют такие периоды, когда весь организм или его отдельные клетки, органы и их системы являются наиболее чувствительными к экзогенным и эндогенным факторам среды. Такие периоды принято называть критическими, так как именно в это время в них могут произойти изменения, которые в дальнейшем приведут к нарушению нормального развития и к формированию аномалий – нарушений нормального анатомического строения органов без нарушения их функций, пороков – нарушений анатомического строения органов с нарушением их функций, уродств – выраженных анатомических нарушений структуры органов, с нарушением их функций, часто несовместимым с жизнью. Критическими периодами в развитии человека являются следующие: 1) гаметогенез (спермато– и овогенез); 2) оплодотворение; 3) имплантация (7 – 8-е сутки); 4) плацентация и закладка осевых комплексов (3 – 8-я неделя); 5) стадия усиленного роста головного мозга (15 – 20-я неделя); 6) формирование полового аппарата и других функциональных систем (20 – 24-я неделя); 7) рождение ребенка; 8) период новорожденности (до 1 года); 9) период полового созревания (11 – 16 лет). В эмбриогенезе критические периоды для определенных групп клеток возникают тогда, когда происходит формирование эпигенома и осуществляется детерминация, предопределяющая дальнейшую дифференцировку клеток в определенном направлении и формирование органов и тканей. Именно в этот период различные химические и физические воздействия могут привести к нарушению формирования естественного эпигенома, т. е. к образованию нового, что детерминирует клетки к развитию в новом, необычном направлении, приводящем к развитию аномалий, пороков и уродств. К неблагоприятным факторам относятся курение, прием алкоголя, наркомания, вредные вещества, содержащиеся в воздухе, питьевой воде, продуктах питания, некоторые лекарственные препараты. В настоящее время в связи с экологической обстановкой нарастает число новорожденных с различными указанными выше отклонениями. Тема 8. ОБЩИЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ ТКАНЕЙ Ткань – исторически (филогенетически) сложившаяся система клеток и неклеточных структур, обладающая общностью строения, а иногда и происхождения и специализированная на выполнении определенных функций. Ткань – это новый (после клеток) уровень организации живой материи. Структурные компоненты ткани: клетки, производные клеток, межклеточное вещество. Характеристика структурных компонентов ткани Клетки – основные, функционально ведущие компоненты тканей. Практически все ткани состоят из нескольких типов клеток. Кроме того, клетки каждого типа в тканях могут находиться на разных этапах зрелости (дифференцировки). Поэтому в ткани различают такие понятия, как клеточная популяция и клеточный дифферон. Клеточная популяция – это совокупность клеток данного типа. Например, в рыхлой соединительной ткани (самой распространенной в организме) содержится: 1) популяция фибробластов; 2) популяция макрофагов; 3) популяция тканевых базофилов и др. Клеточный дифферон (или гистогенетический ряд) – это совокупность клеток данного типа (данной популяция), находящихся на различных этапах дифференцировки. Исходными клетками дифферона являются стволовые клетки, далее идут молодые (бластные) клетки, созревающие клетки и зрелые клетки. Различают полный дифферон или неполный в зависимости от того, находятся ли в тканях клетки всех типов развития. Однако ткани – это не просто скопление различных клеток. Клетки в тканях находятся в определенной взаимосвязи, и функция каждой из них направлена на выполнение функции ткани. Клетки в тканях оказывают влияние друг на друга или непосредственно через щелевидные контакты (нексусы) и синапсы, или на расстоянии (дистантно) посредством выделения различных биологически активных веществ. Производные клеток: 1) симпласты (слияние отдельных клеток, например мышечное волокно); 2) синцитий (несколько клеток, соединенных между собой отростками, например сперматогенный эпителий извитых канальцев семенника); 3) постклеточные образования (эритроциты, тромбоциты). Межклеточное вещество – также продукт деятельности определенных клеток. Межклеточное вещество состоит из: 1) аморфного вещества; 2) волокон (коллагеновых, ретикулярных, эластических). Межклеточное вещество неодинаково выражено в разных тканях. Развитие тканей в онтогенезе (эмбриогенезе) и филогенезе В онтогенезе различают следующие этапы развития тканей: 1) этап ортотопической дифференцировки. На этом этапе зачатки будущих определенных тканей локализуются сначала в определенных участках яйцеклетки и затем – зиготы; 2) этап бластомерной дифференцировки. В результате дробления зиготы презумптивные (предположительные) зачатки тканей оказываются локализованными в разных бластомерах зародыша; 3) этап зачатковой дифференцировки. В результате гаструляции предположительные зачатки тканей локализуются в определенных участках зародышевых листков; 4) гистогенез. Это процесс преобразования зачатков тканей и ткани в результате пролиферации, роста, индукции, детерминации, миграции и дифференцировки клеток. Имеется несколько теорий развития тканей в филогенезе: 1) закон параллельных рядов (А. А. Заварзин). Ткани животных и растений разных видов и классов, выполняющие одинаковые функции, имеют сходное строение, т. е. развиваются они параллельно у животных различных филогенетических классов; 2) закон дивергентной эволюции (Н. Г. Хлопин). В филогенезе происходит расхождение признаков тканей и появление новых разновидностей ткани в пределе тканевой группы, что приводит к усложнению животных организмов и появлению разнообразия тканей. Классификации тканей Имеется несколько подходов к классификации тканей. Общепринятой является морфофункциональная классификация, в соответствии с которой выделяют четыре тканевые группы: 1) эпителиальные ткани; 2) соединительные ткани (ткани внутренней среды, опорнотрофические ткани); 3) мышечные ткани; 4) нервную ткань. Тканевой гомеостаз (или поддержание структурного постоянства тканей) Состояние структурных компонентов тканей и их функциональная активность постоянно изменяются под воздействием внешних факторов. Прежде всего отмечаются ритмические колебания структурно-функционального состояния тканей: биологические ритмы (суточные, недельные, сезонные, годичные). Внешние факторы могут вызывать адаптивные (приспособительные) и дезадаптивные изменения, приводящие к распаду тканевых компонентов. Имеются регуляторные механизмы (внутритканевые, межтканевые, организменные), обеспечивающие поддержание структурного гомеостаза. Внутритканевые регуляторные механизмы обеспечиваются, в частности, способностью зрелых клеток выделять биологически активные вещества (кейлоны), угнетающие размножение молодых (стволовых и бластных) клеток этой же популяции. При гибели значительной части зрелых клеток выделение кейлонов уменьшается, что стимулирует пролиферативные процессы и приводит к восстановлению численности клеток данной популяции. Межтканевые регуляторные механизмы обеспечиваются индуктивным взаимодействием, прежде всего с участием лимфоидной ткани (иммунной системы) в поддержании структурного гомеостаза. Организменные регуляторные факторы обеспечиваются влиянием эндокринной и нервной систем. При некоторых внешних воздействиях может нарушиться естественная детерминация молодых клеток, что может привести к превращению одного тканевого типа в другой. Такое явление носит название «метаплазия» и осуществляется только в пределах данной тканевой группы. Например, замена однослойного призматического эпителия желудка однослойным плоским. Регенерация тканей Регенерация – восстановление клеток, тканей и органов, направленное на поддержание функциональной активности данной системы. В регенерации различают такие понятия, как форма регенерации, уровень регенерации, способ регенерации. Формы регенерации: 1) физиологическая регенерация – восстановление клеток ткани после их естественной гибели (например, кроветворение); 2) репаративная регенерация – восстановление тканей и органов после их повреждения (травм, воспалений, хирургических воздействий и т. д.). Уровни регенерации: 1) клеточный (внутриклеточный); 2) тканевой; 3) органный. Способы регенерации: 1) клеточный; 2) внутриклеточный; 3) заместительный. Факторы, регулирующие регенерацию: 1) гормоны; 2) медиаторы; 3) кейлоны; 4) факторы роста и др. Интеграция тканей Ткани, являясь одним из уровней организации живой материи, входят в состав структур более высокого уровня организации живой материи – структурно-функциональных единиц органов и в состав органов, в которых происходит интеграция (объединение) нескольких тканей. Механизмы интеграции: 1) межтканевые (обычно индуктивные) взаимодействия; 2) эндокринные влияния; 3) нервные влияния. Например, в состав сердца входят сердечная мышечная ткань, соединительная ткань, эпителиальная ткань. Тема 9. ЭПИТЕЛИАЛЬНЫЕ ТКАНИ Характеристика эпителиальных тканей Они образуют внешние и внутренние покровы организма. Функции эпителиев: 1) защитная (барьерная); 2) секреторная; 3) экскреторная; 4) всасывательная. Структурно-функциональные особенности эпителиальных тканей: 1) расположение клеток пластами; 2) расположение клеток на базальной мембране; 3) преобладание клеток над межклеточным веществом; 4) полярная дифференцированность клеток (на базальный и апикальный полюсы); 5) отсутствие кровеносных и лимфатических сосудов; 6) высокая способность клеток к регенерации. Структурные компоненты эпителиальной ткани: 1) эпителиальные клетки (эпителиоциты); 2) базальная мембрана. Эпителиоциты являются основными структурными элементами эпителиальных тканей. Базальная мембрана (толщина около 1 мкм) состоит из: 1) тонких коллагеновых фибрилл (из белка коллагена четвертого типа); 2) аморфного вещества (матрикса), состоящего из углеводно-белково-липидного комплекса. Функции базальной мембраны: 1) барьерная (отделение эпителия от соединительной ткани); 2) трофическая (диффузия питательных веществ и продуктов метаболизма из подлежащей соединительной ткани и обратно); 3) организующая (прикрепление эпителиоцитов с помощью полудесмосом). Классификация эпителиальных тканей Существуют следующие виды эпителия: 1) покровный эпителий; 2) железистый эпителий. Генетическая классификация эпителиев (по Н. Г. Хлопину): 1) эпидермальный тип (развивается из эктодермы); 2) энтородермальный тип (развивается из энтодермы); 3) целонефродермальный тип (развивается из мезодермы); 4) эпендимоглиальный тип (развивается из нейроэктодермы); 5) ангиодермальный тип (или эндотелий сосудов, развивающийся из мезенхимы). Топографическая классификация эпителия: 1) кожный тип (эпидермис кожи); 2) желудочно-кишечный; 3) почечный; 4) печеночный; 5) дыхательный; |