Главная страница

2. Технические средства реализации информационных процессов Представление информации в технических устройствах


Скачать 390.5 Kb.
Название2. Технические средства реализации информационных процессов Представление информации в технических устройствах
Дата06.06.2019
Размер390.5 Kb.
Формат файлаdoc
Имя файла_2.doc
ТипДокументы
#80651
страница4 из 6
1   2   3   4   5   6

2.6.Архитектуры вычислительных систем сосредоточенной обработки информации


Современный компьютер состоит из нескольких функциональных узлов: процессор, память, контроллеры устройств и т.д. Каждый узел представляет собой сложное электронное устройство, в состав которого может входить миллионы логических элементов. Для лучшего понимания принципа работы каждого узла и компьютера в целом вводится понятие уровней представления компьютера.

Цифровой логический уровень – уровень логических схем базовой системы элементов.

Микроархитектурный уровень – уровень организации обработки информации внутри функционального узла. Сюда относятся регистры различного назначения, устройство обработки поступающих команд, устройство преобразования данных, устройство управление.

Командный уровень – набор функциональных узлов и связи между ними, система команд и данных, передаваемых между устройствами.

Набор блоков, связей между ними, типов данных и операций каждого уровня называется архитектурой уровня.

Архитектура командного уровня называется обычно компьютерной архитектурой или компьютерной организацией. В этом разделе мы рассмотрим различные компьютерные архитектуры. Архитектуры других уровней будут рассмотрены в следующих разделах.

2.6.1.Архитектуры с фиксированным набором устройств


Компьютерами с сосредоточенной обработкой называются такие вычислительные системы, у которых одно или несколько обрабатывающих устройств (процессоров) расположены компактно и используют для обмена информацией внутренние шины передачи данных. Компьютеры первого и второго поколения имели архитектуру закрытого типа с ограниченным набором внешнего оборудования. Такая архитектура характерна для компьютеров, базовая система логических элементов которых построена на дискретных электронных компонентах (электронных лампах, транзисторах). Введение любого дополнительного функционального блока в такие архитектуры был сопряжён с увеличением потребляемой мощности, занимаемой площади и резко увеличивал стоимость всей системы. Поэтому компьютер, выполненный по этой архитектуре, не имел возможности подключения дополнительных устройств, не предусмотренных разработчиком.

Укрупнённая схема такой компьютерной архитектуры приведена на рис. 2.9. Оперативная память хранит команды и данные исполняемых программ, АЛУ обеспечивает не только числовую обработку, но и участвует в процессе ввода-вывода информации, осуществляя её занесение в оперативную память. Канал ввода/вывода представляет собой специализированное устройство, работающее по командам, подаваемым устройством управления. Канал допускает подключение определённого числа внешних устройств. Устройство управления обеспечивает выполнение команд программы и управляет всеми узлами системы.

Компьютеры такой архитектуры эффективны при решении чисто вычислительных задач. Они плохо приспособлены для реализации компьютерных технологий, требующих подключения дополнительных внешних устройств и высокой скорости обмена с ними информацией.

2.6.2.Вычислительные системы с открытой архитектурой


В начале 70-х годов фирмой DEC (DigitalEquipmentCorporation) был предложен компьютер совершенно иной архитектуры. Эта архитектура позволяла свободно подключать любые периферийные устройства, что сразу же заинтересовало разработчиков систем управления различными техническими системами, так как обеспечивало свободное подключение к компьютеру любого числа датчиков и исполнительных механизмов. Главным нововведением являлось подключение всех устройств, независимо от их назначения, к общей шине передачи информации. Подключение устройств к шине осуществлялось в соответствии со стандартом шины. Стандарт шины являлся свободно распространяемым документом, что позволяло фирмам производителям периферийного оборудования разрабатывать контроллеры для подключения своих устройств к шинам различных стандартов. А
рхитектура компьютера открытого типа, основанная на использовании общей шины, приведена на рис. 2.10. Общее управление всей системой осуществляет центральный процессор. Он управляет общей шиной, выделяя время другим устройствам для обмена информацией. Запоминающее устройство хранит исполняемые программы и данные и согласовано уровнями своих сигналов с уровнями сигналов самой шины. Внешние устройства, уровни сигналов которых отличаются от уровней сигналов шины, подключаются к ней через специальное устройство – контроллер. Контроллер согласовывает сигналы устройства с сигналами шины и осуществляет управление устройством по командам, поступающим от центрального процессора. Контроллер подключается к шине специальными устройствами – портами ввода-вывода. Каждый порт имеет свой номер, и обращения к нему процессора происходит, так же как и к ячейке памяти, по этому номеру. Процессор имеет специальные линии управления, сигнал на которых определяет, обращается ли процессор к ячейке памяти или к порту ввода-вывода контроллера внешнего устройства.

Несмотря на преимущества, предоставляемые архитектурой с общей шиной, она имеет и серьёзный недостаток, который проявлялся всё больше при повышении производительности внешних устройств и возрастании потоков обмена информацией между ними. К общей шине подключены устройства с разными объёмами и скоростью обмена, в связи с чем "медленные" устройства задерживали работу "быстрых". Дальнейшее повышение производительности компьютера было найдено во введении дополнительной локальной шины, к которой подключались "быстрые" устройства. Архитектура компьютера с общей и локальной шиной приведена на рис. 2.11.

Контроллер шины анализирует адреса портов, передаваемые процессором, и передаёт их контрол­леру, подключённому к общей или локальной шине.

Конструктивно, контроллер каждого устройства размещается на общей плате с цен­т­ральным процессором и запоминающим устройством или, если устройство не является стандартно входящим в состав компьютера, на специальной плате, вставляемой в специ­альные разъёмы на общей плате – слоты расширения. Дальнейшее развитие микроэлектроники позволило размещать несколько функциональных узлов компьютера и контроллеры стандартных устройств в одной микросхеме СБИС. Это сократило количество микросхем на общей плате и дало возможность ввести две дополнительные локальные шины для подключения запоминающего устройства и устройства отображения, которые имеют наибольший объём обмена с центральным процессором и между собой. Хотя архитектура компьютера осталась прежней, структура современного персонального компьютера имеет вид, представленный на рис. 2.12.

Центральный контроллер играет роль коммутатора, расп­ре­деляющего потоки информации между процессором, памятью, устройством отображения и остальными узлами компьютера. Кроме этого, в состав микросхемы центрального контроллера включены устройства, которые поддерживают работу компьютера. К ним относятся системный таймер; устройство прямого доступа к памяти, которое обеспечивает обмен данными между внешними устройствами и памятью в периоды, когда это не требуется процессору; устройство обработки прерываний, которое обеспечивает быструю реакцию процессора на запросы внешних устройств, имеющих данные для передачи.

Функциональный контроллер – это СБИС, которая содержит контроллеры для подключения стандартных внешних устройств, таких как клавиатура, мышь, принтер, модем и т.д. Часто в состав этого контроллера входит такое устройство, как аудио карта, позволяющая получить на внешних динамиках высококачественный звук при прослушивании музыкальных и речевых файлов.

Для подключения специфических устройств, часть общей шины, соединяющая центральный и функциональный контроллеры имеет слоты расширения для установки плат контроллеров.

2.6.3.Архитектуры многопроцессорных вычислительных систем


Персональные компьютеры позволяют реализовать многие компьютерные технологии, начиная от работы в Internet, и кончая построением анимационных трёхмерных сцен. Однако существуют задачи, объём вычислений которых превышает возможности персонального компьютера. Для их решений применяются компьютеры с гораздо более высоким быстродействием. Для получения высокого быстродействия на существующей элементной базе используются архитектуры, в которых процесс обработки распараллеливается и выполняется одновременно на нескольких обрабатывающих устройствах Существует три основных подхода к построению архитектур таких компьютеров: многопроцессорные, магистральные и матричные архитектуры.

Архитектура простых многопроцессорных систем выполняется по схеме с общей шиной. Два или более процессоров и один или несколько модулей памяти размещены на общей шине. Каждый процессор, для обмена с памятью, проверяет свободна ли шина и если она свободна он занимает её. Если шина занята, процессор ждёт, пока она освободится. При увеличении числа процессоров производительность системы будет ограничена пропускной способностью шины. Чтобы решить эту проблему каждый процессор снабжается собственной локальной памятью, как показано на рис. 2.13, куда помещаются тексты исполняемых программ и локальные переменные, обрабатываемые данным процессором. Общее запоминающее устройство используется для хранения общих переменных и общего системного программного обеспечения. При такой организации нагрузка на общую шину значительно снижается.

Один из процессоров выделяется для управления всей системой. Он распределяет задания на исполнение программ между процессорами и управляет работой общей шины.

Периферийный процессор осуществляет обслуживание внешних устройств при вводе и выводе информации из общей памяти. Он может быть того же типа что и остальные процессоры, но обычно устанавливается специализированный процессор, предназначенный для выполнения операций управления внешними устройствами.

Магистральный принцип является самым распространённым при построении высокопроизводительных вычислительных систем. Процессор такой системы имеет несколько функциональных обрабатывающих устройств, выполняющих арифметические и логические операции, и быструю регистровую память для хранения обрабатываемых данных. Данные, считанные из памяти, размещаются в регистрах и из них загружаются в обрабатывающие устройства. Результаты вычислений помещаются в регистры и используются, как исходные данные, для дальнейших вычислений. Таким образом, получается конвейер преобразования данных: регистры – обрабатывающие устройства – регистры – … . Архитектура магистрального суперкомпьютера приведена на рис. 2.14. Число функциональных устройств, показанных на рисунке, равно шести, "Сложение", "Умножение" и т.д., однако, в реальных системах их количество может быть иным. Устройство планирования последовательности выполнения команд распределяет данные, хранящиеся в регистрах, на функциональные устройства и производит запись результатов снова в регистры. Конечные результаты вычислений записываются в общее запоминающее устройство.

В матричной вычислительной системе процессоры объединяются в матрицу процессорных элементов. В качестве процессорных элементов могут использоваться универсальные процессоры, имеющие собственное устройство управления, или вычислители, содержащие только АЛУ и выполняющие команды внешнего устройства управления. Каждый процессорный элемент снабжён локальной памятью, хранящей обрабатываемые процессором данные, но при необходимости процессорный элемент может производить обмен со своими соседями или с общим запоминающим устройством. В первом случае, программы и данные нескольких задач или независимых частей одной задачи загружаются в локальную память процессоров и выполняются параллельно. Во втором варианте все процессорные элементы одновременно выполняют одну и ту же команду, поступающую от устройства обработки команд на все процессорные элементы, но над разными данными, хранящимися в локальной памяти каждого процессорного элемента. Вариант архитектуры с общим управлением показан на рис. 2.14. Обмен данными с периферийными устройствами выполняется через периферийный процессор, подключённый к общему запоминающему устройству.

2.6.4.Классификация компьютеров по сферам применения


Наиболее часто при выборе компьютера для той или иной сферы применения используется такая характеристика как производительность, под которой понимается время затрачиваемое компьютером для решения той или иной задачи. Понятие производительность определяет и некоторые другие характеристики компьютера, такие, например, как объём оперативной памяти. Вполне естественно, что компьютер с высокой скоростью обработки должен снабжаться большим объёмом оперативной памяти, так как иначе его производительность будет ограничена необходимостью подкачки информации из более медленной внешней памяти. Можно считать, что производительность является некоторой интегрированной характеристикой, определяющей общую вычислительную мощность компьютера, и, соответственно, области его применения.

По производительности компьютеры можно, условно, разбить на три класса:

суперкомпьютеры;

мэйнфреймы;

микрокомпьютеры.

Суперкомпьютеры – компьютеры с производительностью свыше 100 млн. операций в секунду. Применяются для решения таких задач как моделирование физических процессов, гидрометеорология, космические исследования и других задач, которые требуют огромных объёмов вычислений. Выполняются обычно по многопроцессорной архитектуре, имеют большой набор внешних устройств, и, как правило, выпускаются небольшими партиями для конкретной задачи или конкретного заказчика. Обычно, важность решаемой задачи такова, что основным параметром суперкомпьютера является его высокая производительность, а такие параметры как стоимость, размеры или вес не являются определяющими.

Мэйнфреймы – компьютеры с производительностью от10 до 100 млн. операций в секунду. Они используются для решения таких задач как хранение, поиск и обработка больших массивов данных, построение трёхмерной анимационной графики, создание рекламных роликов, выполняют роль узлов глобальной сети, используемой торговыми или компьютерными фирмами с большим потоком запросов. Выполняются по многопроцессорной архитектуре с общей шиной и небольшим числом мощных процессоров. Конструктивно выполняются в виде одной стойки или в настольном варианте. Стоимость мэйнфреймов колеблется от тридцати до трёхсот тысяч долларов.

Микрокомпьютеры – компактные компьютеры универсального назначения, в том числе и для бытовых целей, имеющие производительность до 10 млн. операций в секунду. Микрокомпьютеры или, как их ещё называют, персональные компьютеры можно классифицировать по конструктивным особенностям. Можно выделить стационарные (настольные) персональные компьютеры и переносные. Переносные, в свою очередь можно разделить на портативные (laptop), блокноты (notebook) и карманные (Palmtop). портативные компьютеры по размеру близки к обычному портфелю, они, в настоящее время, уступают место более компактным. Блокноты по размеру близки к книге крупного формата и имеют вес около трёх кг. Такие компьютеры имеют встроенные аккумуляторы, позволяющие работать в отсутствии сетевого напряжения. В настоящее время имеют полноцветные жидкокристаллические мониторы, не уступающие по качеству мониторам стационарных компьютеров. Карманные компьютеры в настоящее время являются самыми маленькими персональными компьютерами. Они не имеют внешней памяти на магнитных дисках, она заменена на энергонезависимую электронную память. Эта память может перезаписываться при помощи линии связи с настольным компьютером. Карманный компьютер можно использовать как словарь переводчик или записную книгу.
1   2   3   4   5   6


написать администратору сайта