Главная страница
Навигация по странице:

  • Характеристика Марки канифоли Сорт Высший 1-й 2-й Температура размягчения по Кремер Сарнову, °С, не менее 68 66 54

  • Количество золы, %, не более 0,3 0,4 0,5 Содержание механических примесей, %, не более 0,05 0,1 0,1 Электрические свойства канифоли: pv =

  • Физико-химические свойства шеллака Плотность .................1,04 –1,08 Водопоглощаемость ........около 5%

  • Число омыления.............194 –215 Йодное число..................10 –20 Электрические свойства: p =

  • 2. Твердые органические диэлектрики.

  • 3. Полимеризационные синтетические полимеры

  • Фторорганические полимеры.

  • Кремнийорганические полимеры

  • 4. Поликонденсационные синтетические полимеры.

  • Фенолформальдегидные смолы.

  • Кремнийорганические смолы.

  • Ссмолы. 1. Природные смолы. К природным (естественным) смолам


    Скачать 43.47 Kb.
    Название1. Природные смолы. К природным (естественным) смолам
    АнкорСсмолы
    Дата06.10.2022
    Размер43.47 Kb.
    Формат файлаdocx
    Имя файлаref-547221.docx
    ТипДокументы
    #719193

    1. Природные смолы.
    К природным (естественным) смолам принадлежат продукты жизнедеятельности животных или растительных организмов. Из естественных смол в производстве электроизоляционных лаков и компаундов наиболее широко применяется канифоль, значительно меньше шеллак и копалы. Природные растительные смолы получают упариванием растительных соков, которые вытекают из растений естественным путем или при надрезании стеблей и стволов. Их можно экстрагировать из растительного сырья такими растворителями, как спирт и эфир. К растительным смолам относится, например, сосновая канифоль, а также смола, получаемая из клубней скаммонии (вьюнка смолоносного Convolvulus scammony), и ископаемые окаменелые смолы янтарь и копал. Смолы животного происхождения редки. Одна из них, шеллак, представляет собой выделения лаковых червецов, живущих на растениях семейства мимозовых в Индии. Некоторые растительные смолы используют в медицине; так, смола скаммонии применяется как слабительное. Другие смолы, например, шеллак, входят в состав политур. Имеется множество сортов синтетических смол, используемых для получения пластмасс.

    Канифоль (гарпиус)— хрупкая прозрачная в тонком слое смола, получаемая из смолы (живицы) хвойных деревьев, преимущественно сосны, способом отгонки жидких составных частей — терпентинного масла (скипидара). Состав живицы может колебаться в зависимости от условий местности и сорта живицы. Другой способ добывания канифоли — экстракционный, заключающийся в том, что куски дерева, пни, ветви обрабатываются растворителями, которые затем подвергаются разгонке. Существуют также смолы деревьев других хвойных пород, например, кедра, пихты и лиственницы. Их обычно называют бальзамами. Пихтовый бальзам (канадский бальзам), отличается очень высокой степенью прозрачности и нормированным показателем преломления. Его применяют в качестве клея для склеивания оптических линз. По химическому составу канифоль состоит главным образом из абиетиновой кислоты (С 20 Н 30 О 2 ) и ее изомеров, остальное — неомыляемые, зола, влага и механические примеси. Содержание кислот в канифоли составляет 85 –90%. Канифоль хорошо растворима в спирте, бензоле, скипидаре, минеральных и растительных маслах.
    Характеристика Марки канифоли

    Сорт Высший 1-й 2-й

    Температура размягчения по Кремер Сарнову, °С, не менее 68 66 54

    Кислотное число, мг/КОН, не более 168 166 150

    Количество неомыляемых, %, не более 6 8 10

    Количество влаги, %, не более 0,3 0,3 0,4

    Количество золы, %, не более 0,3 0,4 0,5

    Содержание механических примесей, %, не более 0,05 0,1 0,1

    Электрические свойства канифоли:

    pv =10 15 * 15 17 Ом * см; Епр =10 …15кВ/мм.
    При нагревании выше температуры плавления значительно увеличивается проводимость и tg δ. Канифоль применяется в чистом виде для изготовления заливочных кабельных масс, пропиточных компаундов, искусственных копалов и модификации полиэфирных смол. Чаще всего канифоль применяется в виде различных препаратов: эфира гарпиуса (глицериновый эфир канифоли) и резинатов, представляющих собой соли абиетиновых кислот (марганцовые, кобальтовые, кальциевые и др.). Введение в состав электроизоляционных лаков больших количеств канифоли значительно снижает их влаго и водостойкость и способствует размягчению при повышенных температурах. О канифоли создается впечатление, как о хорошем диэлектрике. И многие заблуждаются, читая вышеуказанные характеристики. Но это не так: во-первых, ее реальное объемное сопротивление на три порядка меньше указанных расчетных значений, во-вторых, она совершенно не устойчива к воздействию атмосферной влаги: гидролизуется и омыляется. Поэтому она может использоваться только в герметичных электроизоляционных конструкциях, в силовых кабелях и т.д. Об этом приходится говорить, поскольку некоторые технологи, заблуждаясь, оставляют канифоль на платах после пайки, не смывая ее, ссылаясь на вышеуказанные электроизоляционные характеристики. Не зная, что продукты ее гидролиза — коррозионная среда, разрушающая всю конструкцию. В настоящее время канифоль практически не используется в составе различных радиофлюсов, а заменяется ее синтетическими аналогами. Например, фенолформальдегидными смолами (новолаками).
    Шеллак.
    Шеллак получают из гуммилака, представляющего собой смолу, образующуюся на ветвях тропических растений вследствие укуса особого насекомого, которое, перерабатывая сок в своем организме, выделяет его в виде смолы, называемой гуммилаком. Главные места добычи гуммилака: Индия, Бирма, Малайские острова, Индонезия. Шеллак получают в виде чешуек — от светло-лимонного до темно-оранжевого цвета, в зависимости от степени очистки. По химическому составу шеллак состоит главным образом из эфиров алейритиновой (C16 H 32 O 5) и шеллоновой (C 15 H 20 O 5) жирных кислот. Торговый шеллак содержит шеллачной смолы 83 –86%, шеллачного воска 3 –6%, влаги до 2%, красящие вещества и другие примеси. При нагревании (до 35 °С) шеллак становится пластичным и при 80 °С плавится; продолжительный нагрев при 100 –110 °С приводит шеллак к потере способности плавиться и растворяться. Растворяется шеллак лучше всего в спирте, аммиаке, в растворах едких щелочей, соды, буры. Шеллак хорошо сплавляется с канифолью, глифталями, битумами и другими смолами.
    Физико-химические свойства шеллака

    Плотность .................1,04 –1,08

    Водопоглощаемость ........около 5%

    Температура размягчения....80 –90 °С

    Температура плавления ........110 °С

    Кислотное число...............75 –60

    Число омыления.............194 –215

    Йодное число..................10 –20

    Электрические свойства:

    p =10 15 10 16 Ом см, е =3,5,

    E =20 …30 кВ/мм, tg б =0,01
    Шеллак обычно применяется в виде спиртовых растворов (лаков) различной концентрации, а также в виде сухого порошка. В производстве электроизоляционных лаков шеллак применяется в ограниченном количестве; в виде порошка идет для изготовления некоторых марок коллекторного миканита.
    Копалы.
    Копалы представляют собой смолы, обычно ископаемые, растительного происхождения, добываемые главным образом в тропических странах, и обозначаются географическими названиями мест, где они добываются. В СНГ копалы имеются на Кавказе, на Дальнем Востоке и в Калининградской области на побережье Балтийского моря (янтарь). Копалы представляют собой твердые вещества в виде кусков различной формы, цвета и прозрачности, отличающиеся высокой температурой плавления. Янтарь обладает наивысшей твердостью и температурой плавления по сравнению с другими ископаемыми смолами. Янтарь, почти нерастворим ни в каких растворителях. Температура его размягчения 175 –200 °С, температура плавления — выше 300 °С. Расплавленный янтарь растворяется в скипидаре, сероуглероде, бензине и маслах. Янтарь имеет очень высокие диэлектрические свойства, особенно высокое сопротивление изоляции, что делает его ценным диэлектриком для изготовления электроизмерительных приборов.

    Электрические свойства янтаря следующие:

    р=10 19 Ом/см; е =2,8;tg б =0,001.

    Янтарь нужно выделить как самый лучший природный диэлектрик. Его до сих пор используют в электрометрах и электретах. Спиртовой раствор янтаря — хороший флюс, остатки которого действительно не нужно смывать, если платы потом не лакируют. Его остатки — диэлектрик. Для изготовления подобных флюсов вполне можно применять «несортовой », так называемый технический янтарь. Нерастворимые в спирте примеси легко отделяются методом центрифугирования с дальнейшей фильтрацией. В дополнение к микропористым фильтрам идут также ионообменные смолы, которые осуществляют еще более тонкую очистку. В производстве электроизоляционных лаков копалы ранее очень широко применялись для изготовления высококачественных масляно-копаловых лаков. В связи с развитием промышленности синтетических смол они потеряли свое значение, и применение их очень ограничено.
    2. Твердые органические диэлектрики.
    К органическим диэлектрикам относятся материалы, в составе которых находится углерод. В качестве добываемые преимуще­ственно в Африке и Юго-Восточной Азии. Раньше благодаря растворимости в растительных маслах они довольно широко применялись в производстве электроизоляционных лаков, сейчас практически вытеснены синтетическими полимерами. Я Янтарь - также ископаемая смола, добываемая в России, обладающая очень высокими электрическими параметрами: удельное сопротивление органических диэлектриков в промышленности при­меняют как природные, так и синтетические полимеры, которые получают методом химического синтеза. Часто их называют смо­лами. Открытие синтетических полимеров сыграло большую роль в развитии многих отраслей, в том числе электротехники и радио­электроники. Большинство органических диэлектриков представляют собой высокомолекулярные вещества, которые содержат очень большое число атомов или простейших молекул. Основу многих высокомо­лекулярных диэлектриков составляют полимерные соединения, которые получают из мономеров (низкомолекулярных соединений) в процессе реакций полимеризации или поликонденсации.

    Полимеризация - это процесс соединения большого числа моно­меров с образованием нового высокомолекулярного вещества (по­лимера) без выделения побочных продуктов реакции.

    Поликонденсация - это процесс соединения разнородных моно­меров с образованием полимера и выделением побочного продук­та реакции. Свойства полимеров определяются химическим составом, вза­имным расположением атомов и строением макромолекул. По стро­ению макромолекулы полимеров делятся на линейные (нитевидные) и пространственные (сетчатые). Линейные полимеры представляют собой сочетание звеньев одной определенной структуры. Сочетание двух или трех химичес­ки различных звеньев образуют полимеры, которые называют со­вмещенными или сополимерами. Линейные полимеры относят к термопластичным материалам. Они обладают следующими свойствами: температура размягчения 50...120°С, сравнительно высокий температурный коэффициент объемного расширения ТКР, невысокая теплостойкость, легко де­формируются при нагревании и затвердевают при охлаждении, име­ют аморфную структуру и при нагревании плавно переходят из твер­дого состояния в жидкое или текучее.

    Электрические свойства линейных полимеров зависят от рас­положения атомов или определенной группы атомов в цепи мак­ромолекулы. Линейные полимеры с несимметричным строением атомов являются полярными и имеют большие диэлектрические потери. Линейные полимеры с симметричным строением мономе­ров являются неполярными и имеют малые диэлектрические по­тери. Большинство материалов на основе линейных полимеров имеют аморфную структуру и при нагревании плавно переходят из твердого состояния в жидкое или текучее. Некоторые полиме­ры склонны к образованию кристаллов, т. е. способны кристалли­зоваться. В пространственных полимерах макромолекулы связаны поперечными химическими связями. Пространственные полимеры относятся к термореактивным ма­териалам. Они обладают следующими свойствами: большая жест­кость, чем у линейных полимеров; при нагревании не размягчают­ся; не гибкие; не способны образовывать пленки и волокна; не ра­створяются в растворителях. По тепловым свойствам полимеры подразделяют на термоплас­тичные и термореактивные. Термопластичные материалы (термопласты) характеризу­ются тем, что нагревание до температуры, соответствующей плас­тическому состоянию, не вызывает необратимых изменений их свойств . Они тверды при достаточно низких температурах, но при нагревании становятся пластичными и легко деформируются. В настоящее время термопластичные материалы составляют при­мерно 75% всех потребляемых мировой электротехнической про­мышленностью полимерных материалов. В термореактивных (термоотверждающихся) материалах при достаточной выдержке при высокой температуре происходят необратимые процессы, в результате которых они теряют способ­ность плавится и растворяться, становясь твердыми и механически прочными.

    3. Полимеризационные синтетические полимеры
    Полимеризационные синтетические полимеры получают в про­цессе полимеризации под действием теплоты, давления, ультрафи­олетовых лучей, а также инициаторов и катализаторов. При поли­меризации двойные и тройные связи мономеров разрываются и молекулы, соединяясь между собой, еще больше удлиняются. Наибольшее распространение получили блочный, эмульсион­ный, лаковый и газовый способы полимеризации.

    Блочный способ полимеризации состоит в том, что предва­рительно очищенный от примесей жидкий мономер смешивают с катализатором, заливают в нагретую до определенной температу­ры форму и выдерживают при этой температуре до полного окон­чания процесса полимеризации. В результате получают твердые бло­ки материала, которые поступают в дальнейшую переработку. Таким способом получают полистирол, полиметилметакрилат (оргстекло).

    Эмульсионный способ полимеризации представляет собой процесс, при котором исходный жидкий мономер с помощью эмульгатора­ (Эмульгатор – это вещество, способствующее образованию эмульсий; эмульгаторами являются мыла, желатины и многие синтетические вещества.) превращают и мельчайшие капельки, взвешенные и другой жидкости, которая не растворяет этот мономер (вода, бензин и др.). В полученную эмульсию (Эмульсия – это жидкость, в которой находятся во взвешенном состоянии микроскопические капельки другой жидкости.) вводят инициатор (Инициатор – это зачинатель цепной химической или ядерной реакции в результате внешнего воздействия на систему.) и массу нагревают до температуры, при которой начинается химическая реакция. В про­цессе полимеризации эмульсию постоянно перемешивают. В резуль­тате получают порошкообразный полимер, незначительно загряз­ненный эмульгатором, что снижает его диэлектрические свойства. Затем порошок подвергают грануляции. Таким способом получают поливинилхлорид, нитрон. Лаковый способ полимеризации осуществляется непосред­ственно в мономере, который растворяется в определенном раство­рителе. Таким способом получают поливинилацетат. При газовом способе полимеризация осуществляется в газо­вой фазе в присутствии катализатора при температуре примерно 200°С и высоком давлении. Этот способ применяют в том случае, когда мономеры не полимеризуются ни по одному из перечислен­ных способов. Таким способом получают полиэтилен высокого давления. К полимеризационным синтетическим полимерам относятся полимерные углеводороды, фторорганические полимеры, кремний­органические полимеры (полисилоксаны). Полимерные углеводороды. К ним относят полистирол, полипро­пилен, полиэтилен, поливинилхлорид (ПВХ), винипласт, полиме­тилметакрилат (оргстекло) и др.

    Полистирол - твердый прозрачный материал, неполярный диэлектрик с высокими электроизоляционными свойствами. Он яв­ляется продуктом полимеризации мономерного стирола в присут­ствии различных инициаторов (перекисей, гидроперекисей). По способу получения полистирол делится на блочный и эмуль­сионный. Полистирол обладает следующими свойствами: температура размягчения т раз =110... 120 °С; теплостойкость по Мартенсу 78...80°С; низкая гигроскопичность; водостоек; малое значение тан­генса угла диэлектрических потерь tgδ; устойчив к воздействию ней­тронов и у-лучей; не растворяется в спиртах, парафиновых углево­дородах; стоек к действию щелочей и ряда кислот. К недостаткам полистирола относят: хрупкость при пониженных температурах; склонность к старению с образованием трещин; ра­створимость в ароматических углеводородах (бензоле, толуоле), хло­роформе, концентрированной кислоте; невысокую нагревостойкость. Теплостойкость и механическую прочность полистирола повы­шают сополимеризацией стирола с другими мономерами и совме­щением его с каучуками. Сополимеры стирола обладают более вы­сокой теплостойкостью и механической прочностью, но их диэлек­трические свойства хуже.

    Полистирол - один из лучших высокочастотных диэлектриков. Он применяется для изготовления каркасов индуктивных катушек, корпусов радиоприемников и телевизоров, плат переключателей, для изоляции кабелей и конденсаторов. Из блочного размягченного полистирола способом вытягива­ния получают электроизоляционные нити и гибкие полистироль­ные пленки. Полистирольная пленка для радиодеталей должна быть прозрачной, без поверхностных загрязнений, пор, изломов, цара­пин и трещин. Детали из полистирола получают литьем под давлением; прес­сованием и механической обработкой. После изготовления детали подвергают термообработке при температуре 70...80°С в течение. 2... 3 ч, а затем медленно охлаждают для снятия внутренних напря­жений и предупреждения образования трещин. Полиэтилен - твердый белый или светло-серый материал без запаха, неполярный диэлектрик, полученный в результате реакции полимеризации газа этилена. Электроизоляционные, свойства так же высоки, как и у полисти­ролов, но отличаются высокой стабильностью. В отличие от поли­стирола полиэтилены содержат значительное количество кристал­лической фазы. Полиэтилен обладает следующими свойствами: высокая моро­зостойкость (сохраняет гибкость при температуре -70°С); высо­кая влагостойкость, не гигроскопичен; устойчив к действию креп­ких кислот (кроме азотной), щелочей и многих растворителей; при комнатной температуре не растворим ни в одном растворителе; стоек к плесени; газонепроницаем; стоек к истиранию и вибраци­ям; в пламени горит и оплавляется; предельная рабочая темпера­тура 100°С (прочность начинает уменьшаться только при нагре­вании выше 60°С). К недостаткам полиэтилена относят: тепловое старение приводит к образованию трещин на поверхности изделий; при нагревании до температуры 80°С и выше растворяется в ароматических и хлорированных углеводородах; под действием концентрированной серной кислоты чернеет, а в концентрированной азотной даже при комнатной температуре набухает, увеличиваясь в массе на 4,6% в течение 85 сут.; под воздействием тепла, ультрафиолетового излучения, кислорода воздуха стареет; и сильных электрических полях происходят структурные изменения, снижающие качество изоляции. Для получения электроизоляционного материала с необходимы­ми свойствами смешивают полиэтилен трех разновидностей друг с другом или с другими полимерами, а также подвергают ионизиру­ющему облучению. Благодаря высоким электроизоляционным свойствам полиэти­лен широко применяется как конструкционный материал для изго­товления каркасов катушек, деталей, работающих в цепях высокой частоты. Полиэтиленовые пленки толщиной от 0,02 до 0,2 мм при­меняются при изготовлении кабелей и проводов. В микроэлектро­нике применяют полиэтиленовые трубы в качестве соединительных шлангов, в установках для очистки различных газов, а также тру­бопроводов для подачи и разлива особо чистой воды и для изго­товления посуды для хранения, транспортировки жидких неорга­нических химикатов. Известны три основных промышленных метода получения полиэтилена: полимеризация этилена при давлении примерно 300 МПа и тем­пературе примерно 200°С; в присутствии инициаторов (кислорода, органических перекисей). Полученный таким методом полиэтилен называют полиэтиленом высокого давлении. Он содержит 55...67 % кристаллической фазы и выпускается бесцветным и окрашенным; полимеризация этилена при давлении 0,3...0,6 МПа и температу­ре примерно 80°С в присутствии металлоорганических катализато­ров. Полученный полиэтилен низкого давления содержит 75...85°/о кристаллической фазы и имеет более высокие механические свойства и более высокую температуру плавления, чем полиэтилен высокого давления; полимеризация этилена при давлении 40 атм. и температуре при­мерно 150°С с использованием катализаторов оксидов металлов пе­ременной валентности. Полученный полиэтилен среднего давления обладает наиболее упорядоченной структурой и содержит до 95% кристаллической фазы.

    Одним из основных методов изготовления изделий из полиэти­лена является литье под давлением при температуре 150...180°С. Пластины, блоки, листы и стержни из полиэтилена легко поддаются механической обработке резанием, сверлением, фрезерованием на станках, применяемых для обработки металлов.

    Полипропилен - линейный неполярный полимер, получен­ный полимеризацией газа пропилена аналогично полимеризации этилена низкого давления...Он обладает такими же электроизоляционными свойствами, как полиэтилен. Полипропилен имеет температуру размягчения 160...170°С (выше, чем у полиэтилена); повышенную температуру плавления т пл. до 200 °С; водостойкость; хорошие механические свойства; более хорошую холодостойкость и гибкость, чем полиэтилен; эластич­ность (удлинение при разрыве 500...700%). Полипропилен применяют как комбинированный бумажно-пле­ночный диэлектрик в силовых конденсаторах, как пленочный ди­электрик в обмоточных проводах Полипропилен перерабатывает­ся в изделии теми же способами, что и полиэтилен; его выпускают в виде порошка, гранул, из него могут быть получены пленки, волок­на, ткани и фасонные изделия.

    Поливинилхлорид (ПBX) -- белый мелкодисперсный по­рошок. Линейный полярный полимер, полученный в результате полимеризации газообразного мономера винилхлорида в присутствии эмульгаторов (желатина, поливинилового спирта) и инициаторов (перекиси водорода, перекиси ацетилена). Вследствие полярного строения поливинилхлорид имеет пони­женные электрические свойства по сравнению с неполярными, но удельное электрическое сопротивление почти не изменяется при по­вышении температуры до 90°С. Поливинилхлорид не растворяется в воде, бензине, спирте; раство­ряется в дихлорэтане и метиленхлориде; набухает в ацетоне и бензоле.

    При нагревании выше 140°С под действием света поливинил­хлорид разлагается с выделением хлористого водорода. Выделяю­щийся газ вредно действует на организм человека и вызывает кор­розию аппаратуры.

    Этот процесс сопровождается изменением физико-механических свойств: снижается прочность, относительное удлинение при раз­рыве; повышается хрупкость, приводящая к появлению трещин; меняется цвет.

    В зависимости от способа полимеризации изготавливают сус­пензионный (Это дисперсная система, состоящая из двух фаз – жидкой и твердой, где мелкие твердые частицы взвешены в жидкости) и латексный (Это сок каучуковых растений с содержанием до 30% каучука. В промышленности используют также синтетические латексы – водяные дисперсии синтетического каучука.) поливинилхлориды.

    Суспензионный поливинилхлорид выпускают для кабельного светотермостойкого изоляционного материала, для кабельного пластиката и для изготовления винипласта.

    Винипласт - твердый, не содержащий пластификатора полимер, который получают горячим прессованием порошкообразного или пленочного поливинилхлорида.

    Винипласт обладает следующими свойствами: предельная рабо­чая температура 80°С; устойчив к действию бензина, масел, спиртов­, фенола; до температуры 40°С устойчив к действию концентри­рованных кислот, щелочей, растворов coлeй, хлора; высокая проч­ность на удар; хорошая механическая прочность; низкая гигроско­пичность; хорошие электроизоляционные свойства; низкая холодостойкость­; низкая теплостойкость. Винипласт перерабатывается в изделия ударным прессованием при температуре 165 °С, механической обработкой, сваркой, склеи­ванием. Пленки из винипласта применяют для изоляции водопогружен­ных электродвигателей, разделения катодных и анодных пластин, в аккумуляторных батареях и другой электрической аппаратуре, работающей в условиях повышенной влажности и воздействии кислот. В качестве конструкционного материала винипласт используют для изготовления гальванических ванн, кислотостойкой посуды (ем­костей для хранения кислот, воронок для слива отработанных кис­лот, щелочей и др.). Латексный поливинилхлорид используют для изготовления прочных пластиков, мягкой пленки, технической пасты и изоляци­онных изделий. Свойства поливинилхлоридов можно изменять в широких пре­делах, вводя различные добавки: пластификаторы, стабилизаторы, наполнители, красители, получая пластикаты. С увеличением со­держания пластификатора в композиции прочность пластикатов уменьшается, относительное удлинение увеличивается; а диэлект­рические свойства ухудшаются, однако они обладают более высо­кой холодостойкостью (до --50°С) и большой эластичностью.

    Поливинилхлоридный пластикат применяют для изготовления пленок, изоляционных лент, монтажных и телефонных проводов, трубок, в качестве специальных светотермостойких изоляционных и шланговых материалов. При воздействии электрической дуги поливинилхлорид выделяет большое количество газообразных про­дуктов, что способствует гашению дуги.

    Полиметилметакрилат (оргстекло, плексиглас) - про­зрачный бесцветный материал, полярный диэлектрик, который по­лучают в результате полимеризации эфиров метакриловой кислоты. Полиметилметакрилат имеет малую гигроскопичность, высокую химическую стойкость; легко сваривается в специальных устрой­ствах при температуре 140...150°С с применением давления на сва­риваемые поверхности 0,5...1,0 МПа, склеивается полярными ра­створителями. Применяют органическое стекло для изготовления корпусов приборов, шкал, линз, а также в качестве дугогасящего материала, так как оно обладает свойством выделять при воздействии элект­рической дуги большое количество газов (СО, Н2, СО2, пары H20).

    Фторорганические полимеры. Одним из существенных недостат­ков органических синтетических полимеров является пониженная теплостойкость. Для большинства органических полимеров допус­тимые рабочие температуры от --60 до + 1200С. Углерод, составля­ющий основу органических полимеров, на воздухе, а тем более при нагревании, может окисляться, что приводит к разрушению поли­мера. Для повышения теплостойкости в качестве основы для органических полимеров используют кроме углерода фтор, кремний, титан и др. Наибольшее распространение получили фторорганические (фторопласты) и кремнийорганические полимеры (полиси­локсаны).

    Фторопласты - кристаллические полимеры фторпроизвод­ных этилена, где атомы водорода замещены фтором. Введение в мо­лекулу полимера фтора, который прочно связывается с углеродом, повышает теплостойкость и химическую стойкость получаемого ма­териала. Их получают и автоклавах полимеризацией газообразных низкокипящих мономеров при повышенном давлении.

    В радиоэлектронике наиболее часто используют фторопласт-4

    (политетрафторэтилен) и фторопласт-3 (политрифторхлорэтилен).

    Фторопласт-4 - белый или сероватый материал с более вы­сокой плотностью, чем у других органических полимеров. Цифра 4 указывает на число атомов фтора в молекуле мономера. Он выпус­кается также под названием фторлон-4, а за рубежом - под на­званием тефлон. Фторопласт-4 обладает следующими свойствами: рабочий диа­пазон температур от-250 до +250°С; высокие диэлектрические свой­ства, мало зависящие от температуры; хорошие вакуумные свой­ства; наиболее химически стойкий материал из всех известных по­лимеров (его устойчивость к химическому воздействию выше, чем у золота, платины, стекла, фарфора, эмали, т. е. тех материалов, которые применяют для защиты от коррозии в самых сильнодей­ствующих агрессивных средах; не смачивается водой и не набухает в ней; не растворяется ни в одном растворителе; не горит; по элект­роизоляционным свойствам принадлежит к лучшим из известных диэлектриков; абсолютно стоек в тропических условиях и не под­вержен действию грибков. К недостаткам фторопласта-4 относят: выделение ядовитого га­зообразного фтора в результате разложения при температуре выше 400°С, низкую радиационную стойкость, сложную технологию пе­реработки, высокую стоимость, сравнительную мягкость и склонность к хладотекучести.

    Из фторопласта-4 изготавливают тонкие конденсаторные и элек­троизоляционные пленки толщиной 5...200 мкм. В зависимости от способа изготовления выпускаются ориентированные и неориен­тированные пленки. В радиоэлектронике из фторопласта изготав­ливают химическую посуду для выполнения технологических опе­раций в агрессивных средах; в оснастке для температурных испы­таний, так как он хорошо переносит резкую смену температур в широком диапазоне; в вакуумных вентилях.

    Фторопласт-3 (политрифторхлорэтилен) - полимер трихлорэтилена, в результате замены в элементарном звене одного атома фтора на атом хлора превращается в полярный диэ­лектрик. Фторопласт-3 обладает следующими свойствами: нижний пре­дел рабочей температуры 195 °С; более высокие механические свой­ства, чем у фторопласта-4; влагостойкость выше, чем у фтороплас­та-4; нагревостойкость ниже, чем у фторопласта-4, составляет 125°С; уступает фторопласту-4 по электрическим свойствам; высокая хи­мическая стойкость, но ниже, чем у фторопласта-4; влагостоек; вы­сокая дугостойкость; технология получения проще, чем фторопла­ста-4; дешевле фторопласта-4. Выпускается в вице тонкого порошка белого цвета или полупроз­рачного роговидного поделочного материала. Применяется главным образом в виде суспензий для антикорро­зионных покрытий. Спиртовые суспензии фторопласта-3 исполь­зуют для получения покрытий на металлах (и том числе и на меди) и керамике. Эти покрытия сохраняют свои свойства при темпера­туре выше 100°С. Изоляция проводов и кабелей из фторопласга-3 позволяет эксплуатировать их при температуре 150 °С во влажных и агрессивных средах.

    Кремнийорганические полимеры (полисилок­саны) представляют собой материалы, которые являются проме­жуточным звеном между органическими и неорганическими мате­риалами. В их состав кроме характерного для органических поли­меров углерода С входит кремний Si. Основу строения их молекул образует силоксанная цепь чередующихся атомов кремния и кислорода. Кремнийорганические полимеры могут быть термопластичны­ми с линейным строением и термореактивными с образованием пространственных структур. Энергии силоксановой связи Si -- О больше, чем энергия связи между двумя атомами углерода С - С, что и определяет более высокую нагревостойкость кремнийорга­нических полимеров по сравнению с большинством из рассмотрен­ных. Атом кремния, связанный с кислородом, не может окисляться дальше, поэтому молекулы образовавшегося полимера при нагре­вании не распадаются и вещество обладает повышенной нагревостойкостью­.

    Кремнийорганические полимеры обладают следующими харак­теристиками: высокие электроизоляционные свойства; дугостой­кость; теплостойкость (способны длительно выдерживать темпера­туру до 200 °С и кратковременно до температуры 5000С); водостой­кость (гидрофобность), не смачиваются водой, так как образуют на поверхности тончайшую пленку, которая не впитывается и не пропускает воду; устойчивость к действию грибковой плесени; мо­розостойкость; плохая адгезия (Это слипание поверхностей двух разнородных твердых тел или жидкостей) к большинству других материалов; низкая маслостойкость; достаточно высокая стоимость.

    В зависимости от исходных веществ и технологии изготовления получают кремнийорганические пластмассы, клеи, лаки, компаунды.

    4. Поликонденсационные синтетические полимеры.
    В реакции поликонденсации участвуют не менее двух химичес­ких веществ. В результате образуются полимеры пространственной структуры, из которых получают прочные и теплостойкие термо­реактивные материалы. Продуктами поликонденсации являются: фенолформальдегидные, полиэфирные, эпоксидные и полиамидные смолы.

    Фенолформальдегидные смолы. Фенолформальдегидные смолы получают путем поликонденсации фенола в водном растворе фор­мальдегида при температуре 70...90°С в присутствии катализатора (кислоты или щелочи). Они могут быть термореактивными и тер­мопластичными.

    Важнейшей особенностью фенолформальдегидных смол является их способность в сочетании с различными наполнителями образо­вывать фенопласты , которые обладают следующими свойствами: высокая прочность, хорошие электроизоляционные свойства, спо­собность длительное время функционировать при высоких темпе­ратурах, способность функционировать в любых климатических условиях.Фенолформальдегидные смолы способны совмещаться со мно­гими полимерами и образовывать сополимеры, которые обладают свойствами фенопласта и всеми положительными качествами со­вмещенного с ним компонента.

    Эти смолы подразделяют на резольные и новолачные.Если процесс ведут с избытком формальдегида в присутствии щелочи, то получают смолу, которая называется бакелитовой. Она может находиться в трех стадиях: резол (находится в твердом или жидком состоянии, может растворяться в органических раствори­телях и плавиться); резитол (твердая смола, не растворяется в орга­нических растворителях, но набухает в них; не плавится, но может размягчаться при повышении температуры); резит (твердая смола, не набухает в растворителях, не плавится, обладает механической прочностью, хорошими электроизоляционными свойствами, устой­чива в водных и слабокислых средах, бензине, маслах).

    Резольные смолы - термореактивные материалы, полярные диэлектрики. Применяются для изготовления таких слоистых пла­стиков, как текстолит, гетинакс; для композиционных пресс-мате­риалов (фенопластов); трубок, клеев и других материалов. Если процесс ведут с избытком фенола в присутствии кислых катализаторов (соляной или щавелевой кислоты), то получают твер­дые, хрупкие, прозрачные термопластичные смолы, которые назы­вают новолаками. Новолаки термопластичны, плавятся при нагревании до темпе­ратуры 100...120°С; растворяются в спирте, ацетоне и других орга­нических растворителях. Они имеют невысокие электроизоляционные свойства, особен­но во влажной атмосфере; низкую стойкость к искровым разрядам. Новолачные смолы отличаются друг от друга содержанием фе­нола (от 2 до 9%). При добавлении 10...15%-го уротропина они пе­реходят в термореактивный резит. Применяют для изготовления корпусов приборов, плат, разъ­емов, различных кнопок и ручек управления радиоаппаратуры, лака и как заменитель шеллака (Это смола, выделяемая насекомыми, обитающими на побегах некоторых тропических растений; применяется для изготовления лаков и политур.).

    Полиэфирные смолы. Полиэфирные смолы получают в резуль­тате реакции поликонденсации различных многоатомных спиртов (гликоля, глицерина и др.) и многоосновных органических кислот (фталевой, малеиновой и др.) или их ангидридов. По физическим свойствам они близки к природным смолам (канифоль, шеллак). Из полиэфирных смол наибольшее распространение получили лав­сановая смола (полиэтилентетрафталат), глифталевая смола, поли­карбонаты.

    Лавсановую смолу (полиэтилентетрафталат, лавсан) получают поликонденсацией терефталевой кислоты и этиленгликоля. Он является термопластичным диэлектриком кристаллического или аморфного строения. В результате реакции поликонденсации терефталевой кислоты и этиленгликоля при медленном охлаждении образуется непрозрач­ный кристаллический лавсан (кристаллическая фаза до 7.5°/о). Кристаллический лавсан имеет высокую температуру плавления 265°С; высокую механическую прочность в широком диапазоне тем­ператур; хорошие электроизоляционные свойства; стоек к действию слабых щелочей, соляной кислоты, эфиров, масел, жиров, плесени и грибков; не устойчив к действию крепкой азотной и серной кислот, фенола, хлора; светопроницаемость пленки такая же, как у стекла, а также имеет малые гигроскопичность и газопроницаемость. Кристаллический лавсан стареет под действием солнечных лучей. Лавсан кристаллического строения применяют для изготовле­ния волокон, пряжи, тканей, тонких электроизоляционных пленок. Волокна и пленки используют для изоляции проводов и кабелей. Лавсановая конденсаторная пленка обладает высокой электричес­кой прочностью и повышенной нагревостойкостью. В результате реакции поликонденсации терефталевой кислоты, этиленгликоля, глицерина к отвердителя (бутилтитаната) при быс­тром охлаждении получают прозрачный аморфный лавсан. Аморфный лавсан используют при изготовлении эмалирован­ных проводов, при производстве электроизоляционных лаков. Плен­ки лавсановых лаков термореактивны, т. е. не размягчаются при нагревании.

    Глифталевую смолу получают из простейшего трехатом­ного спирта глицерина и избыточного количества фталевого ан­гидрида при температуре 150...200°С в алюминиевых котлах. Это термореактивные смолы с ярко выраженными дипольно-релакса­ционными потерями. Глифталевые смолы обладают следующими свойствами: высо­кая нагревостойкость, до температуры 130°С, высокая гибкость, достаточно высокая твердость, высокая клеящая способность, ра­створимость в органических растворителях, размягчаются при на­гревании, повышенная гигроскопичность при неполной полимери­зации, стойкость к поверхностным разрядам. Применяют как основу для клеящих, пропиточных и покрывных лаков, пленки которых стойки к нагретому минеральному маслу; для изготовления лаков, пластмасс, клеев.

    Поликарбонаты - это полиэфиры угольной кислоты. По­ликарбонаты имеют хорошие электрические и механические свой­ства, относительно высокую температуру размягчения (кристалли­ческий поликарбонат размягчается при температуре 140°С), хоро­шую химическую стойкость, невысокую гигроскопичность. Применяют поликарбонаты для изготовления слоистых пласти­ков, компаундов, пленок для изоляции в электрических машинах.

    Кремнийорганические смолы. Кремнийорганические полимеры (смолы) с пространственной структурой являются термореактивны­ми (см. 5.2.1).

    Кремнийорганические смолы обладают высокой нагревостой­костью до температуры +250°С', высокой холодостойкостью до тем­пературы -60°С; хорошими диэлектрическими свойствами, кото­рые мало зависят от температуры; малой гигроскопичностью; хи­мической инертностью. В промышленности кремнийорганические смолы применяют для изготовления электроизоляционных материалов, таких как стекло­текстолиты, слюдяная изоляция, компаунды, кремнийорганический лак, покрывные эмали, резиностеклоткани и др.

    Эпоксидные смолы. Эпоксидные смолы получают в результате хлорирования глицеринов с двухатомными или многоатомными фенолами в щелочной среде. В структуре эпоксидных смол содер­жится не менее двух эпоксидных групп, в результате связывания которых происходит их отвердение. В чистом виде эпоксидные смолы представляют собой термопла­стичные низкоплавкие жидкие материалы, которые легко раство­ряются во многих органических растворителях (ацетоне, толуоле, хлорированных углеводородах и др.), не растворяются в воде, мало растворяются в спиртах, длительно хранятся, не изменяя свойств. После добавления отвердителей эпоксидные смолы быстро от­вердевают, приобретая пространственное строение. Отвердевание проходит в результате реакции полимеризации без выделения по­бочных продуктов (воды и других низкомолекулярных веществ). Отвердевшие эпоксидные смолы являются термореактивными и могут образовывать толстый слой монолитной, водонепроницае­мой изоляции. В зависимости от типа отвердителя эпоксидные смо­лы могут отвердевать при комнатной температуре («холодное от­вердение» ) или с использованием нагревания от 80 до 150 °С, а так­же при атмосферном или повышенном давлении. Для холодного используют азотосодержащие вещества, а для отверде­ния при нагревании - ангидриды органических кислот. Выбор от­вердителя влияет на свойства отвердевшей эпоксидной смолы. Отвердевшие, эпоксидные смолы обладают сравнительно неболь­шой усадкой, примерно 0,5...2%; высокой адгезией к пластмассам, стеклам, фарфору, металлам; нагревостойкостью выше, чем у крем­нийорганических смол; механическими свойствами выше, чем у кремнийорганических смол стоимостью меньшей, чем кремнийор­ганические смолы. Применяют для изготовления лаков, клеев, за­ливочных компаундов. Многие эпоксидные смолы токсичны и могут вызывать кожные заболевания, при работе с ними необходимо соблюдать правила техники безопасности. Отвердевшие эпоксидные смолы уже не ока­зывают на организм человека вредного воздействия.


    написать администратору сайта