Главная страница

Модемы. 1. Введение 1 Последовательный асинхронный адаптер 1


Скачать 81.5 Kb.
Название1. Введение 1 Последовательный асинхронный адаптер 1
АнкорМодемы
Дата26.01.2022
Размер81.5 Kb.
Формат файлаdoc
Имя файлаМодемы.doc
ТипПротокол
#342453
страница2 из 6
1   2   3   4   5   6

2.1. Аппаратная реализация


Компьютер может быть оснащен одним или двумя портами последовательной передачи данных. Эти порты расположены либо на материнской плате, либо на отдельной плате, вставляемой в слоты расширения материнской платы.

Бывают также платы, содержащие четыре или восемь портов последовательной передачи данных. Их часто используют для подключения нескольких компьютеров или терминалов к одному, центральному компьютеру. Эти платы имеют название "мультипорт".

В основе последовательного порта передачи данных лежит микросхема INTEL 8250 или ее современные аналоги - INTEL 16450,16550,16550A. Эта микросхема является универсальным асинхронным приемопередатчиком (UART - Universal Asynchronous Receiver Transmitter). Микросхема содержит несколько внутренних регистров, доступных через команды ввода/вывода.

Микросхема 8250 содержит регистры передатчика и приемника данных. При передаче байта он записывается в буферный регистр передатчика, откуда затем переписывается в сдвиговый регистр передатчика. Байт "выдвигается" из сдвигового регистра по битам.

Программа имеет доступ только к буферным регистрам, копи­рование информации в сдвиговые регистры и процесс сдвига выпол­няется микросхемой UART автоматически.

К внешним устройствам асинхронный последовательный порт подключается через специальный разъем. Существует два стандарта на разъемы интерфейса RS-232-C, это DB-25 и DB-9. Первый имеет 25, а второй 9 выводов.

Разводка разъема DB25

Номер контакта

Назначение контакта

(со стороны компьютера)

Вход или выход

1

2

3

4

5

6

7

8

9-19

20

21

22

23-25

Защитное заземление (Frame Ground, FG)

Передаваемые данные (Transmitted Data, TD)

Принимаемые данные (Received Data,RD)

Запрос для передачи (Request to send, RTS)

Сброс для передачи (Clear to Send, CTS)

Готовность данных (Data Set Ready, DSR)

Сигнальное заземление (Signal Ground, SG)

Детектор принимаемого с линии сигнала (Data Carrier Detect, DCD)

Не используются

Готовность выходных данных

(Data Terminal Ready, DTR)

Не используется

Индикатор вызова (Ring Indicator, RI)

Не используются

Разводка разъема DB9

-

Выход

Вход

Выход

Вход

Вход

-

Вход

Выход

Вход




Номер контакта

Назначение контакта

(со стороны компьютера)

Вход или выход

1

2

3

4

5

6

7

8

9

Детектор принимаемого с линии сигнала (Data Carrier Detect, DCD)

Принимаемые данные (Received Data, RD)

Передаваемые данные (Transmitted Data, TD)

Готовность выходных данных

(Data Terminal Ready, DTR)

Сигнальное заземление (Signal Ground, SG)

Готовность данных (Data Set Ready, DSR)

Запрос для передачи (Request to send, RTS)

Сброс для передачи (Clear to Send, CTS)

Индикатор вызова (Ring Indicator, RI)

Вход

Вход

Выход

Выход

-

Вход

Выход

Вход

Вход

Интерфейс RS-232-C определяет обмен между устройствами двух типов : DTE (Data Terminal Equipment - терминальное устройство) и DCE (Data Communication Equipment - устройство связи). В большинстве случаев, но не всегда, компьютер является терминальным устройством. Модемы, принтеры, графопостроители всегда являются устройствами связи.

Сигналы интерфейса RS-232-C

Входы TD и RD используются устройствами DTE и DCE по-разному. Устройство DTE использует вход TD для передачи данных, а вход RD для приема данных. И наоборот, устройство DCE использует вход TD для приема, а вход RD для передачи данных. Поэтому для соединения терминального устройства и устройства связи выводы их разъемов необходимо соединить напрямую.

Подтверждение связи

Рассмотрим процесс подтверждения связи между компьютером и модемом. В начале сеанса связи компьютер должен удостоверится, что модем может произвести вызов (находится в рабочем состоянии). Затем, после вызова абонента, модем должен сообщить компьютеру, что он произвел соединение с удаленной системой. Подробнее это происходит следующим образом.

Компьютер подает сигнал по линии DTR, чтобы показать модему, что он готов к проведению сеанса связи. В ответ модем подает сигнал по линии DSR. Когда модем произвел соединение с другим, удаленным модемом, он подает сигнал по линии DCD, чтобы сообщить об этом компьютеру.

Если напряжение на линии DTR падает, это сообщает модему, что компьютер не может далее продолжать сеанс связи, например из-за того, что выключено питание компьютера. В этом случае модем прервет связь. Если напряжение на линии DCD падает, это сообщает компьютеру, что модем потерял связь и не может больше продолжать соединение. В этом случае эти сигналы дают ответ на наличие связи между модемом и компьютером.

Существует более высокий уровень, который используется для управления скоростью обмена данными, но он также реализуется аппаратно. Практически управление скоростью обмена данными (управление потоком) необходимо, если производится передача больших объемов данных с высокой скоростью. Когда одна система пытается передать данные с большей скоростью, чем они могут быть обработаны принимающей системой, результатом может стать потеря части передаваемых данных. Чтобы предотвратить передачу большего числа данных, чем то, которое может быть обработано, используют управление связью, называемое "управление потоком".

Стандарт RS-232-C определяет возможность управления потоком только для полудуплексного соединения, при котором в каждый момент времени данные могут передаваться только в одну сторону.

Фактически этот механизм используется и для дуплексных соединений, когда данные передаются по линии связи одновременно в двух направлениях.

Управление потоком

В полудуплексных соединениях устройство DTE подает сигнал RTS, когда оно желает передать данные. DCE отвечает сигналом по линии CTS, когда оно готово, и DTE начинает передачу данных. До тех пор, пока оба сигнала RTS и CTS не примут активное состояние, только DCE может передавать данные.

При дуплексных соединениях сигналы RTS/CTS имеют значения противоположные тем, которые они имели для полудуплексных соединений.

Когда DTE может принять данные, он подает сигнал по линии RTS. Если при этом DCE готово для принятия данных, оно возвращает сигнал CTS. Если напряжение на линиях RTS и CTS падает, то это сообщает передающей системе, что получающая система не готова для приема данных.

Однако на практике не все так просто. Соединить компьютер и модем не составляет труда, т.к. интерфейс RS-232-C как раз для этого и предназначен. Но если вы захотите связать вместе два компьютера при помощи такого же кабеля, который вы исполь­зовали для связи модема и компьютера, то у вас возникнут проблемы. Для соединения двух терминальных устройств - двух компьютеров - как минимум необходимо перекрестное соединение линий TR и RD. Однако часто этого недостаточно, т.к. для устройств DTE и DCE функции, выполняемые линиями DSR, DTR, DCD, CTS, RTS асимметричны.

Устройство DTE подает сигнал DTR и ожидает получения сиг­налов DSR и DCD. В свою очередь, устройство DCE подает сигналы DSR, DCD и ожидает получения сигнала DTR. Таким образом, если соединить вместе два устройства DTE кабелем, который вы использовали для соединения устройств DTE и DCE, то они не смогут договориться друг с другом.

Теперь перейдем к сигналам RTS и CTS, управления потоком данных. иногда для соединения двух устройств DTE эти линии соединяют вместе на каждом конце кабеля. В результате получаем то, что другое устройство всегда готово для получения данных. Поэтому, если при большой скорости передачи принимающее устройство не успевает принимать и обрабатывать данные, возможна потеря данных.

Чтобы решить все эти проблемы для соединения двух устройств типа DTE используется специальный кабель, в обиходе называемый нуль-модемом.

Технические параметры интерфейса RS-232-C

При передаче данных на большие расстояния без использования специальной аппаратуры из-за помех, наводимых электромагнитными полями, возможно возникновение ошибок. Вследствие этого накладываются ограничения на длину соединительного кабеля между устройствами DTR-DTR и DTR-DCE.

Официальное ограничение по длине для соединительного кабеля по стандарту RS-232-C составляет 15,24 метра. Однако на практике это расстояние может быть значительно больше. Оно непосредственно зависит от скорости передачи данных.

110бод - 1524м / 914,4м

300бод - 1524м / 914,4м 1200бод - 914,4м / 914,4м 2400бод - 304,8м / 152,4м 4800бод - 304,8м / 76,2м 9600бод - 76,2м / 76,2м

Первое значение - скорость передачи в Бодах, второе - максимальная длина для экранированного кабеля, третье - максимальная длина для неэкранированного кабеля.

Уровни напряжения на линиях разъема составляют для логического нуля -15..-3 вольта, для логической единицы +3..+15 вольт. Промежуток от -3 до +3 вольт соответствует неопределенному значению.
1   2   3   4   5   6


написать администратору сайта