Главная страница

Гистология за 3 дня. 1. история развития гистологии. Развитие гистологии в россии в истории развития гистологии можно выделить три основных периода домикроскопический, микроскопический и современный


Скачать 306.65 Kb.
Название1. история развития гистологии. Развитие гистологии в россии в истории развития гистологии можно выделить три основных периода домикроскопический, микроскопический и современный
АнкорГистология за 3 дня.docx
Дата27.05.2018
Размер306.65 Kb.
Формат файлаdocx
Имя файлаГистология за 3 дня.docx
ТипДокументы
#19719
страница4 из 30
1   2   3   4   5   6   7   8   9   ...   30

3) эндокринная функция. Плацента – это эндокринный орган. Она синтезирует гормоны и биологически активные вещества, которые играют очень большую роль в нормальном физиологическом протекания беременности и развития плода. К этим веществам относятся прогестерон, хорионический соматомаммотропин, фактор роста фибробластов, трансферрин, пролактин и релаксин. Кортиколиберины определяют срок родов;

4) детоксикация. Плацента способствует детоксикации некоторых лекарственных препаратов;

5) плацентарный барьер. В состав плацентарного барьера входят синцитиотрофобласт, цитотрофобласт, базальная мембрана трофобласта, соединительная ткань ворсины, базальная мембрана в стенке капилляра плода, эндотелий капилляра плода. Гематоплацентарный барьер препятствует контакту крови матери и плода, что очень важно для защиты плода от влияния иммунной системы матери.
Структурно-функциональной единицей сформировавшейся плаценты является котиледон. Он образован стволовой ворсиной и ее разветвлениями, содержащими сосуды плода. К 140-му дню беременности в плаценте сформировано около 10 – 12 больших, 40 – 50 мелких и до 150 рудиментарных котиледонов. К 4-му месяцу беременности формирование основных структур плаценты заканчивается. Лакуны полностью сформированной плаценты содержат около 150 мл материнской крови, полностью обменивающейся в течение 3 – 4 мин. Общая поверхность ворсин составляет около 15 м

2

, что обеспечивает нормальный уровень обмена веществ между организмами матери и плода.

Строение и функции децидуальной оболочки
Децидуальная оболочка образуется на всем протяжении эндометрия, но раньше всего она образуется в области имплантации. К конце 2-й недели внутриутробного развития эндометрий полностью замещается децидуальной оболочкой, в которой можно выделить базальную, капсулярную и пристеночные части.

Децидуальная оболочка, окружающая хорион, содержит базальную и капсулярную части.

Другие отделы децидуальной оболочки выстланы пристеночной частью. В децидуальной оболочке выделяют губчатую и компактные зоны.

Базальная часть децидуальной оболочки входит в состав плаценты. Она отделяет плодное яйцо от миометрия. В губчатом слое много желез, сохраняющихся до 6-го месяца беременности.

Капсулярная часть к 18-му дню беременности полностью смыкается над имплантированным плодным яйцом и отделяет его от полости матки. По мере роста плода капсулярная часть выпячивается в полость матки и к 16-й неделе внутриутробного развития срастается с пристеночной частью. При доношенной беременности капсулярная часть хорошо сохраняется и различима только в нижнем полюсе плодного яйца – над внутренним маточным зевом. Капсулярная часть не содержит поверхностного эпителия.

Пристеночная часть до 15-й недели беременности утолщается за счет компактной и губчатой зон. В губчатой зоне пристеночной части децидуальной оболочки железы развиваются до 8-й недели беременности. К моменту слияния пристеночной и капсулярной частей количество желез постепенно уменьшается, они становятся неразличимыми.

В конце доношенной беременности пристеночная часть децидуальной оболочки представлена несколькими слоями децидуальных клеток. С 12-й недели беременности поверхностный эпителий пристеночной части исчезает.

Клетки рыхлой соединительной ткани вокруг сосудов компактной зоны резко увеличены. Это молодые децидуальные клетки, которые по своему строению сходны с фибробластами. По мере дифференцировки размеры децидуальных клеток увеличиваются, они приобретают округлую форму, их ядра становятся светлыми, клетки более тесно прилегают друг к другу. К 4 – 6-й неделе беременности преобладают крупные светлые децидуальные клетки. Часть децидуальных клеток имеет костномозговое происхождение: по-видимому, они участвуют в иммунном ответе.

Функцией децидуальных клеток является продукция пролактина и простагландинов.
III.

Дифференцировка мезодермы

. В каждой мезодермальной пластинке, происходит дифференцировка ее на три части:
1) дорзсальную часть (сомиты);

2) промежуточную часть (сегментные ножки, или нефротомы);

3) вентральную часть (спланхиотому).

Дорзсальная часть утолщается и подразделяется на отдельные участки (сегменты) – сомиты. В свою очередь, в каждом сомите выделяют три зоны:

1) периферическую зону (дерматому);

2) центральную зону (миотому);

3) медиальную часть (склеротому).

По сторонам зародыша образуются туловищные складки, которые отделяют зародыш от внезародышевых органов.

Благодаря туловищным складкам кишечная энтодерма сворачивается в первичную кишку.

Промежуточная часть каждого мезодермального крыла также сегментируется (за исключением каудального отдела – нефрогенной ткани) на сегментные ножки (или нефротомы, нефрогонотомы).

Вентральная часть каждого мезодермального крыла не сегментируется. Она расщепляется на два листка, между которыми располагается полость – целом, и носит название «спланхиотома». Следовательно, спланхиотома состоит из:

1) висцерального листка;

2) париентального листка;

3) полости – целома.
IV.

Дифференцировка эктодермы

. Наружный зародышевый листок дифференцируется на четыре части:
1) нейроэктодерму (из нее разминается нервная трубка и ганглиозная пластинка);

2) кожная эктодерма (развивается эпидермис кожи);

3) переходная пластика (развивается эпителий пищевода, трахеи, бронхов);

4) плакоды (слуховая, хрусталиковая и др.).
V.

Дифференцировка энтодермы

. Внутренний зародышевый листок подразделяется на:
1) кишечную (или зародышевую), энтодерму;

2) внезародышевую (или желточную), энтодерму.

Из кишечной энтодермы развиваются:

1) эпителий и железы желудка и кишечника;

2) печень;

3) поджелудочная железа.
Органогенез
Развитие подавляющего большинства органов начинается с 3 – 4-й недели, т. е. с конца 1-го месяца существования зародыша. Органы образуются в результате перемещения и сочетания клеток и их производных, нескольких тканей (например, печень состоит из эпителиальной и соединительной тканей). При этом клетки разных тканей оказывают индуктивное влияние друг на друга и тем самым обеспечивают направленный морфогенез.
Критические периоды в развитии человека
В процессе развития нового организма существуют такие периоды, когда весь организм или его отдельные клетки, органы и их системы являются наиболее чувствительными к экзогенным и эндогенным факторам среды. Такие периоды принято называть критическими, так как именно в это время в них могут произойти изменения, которые в дальнейшем приведут к нарушению нормального развития и к формированию аномалий – нарушений нормального анатомического строения органов без нарушения их функций, пороков – нарушений анатомического строения органов с нарушением их функций, уродств – выраженных анатомических нарушений структуры органов, с нарушением их функций, часто несовместимым с жизнью.

Критическими периодами в развитии человека являются следующие:

1) гаметогенез (спермато– и овогенез);

2) оплодотворение;

3) имплантация (7 – 8-е сутки);

4) плацентация и закладка осевых комплексов (3 – 8-я неделя);

5) стадия усиленного роста головного мозга (15 – 20-я неделя);

6) формирование полового аппарата и других функциональных систем (20 – 24-я неделя);

7) рождение ребенка;

8) период новорожденности (до 1 года);

9) период полового созревания (11 – 16 лет).

В эмбриогенезе критические периоды для определенных групп клеток возникают тогда, когда происходит формирование эпигенома и осуществляется детерминация, предопределяющая дальнейшую дифференцировку клеток в определенном направлении и формирование органов и тканей. Именно в этот период различные химические и физические воздействия могут привести к нарушению формирования естественного эпигенома, т. е. к образованию нового, что детерминирует клетки к развитию в новом, необычном направлении, приводящем к развитию аномалий, пороков и уродств.

К неблагоприятным факторам относятся курение, прием алкоголя, наркомания, вредные вещества, содержащиеся в воздухе, питьевой воде, продуктах питания, некоторые лекарственные препараты. В настоящее время в связи с экологической обстановкой нарастает число новорожденных с различными указанными выше отклонениями.


Тема 8. ОБЩИЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ ТКАНЕЙ
Ткань – исторически (филогенетически) сложившаяся система клеток и неклеточных структур, обладающая общностью строения, а иногда и происхождения и специализированная на выполнении определенных функций. Ткань – это новый (после клеток) уровень организации живой материи.

Структурные компоненты ткани: клетки, производные клеток, межклеточное вещество.
Характеристика структурных компонентов ткани
Клетки – основные, функционально ведущие компоненты тканей. Практически все ткани состоят из нескольких типов клеток. Кроме того, клетки каждого типа в тканях могут находиться на разных этапах зрелости (дифференцировки). Поэтому в ткани различают такие понятия, как клеточная популяция и клеточный дифферон.

Клеточная популяция – это совокупность клеток данного типа. Например, в рыхлой соединительной ткани (самой распространенной в организме) содержится:

1) популяция фибробластов;

2) популяция макрофагов;

3) популяция тканевых базофилов и др.

Клеточный дифферон (или гистогенетический ряд) – это совокупность клеток данного типа (данной популяция), находящихся на различных этапах дифференцировки. Исходными клетками дифферона являются стволовые клетки, далее идут молодые (бластные) клетки, созревающие клетки и зрелые клетки. Различают полный дифферон или неполный в зависимости от того, находятся ли в тканях клетки всех типов развития.

Однако ткани – это не просто скопление различных клеток. Клетки в тканях находятся в определенной взаимосвязи, и функция каждой из них направлена на выполнение функции ткани.

Клетки в тканях оказывают влияние друг на друга или непосредственно через щелевидные контакты (нексусы) и синапсы, или на расстоянии (дистантно) посредством выделения различных биологически активных веществ.

Производные клеток:

1) симпласты (слияние отдельных клеток, например мышечное волокно);

2) синцитий (несколько клеток, соединенных между собой отростками, например сперматогенный эпителий извитых канальцев семенника);

3) постклеточные образования (эритроциты, тромбоциты).

Межклеточное вещество – также продукт деятельности определенных клеток. Межклеточное вещество состоит из:

1) аморфного вещества;

2) волокон (коллагеновых, ретикулярных, эластических).

Межклеточное вещество неодинаково выражено в разных тканях.
Развитие тканей в онтогенезе (эмбриогенезе) и филогенезе
В онтогенезе различают следующие этапы развития тканей:

1) этап ортотопической дифференцировки. На этом этапе зачатки будущих определенных тканей локализуются сначала в определенных участках яйцеклетки и затем – зиготы;

2) этап бластомерной дифференцировки. В результате дробления зиготы презумптивные (предположительные) зачатки тканей оказываются локализованными в разных бластомерах зародыша;

3) этап зачатковой дифференцировки. В результате гаструляции предположительные зачатки тканей локализуются в определенных участках зародышевых листков;

4) гистогенез. Это процесс преобразования зачатков тканей и ткани в результате пролиферации, роста, индукции, детерминации, миграции и дифференцировки клеток.

Имеется несколько теорий развития тканей в филогенезе:

1) закон параллельных рядов (А. А. Заварзин). Ткани животных и растений разных видов и классов, выполняющие одинаковые функции, имеют сходное строение, т. е. развиваются они параллельно у животных различных филогенетических классов;

2) закон дивергентной эволюции (Н. Г. Хлопин). В филогенезе происходит расхождение признаков тканей и появление новых разновидностей ткани в пределе тканевой группы, что приводит к усложнению животных организмов и появлению разнообразия тканей.
Классификации тканей
Имеется несколько подходов к классификации тканей. Общепринятой является морфофункциональная классификация, в соответствии с которой выделяют четыре тканевые группы:

1) эпителиальные ткани;

2) соединительные ткани (ткани внутренней среды, опорнотрофические ткани);

3) мышечные ткани;

4) нервную ткань.
Тканевой гомеостаз (или поддержание структурного постоянства тканей)
Состояние структурных компонентов тканей и их функциональная активность постоянно изменяются под воздействием внешних факторов. Прежде всего отмечаются ритмические колебания структурно-функционального состояния тканей: биологические ритмы (суточные, недельные, сезонные, годичные). Внешние факторы могут вызывать адаптивные (приспособительные) и дезадаптивные изменения, приводящие к распаду тканевых компонентов. Имеются регуляторные механизмы (внутритканевые, межтканевые, организменные), обеспечивающие поддержание структурного гомеостаза.
Внутритканевые регуляторные механизмы

обеспечиваются, в частности, способностью зрелых клеток выделять биологически активные вещества (кейлоны), угнетающие размножение молодых (стволовых и бластных) клеток этой же популяции. При гибели значительной части зрелых клеток выделение кейлонов уменьшается, что стимулирует пролиферативные процессы и приводит к восстановлению численности клеток данной популяции.

Межтканевые регуляторные механизмы

обеспечиваются индуктивным взаимодействием, прежде всего с участием лимфоидной ткани (иммунной системы) в поддержании структурного гомеостаза.

Организменные регуляторные факторы

обеспечиваются влиянием эндокринной и нервной систем.
При некоторых внешних воздействиях может нарушиться естественная детерминация молодых клеток, что может привести к превращению одного тканевого типа в другой. Такое явление носит название «метаплазия» и осуществляется только в пределах данной тканевой группы. Например, замена однослойного призматического эпителия желудка однослойным плоским.
Регенерация тканей
Регенерация – восстановление клеток, тканей и органов, направленное на поддержание функциональной активности данной системы. В регенерации различают такие понятия, как форма регенерации, уровень регенерации, способ регенерации.

Формы регенерации:

1) физиологическая регенерация – восстановление клеток ткани после их естественной гибели (например, кроветворение);

2) репаративная регенерация – восстановление тканей и органов после их повреждения (травм, воспалений, хирургических воздействий и т. д.).

Уровни регенерации:

1) клеточный (внутриклеточный);

2) тканевой;

3) органный.

Способы регенерации:

1) клеточный;

2) внутриклеточный;

3) заместительный.

Факторы, регулирующие регенерацию:

1) гормоны;

2) медиаторы;

3) кейлоны;

4) факторы роста и др.
Интеграция тканей
Ткани, являясь одним из уровней организации живой материи, входят в состав структур более высокого уровня организации живой материи – структурно-функциональных единиц органов и в состав органов, в которых происходит интеграция (объединение) нескольких тканей.

Механизмы интеграции:

1) межтканевые (обычно индуктивные) взаимодействия;

2) эндокринные влияния;

3) нервные влияния.

Например, в состав сердца входят сердечная мышечная ткань, соединительная ткань, эпителиальная ткань.


Тема 9. ЭПИТЕЛИАЛЬНЫЕ ТКАНИ

Характеристика эпителиальных тканей
Они образуют внешние и внутренние покровы организма.

Функции эпителиев:

1) защитная (барьерная);

2) секреторная;

3) экскреторная;

4) всасывательная.

Структурно-функциональные особенности эпителиальных тканей:

1) расположение клеток пластами;

2) расположение клеток на базальной мембране;

3) преобладание клеток над межклеточным веществом;

4) полярная дифференцированность клеток (на базальный и апикальный полюсы);

5) отсутствие кровеносных и лимфатических сосудов;

6) высокая способность клеток к регенерации.

Структурные компоненты эпителиальной ткани:

1) эпителиальные клетки (эпителиоциты);

2) базальная мембрана.

Эпителиоциты являются основными структурными элементами эпителиальных тканей.

Базальная мембрана (толщина около 1 мкм) состоит из:

1) тонких коллагеновых фибрилл (из белка коллагена четвертого типа);

2) аморфного вещества (матрикса), состоящего из углеводно-белково-липидного комплекса.

Функции базальной мембраны:

1) барьерная (отделение эпителия от соединительной ткани);

2) трофическая (диффузия питательных веществ и продуктов метаболизма из подлежащей соединительной ткани и обратно);

3) организующая (прикрепление эпителиоцитов с помощью полудесмосом).
Классификация эпителиальных тканей
Существуют следующие виды эпителия:

1) покровный эпителий;

2) железистый эпителий.

Генетическая классификация эпителиев (по Н. Г. Хлопину):

1) эпидермальный тип (развивается из эктодермы);

2) энтородермальный тип (развивается из энтодермы);

3) целонефродермальный тип (развивается из мезодермы);

4) эпендимоглиальный тип (развивается из нейроэктодермы);

5) ангиодермальный тип (или эндотелий сосудов, развивающийся из мезенхимы).

Топографическая классификация эпителия:

1) кожный тип (эпидермис кожи);

2) желудочно-кишечный;

3) почечный;

4) печеночный;

5) дыхательный;

1   2   3   4   5   6   7   8   9   ...   30


написать администратору сайта