2 Вертикальные углы равны верно
Скачать 33.11 Kb.
|
1) «Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны» — верно по признаку подобия треугольников. 2) «Вертикальные углы равны» — верно, это теорема планиметрии. 3) «Любая биссектриса равнобедренного треугольника является его медианой» — неверно, это утверждение справедливо только для равностороннего треугольника. 1) «Существует квадрат, который не является прямоугольником» — некорректное утверждение, корректное — «Существует прямоугольник, который не является квадратом». 2) «Если два угла треугольника равны, то равны и противолежащие им стороны» — верно, т. к. треугольник, два угла которого равны является равнобедренным, причём равные стороны лежат напротив равных углов. 3) «Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны» — верно, это теорема планиметрии. 1) «Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части» — верно по свойству равнобедренного треугольника. 2) «В любом прямоугольнике диагонали взаимно перпендикулярны» — неверно, это утверждение справедливо только для прямоугольника, у которого все стороны равны, то есть для квадрата. 3) «Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу» — верно, т. к. окружность — множество точек, находящихся на заданном расстоянии от данной точки. 1) «Центры вписанной и описанной окружностей равностороннего треугольника совпадают» — верно, т. к. совпадают точки пересечения биссектрис и серединных перпендикуляров этого треугольника. 2) «Существует квадрат, который не является ромбом» — неверно; верным будет утверждение: «Существует ромб, который не является квадратом». 3) «Сумма углов любого треугольника равна 180°» — верно по свойству треугольника. 1) «Если угол острый, то смежный с ним угол также является острым» — неверно, т. к. смежные углы в сумме составляют 180°. 2) «Диагонали квадрата взаимно перпендикулярны» — верно, т. к. квадрат — частный случай ромба. 3) «В плоскости все точки, равноудалённые от заданной точки, лежат на одной окружности» — верно, т. к. окружность — это множество точек, находящихся на заданном расстоянии от данной точки. 1) «Если три стороны одного треугольника пропорциональны трём сторонам другого треугольника, то треугольники подобны» — верно, по признаку подобия треугольников. 2) «Сумма смежных углов равна 180°» — верно по свойству смежных углов. 3) «Любая высота равнобедренного треугольника является его биссектрисой» — неверно, это утверждение справедливо только для равностороннего треугольника. 1) «Если угол равен 45°, то вертикальный с ним угол равен 45°» — верно, по теореме о вертикальных углах. 2) «Любые две прямые имеют ровно одну общую точку» — неверно, утверждение справедливо только для пересекающихся прямых. 3) «Через любые три точки проходит ровно одна прямая» — неверно, не всегда через три точки можно провести одну прямую. 4) «Если расстояние от точки до прямой меньше 1, то и длина любой наклонной, проведенной из данной точки к прямой, меньше 1.» — неверно, можно провести наклонную любой длины, большей, чем расстояние от точки до прямой, в том числе и наклонную длиной больше 1. 1) «Если при пересечении двух прямых третьей прямой соответственные углы равны 65°, то эти две прямые параллельны.» — верно, так как если соответственные углы равны, то прямые параллельны. 2) «Любые две прямые имеют не менее одной общей точки.» — неверно, две прямые имеют не более одной общей точки. 3) «Через любую точку проходит более одной прямой.» — верно, через одну точку проходит множество пересекающихся в этой точке прямых. 4) «Любые три прямые имеют не менее одной общей точки.» — неверно, любые три прямые, которые не совпадают, если и имеют общую точку, то только одну. 1) «Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы составляют в сумме 90°, то эти две прямые параллельны.» — неверно, если при пересечении двух прямых третьей прямой внутренние накрестлежащие углы равны, то эти две прямые параллельны. Если внутренние накрестлежащие углы составляют в сумме 90°, то они могут быть не равны. 2) «Если угол равен 60°, то смежный с ним равен 120°.» — верно, сумма смежных углов равна 180°. 3) «Если при пересечении двух прямых третьей прямой внутренние односторонние углы равны 70° и 110°, то эти две прямые параллельны.» — верно, если при пересечении двух прямых третьей прямой внутренние односторонние углы составляют в сумме 180°, то эти две прямые параллельны. 4) «Через любые три точки проходит не более одной прямой.» — верно, через три точки либо нельзя провести прямую, если они не лежат на одной линии, либо можно, но только одну. 1) «Вписанные углы, опирающиеся на одну и ту же хорду окружности, равны.» — неверно, вписанные углы, опирающиеся на одну и ту же хорду окружности, равны, если их вершины лежат по одну сторону от хорды. 2) «Если радиусы двух окружностей равны 5 и 7, а расстояние между их центрами равно 3, то эти окружности не имеют общих точек.» — неверно, окружности имеют две общие точки. 3) «Если радиус окружности равен 3, а расстояние от центра окружности до прямой равно 2, то эти прямая и окружность пересекаются.» — верно, если расстояние от центра окружности до прямой меньше радиуса, то прямая и окружность имеют две общие точки. 4) «Если вписанный угол равен 30°, то дуга окружности, на которую опирается этот угол, равна 60°.» — верно, вписанный угол измеряется половиной дуги,на которую он опирается. 1) «Через любые три точки проходит не более одной окружности.» — верно, Через любые три точки, не лежащие на одной прямой, проходит единственная окружность. Если точки лежат на одной прямой, то окружность провести невозможно. Тем самым, через любые три точки можно провести не более одной окружности. 2) «Если расстояние между центрами двух окружностей больше суммы их диаметров, то эти окружности не имеют общих точек.» — верно, если расстояние от центра до прямой меньше радиуса, то окружности имеют две общие точки, если окружности касаются то окружности имеют одну общую точку, если расстояние больше радиуса, то окружности не имеют общих точек. 3) «Если радиусы двух окружностей равны 3 и 5, а расстояние между их центрами равно 1, то эти окружности пересекаются» — неверно, окружность, радиус которой равен 3, лежит внутри окружности с радиусом 5. 4) «Если дуга окружности составляет 80°, то вписанный угол, опирающийся на эту дугу окружности, равен 40°.» — верно, вписанный угол измеряется половиной дуги,на которую он опирается. 1) «Сумма углов выпуклого четырехугольника равна 180°.» — неверно, сумма углов выпуклого n — угольника равна (n – 2)·180°. 2) «Если один из углов параллелограмма равен 60°, то противоположный ему угол равен 120°.» — неверно, в параллелограмме противоположные стороны и противоположные углы равны. 3) «Диагонали квадрата делят его углы пополам.» — верно, Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам, делят углы квадрата пополам. Таким образом, прямоугольные треугольники равны. 4) «Если в четырехугольнике две противоположные стороны равны, то этот четырехугольник — параллелограмм.» — неверно, если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник – параллелограмм. 1) «Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.» — верно, если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник. 2) «Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.» — верно, если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб. 3) «Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.» — неверно, стороны параллелограмма параллельны и образуют односторонние углы, а сумма односторонних углов равна 180°. 4) «Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.» — верно, сумма углов выпуклого четырехугольника равна 360°. 1) «Около всякого треугольника можно описать не более одной окружности.» — верно, oколо треугольника можно описать окружность, притом только одну. 2) «В любой треугольник можно вписать не менее одной окружности.» — верно, в любой треугольник можно вписать окружность. 3) «Центром окружности, описанной около треугольника, является точка пересечения биссектрис.» — неверно, центром описанной около треугольника окружности является точка пересечения серединных перпендикуляров треугольника. 4) «Центром окружности, вписанной в треугольник, является точка пересечения серединных перпендикуляров к его сторонам.» — неверно, центром вписанной в треугольник окружности является точка пересечения биссектрис треугольника. 1) «Около любого правильного многоугольника можно описать не более одной окружности.»— верно, около любого правильного многоугольника можно описать окружность, и притом только одну. 2) «Центр окружности, описанной около треугольника со сторонами, равными 3, 4, 5, находится на стороне этого треугольника.» — верно, треугольник с такими сторонами является прямоугольным, таким образом, центр окружности лежит на гипотенузе. 3) «Центром окружности, описанной около квадрата, является точка пересечения его диагоналей.» — верно, диагонали квадрата точкой пересечения делятся пополам, таким образом, центром окружности является точка пресечения диагоналей. 4) «Около любого ромба можно описать окружность.» — неверно, чтобы около четырёхугольника можно было описать окружность, необходимо, чтобы сумма противоположных углов четырёхугольника составляла 180°. Это верно не для любого ромба. 1) «Окружность имеет бесконечно много центров симметрии.»— неверно, плоская фигура обладает центральной симметрией, если она симметрична сама себе относительно центра 2) «Прямая не имеет осей симметрии.» — неверно, прямая имеет бесконечное число осей симметрии. 3) «Правильный пятиугольник имеет пять осей симметрии.» — верно, каждая ось симметрии любого правильного многоугольника с нечетным числом сторон проходит через вершину и середину противоположной стороны. 4) «Квадрат не имеет центра симметрии.» — неверно, центр симметрии квадрата является точка пересечения диагоналей. 1) «Правильный шестиугольник имеет шесть осей симметрии.»— верно, при четном количестве углов оси симметрии проходят через противоположные вершины и через середины противоположных сторон. 2) «Прямая не имеет осей симметрии.» — неверно, прямая имеет бесконечное число осей симметрии. 3) «Центром симметрии ромба является точка пересечения его диагоналей.» — верно, ромб является параллелограммом, а середина диагонали параллелограмма является его центром симметрии. 4) «Равнобедренный треугольник имеет три оси симметрии.» — неверно, у равнобедренного треугольника одна ось симметрии. 1) «Центром симметрии прямоугольника является точка пересечения диагоналей.» — верно, прямоугольник является параллелограммом, а середина диагонали параллелограмма является его центром симметрии. 2) «Центром симметрии ромба является точка пересечения его диагоналей.» — верно, ромб является параллелограммом, а середина диагонали параллелограмма является его центром симметрии. 3) «Правильный пятиугольник имеет пять осей симметрии.» — верно, при нечетном количестве углов каждая ось симметрии проходи через вершину и середину противоположной стороны. 4) «Центром симметрии равнобедренной трапеции является точка пересечения ее диагоналей.» — неверно, у равнобедренной трапеции нет точек симметрии. 1) «Если катет и гипотенуза прямоугольного треугольника равны соответственно 6 и 10, то второй катет этого треугольника равен 8.»— верно, по теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов. 2) «Любые два равнобедренных треугольника подобны.» — неверно, так как углы, заключенные между пропорциональными сторонами, не равны. 3) «Любые два прямоугольных треугольника подобны.» — неверно, так как нет второго равного угла. 4) «Треугольник ABC, у которого AB = 3, BC = 4, AC = 5, является тупоугольным.» — неверно, треугольник с такими сторонами является прямоугольным. 1) «Любые два прямоугольных треугольника подобны.» — неверно, так как нет второго равного угла. 2) «Если катет и гипотенуза прямоугольного треугольника равны соответственно 6 и 10, то второй катет этого треугольника равен 8.» — верно, по теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов. 3) «Стороны треугольника пропорциональны косинусам противолежащих углов.» — неверно, по теореме синусов стороны треугольника пропорциональны синусам противолежащих углов. 4) «Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.» — верно, по теореме косинусов. 1) «Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на синус угла между ними.» — неверно, квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними. 2) «Если катеты прямоугольного треугольника равны 5 и 12, то его гипотенуза равна 13.» — верно, по теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов. 3) «Треугольник ABC, у которого AB = 5, BC = 6, AC = 7, является остроугольным.» — верно, остроугольным называется треугольник у которого все углы меньше 90°. 4) «В прямоугольном треугольнике квадрат катета равен разности квадратов гипотенузы и другого катета.» — верно, по теореме Пифагора. 1) «Если площади фигур равны, то равны и сами фигуры.» — неверно, фигуры, у которых равны площади называются равновеликими, но не равными. 2) «Площадь трапеции равна произведению суммы оснований на высоту.» — неверно, площадь трапеции равна произведению полусуммы оснований на высоту. 3) «Если две стороны треугольника равны 4 и 5, а угол между ними равен 30°, то площадь этого треугольника равна 10.» — неверно, площадь треугольника равна 4) «Если две смежные стороны параллелограмма равны 4 и 5, а угол между ними равен 30°, то площадь этого параллелограмма равна 10.» — верно, площадь параллелограмма равна 1) «Площадь многоугольника, описанного около окружности, равна произведению его периметра на радиус вписанной окружности.» — неверно, площадь многоугольника равна произведению половине периметра на радиус вписанной окружности. 2) «Если диагонали ромба равна 3 и 4, то его площадь равна 6.» — верно, площадь ромба равна половине произведения диагоналей. 3) «Площадь трапеции меньше произведения суммы оснований на высоту.» — верно, площадь трапеции равна половине произведения суммы оснований на высоту. 4) «Площадь прямоугольного треугольника меньше произведения его катетов.» — верно, площадь прямоугольного треугольника равна половине произведения катетов. 1) «Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой» — верно, это аксиома планиметрии. 2) «Треугольник со сторонами 1, 2, 4 существует» — неверно: для того, чтобы существовал треугольник, сумма любых его двух сторон должна быть больше третьей стороны. 3) «Если в ромбе один из углов равен 90°, то такой ромб — квадрат.» — верно, в этом случае противоположный угол тоже будет равен 90°, а значит и два других (равных) угла будут равны по 90°. 4) «Центр описанной около треугольника окружности всегда лежит внутри этого треугольника.» — неверно, центр описанной вокруг прямоугольного треугольника окружности, лежит на его стороне. 1) Через любую точку проходит бесконечное множество прямых, следовательно, утверждение 1 верно. 2) Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны - верно, это признак параллельности прямых. В утверждении сказано, что соответственные углы равны 65°, следовательно, они равны друг другу, тогда прямые параллельны. 3) Накрест лежащие углы двух параллельных прямых, пересечённых третьей, равны. Утверждение 3 неверно: если в сумме углы составляют 90°, то они могут быть не равны, и тогда прямые не будут параллельными. 1) По признаку параллельности прямых, если при пересечении двух прямых третьей прямой соответственные углы равны, то эти две прямые параллельны. Утверждение 1 верно, поскольку если соответственные углы равны 37°, то они равны друг другу . 2) Через любые три точки проходит не более одной прямой. Утверждение верно, через любые три точки либо нельзя провести прямую, если они не лежат на одной прямой, либо можно провести одну прямую, если они лежат на одной прямой. 3) Вертикальные углы равны по построению, при этом их сумма равна 180°, только если эти углы прямые, утверждение 3 неверно. 1) «Площадь трапеции равна половине высоты, умноженной на разность оснований.» — неверно, площадь трапеции равна половине высоты, умноженной на сумму оснований. 2) «Через любые две точки можно провести прямую.» — верно, это аксиома геометрии. 3) «Через точку, не лежащую на данной прямой, можно провести единственную прямую, перпендикулярную данной прямой.» — верно, это теорема планиметрии. 1) «В любую равнобедренную трапецию можно вписать окружность.» — неверно, не в любую равнобедренную трапецию можно вписать окружность. 2) «Диагональ параллелограмма делит его углы пополам.» — неверно, диагональ параллелограмма делит его углы пополам только в том случае, когда параллелограмм является ромбом. 3) «Площадь прямоугольного треугольника равна половине произведения его катетов.» — верно, это теорема планиметрии. 1) «Вокруг любого треугольника можно описать окружность» — верно, по свойству треугольника. 2) «Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат» — верно; из всех параллелограммов только в квадрате диагонали равны и перпендикулярны одновременно. 3) «Площадь трапеции равна произведению средней линии на высоту» — верно, по свойству трапеции. 1) «Каждая из биссектрис равнобедренного треугольника является его медианой» — неверно, верным будет утверждение «Каждая из биссектрис равностороннего треугольника является его медианой». 2) «Диагонали прямоугольника равны» — верно, по свойству прямоугольника. 3) «У любой трапеции боковые стороны равны» — неверно, т. к. боковые стороны равны только у равнобедренной трапеции. 1) «Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны» — верно,по признаку параллельных прямых. 2) «Диагональ трапеции делит её на два равных треугольника» — неверно; верным будет утверждение: «Диагональ параллелограмма делит его на два равных треугольника». 3) «Если в ромбе один из углов равен 90° , то такой ромб — квадрат» — верно, т. к. если один из углов ромба равен 90°, то и остальные равны 90°. 1) «Смежные углы равны» — неверно, смежные углы и связаны соотношением: . 2) «Любые две прямые имеют ровно одну общую точку» — неверно, прямые могут также быть параллельны, тогда точек пересечения нет, или совпадать, тогда точек пересечения бесконечно много. 3) «Если угол равен 108°, то вертикальный с ним равен 108°» — верно по свойству вертикальных углов. 1) «Если угол равен 47°, то смежный с ним равен 153°» — неверно, сумма смежных углов равна 180°. 2) «Если две прямые перпендикулярны третьей прямой, то эти две прямые параллельны» — верно, по признаку параллельности прямых. 3) «Через любую точку проходит ровно одна прямая» — неверно через одну точку проходит бесконечное множество прямых. 1) «Любые три прямые имеют не более одной общей точки» — верно. Если прямые имеют две и более общих точек, то они совпадают. (См. комментарии к задаче.) 2) «Если угол равен 120°, то смежный с ним равен 120°» — неверно. Сумма смежных углов равна 180°. 3) «Если расстояние от точки до прямой больше 3, то и длина любой наклонной, проведённой из данной точки к прямой, больше 3» — верно. Т. к. расстояние — длина кратчайшего отрезка до прямой, а все наклонные — длиннее. 1) «При пересечении двух параллельных прямых третьей прямой сумма накрест лежащих углов равна 180°» — неверно, накрест лежащие углы равны. 2) «Диагонали ромба перпендикулярны» — верно, по свойству ромба. 3) «Центром окружности, описанной около треугольника, является точка пересечения его биссектрис» — неверно,верным будет утверждение: «Центром окружности, описанной около треугольника, является точка пересечения его серединных перпендикуляров». В ответ требуется записать номера неверных утверждений, следовательно, ответ — 13. 1) «Диагонали параллелограмма равны» — неверно, если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник, т. е. не у каждого параллелограмма диагонали равны. 2) «Площадь ромба равна произведению его стороны на высоту, проведённую к этой стороне» — верно, ромб — частный случай параллелограмма, а площадь параллелограмма равна a · h. 3) «Если две стороны и угол одного треугольника равны соответственно двум сторонам и углу другого треугольника, то такие треугольники равны» — неверно, нет такого признака равенства треугольников. Признак равенства треугольников звучит так: «Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны». 1) «Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов» — верно, для того, чтобы существовал треугольник, сумма любых его двух сторон должна быть больше третьей стороны. 2) «В тупоугольном треугольнике все углы тупые» — неверно: в тупоугольном треугольнике один тупой и два острых угла. 3) «Средняя линия трапеции равна полусумме её оснований» — верно. 1) «Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны» — неверно: такого признака равенства треугольников нет. 2) «Средняя линия трапеции параллельна её основаниям» — верно, по теореме о средней линии трапеции она параллельна основаниям и равна их полусумме. 3) «Длина гипотенузы прямоугольного треугольника меньше суммы длин его катетов» — верно, для того, чтобы существовал треугольник, сумма любых его двух сторон должна быть больше третьей стороны. 1) «Точка касания двух окружностей равноудалена от центров этих окружностей» — неверно: точка касания двух окружностей удалена от центра на величину радиуса каждой окружности. 2) «В параллелограмме есть два равных угла» — верно, в параллелограмме противоположные углы равны. 3) «Площадь прямоугольного треугольника равна произведению длин его катетов» — неверно: площадь прямоугольного треугольника равна половине произведения длин его катетов. 1) «Один из углов треугольника всегда не превышает 60 градусов» — верно, сумма всех углов в треугольнике равна 180°, значит, меньший угол в треугольнике . Следовательно, в любом треугольнике есть угол, не превышающий 60 градусов, а значит, один из углов любого треугольника не превышает 60 градусов. 2) «Диагонали трапеции пересекаются и делятся точкой пересечения пополам» — неверно. 3) «Все диаметры окружности равны между собой» — верно. 1) «Треугольника со сторонами 1, 2, 4 не существует» — верно, сторона треугольника не может быть больше суммы двух других. 2) «Сумма углов любого треугольника равна 360 градусам» — неверно, сумма углов любого треугольника равна 180 градусам. 3) «Серединные перпендикуляры к сторонам треугольника пересекаются в центре его описанной окружности» — верно, центр описанной окружности лежит в точке пересечения серединных перпендикуляров. 1) «Треугольника со сторонами 1, 2, 4 не существует» — верно, большая сторона треугольника должна быть меньше суммы двух других. 2) «Смежные углы равны» — неверно, смежные углы и связаны соотношением: . 3) «Все диаметры окружности равны между собой» — верно. 1) «Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой» — верно, это аксиома планиметрии. 2) «Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны» — неверно: например, могут быть квадрат и ромб с равной длиной стороны. 3) «Смежные углы равны» — неверно, смежные углы и связаны соотношением: . 1) «Все углы ромба равны» — неверно. Верно только в случае квадрата. 2) «Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны» — неверно. Стороны квадрата и ромба могут быть равны, однако такие четырёхугольники не равны. 3) «Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности» — верно. 1) «Диагональ трапеции делит её на два равных треугольника» — неверно; верным будет утверждение: «Диагональ параллелограмма делит его на два равных треугольника». 2) «Косинус острого угла прямоугольного треугольника равен отношению гипотенузы к прилежащему к этому углу катету» — неверно; верным будет утверждение: «Косинус острого угла прямоугольного треугольника равен отношению прилежащего к этому углу катета к гипотенузе». 3) «Расстояние от точки, лежащей на окружности, до центра окружности равно радиусу» — верно по определению 1) «Существуют три прямые, которые проходят через одну точку» — верно, так как через одну точку на плоскости можно провести бесконечное количество прямых. 2) «Боковые стороны любой трапеции равны» — неверно, боковые стороны равнобедренной трапеции равны. 3) «Сумма углов равнобедренного треугольника равна 180 градусам» — верно, сумма углов любого треугольника равна 180 градусам. 1) «Диагонали ромба точкой пересечения делятся пополам» — верно по свойству ромба. 2) «В тупоугольном треугольнике все углы тупые» — неверно, так как в тупоугольном треугольнике только один угол — тупой. 3) «Каждая из биссектрис равнобедренного треугольника является его высотой» — неверно, верным будет являться утверждение: «Каждая из биссектрис равностороннего треугольника является его высотой». 1) «Все высоты равностороннего треугольника равны» — верно, так как в равностороннем треугольнике все высоты равны между собой. 2) «Угол, вписанный в окружность, равен соответствующему центральному углу, опирающемуся на ту же дугу» — неверно, так как угол, вписанный в окружность, равен половине соответствующего центрального угла, опирающегося на ту же дугу. 3) «В любой ромб можно вписать окружность» — верно, так как суммы противоположных сторон ромба равны. 1) «Центр описанной около треугольника окружности всегда лежит внутри этого треугольника» — неверно, центр окружности, описанной вокруг прямоугольного треугольника, лежит на его стороне, а центр окружности, описанной вокруг тупоугольного треугольника, лежит вне этого треугольника. 2) «В параллелограмме есть два равных угла» — верно, в параллелограмме есть 2 пары равных углов. 3) «Площадь прямоугольного треугольника равна произведению длин его катетов» — неверно, площадь прямоугольного треугольника равна половине произведения длин его катетов. 1) «В прямоугольном треугольнике гипотенуза равна сумме катетов» — неверно, по теореме Пифагора в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. 2) «Всегда один из двух смежных углов острый, а другой тупой» — неверно, так как сумма смежных углов равна 180°, следовательно, если один из углов прямой, то смежный ему будет тоже прямой. 3) «Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности» — верно по свойству окружности. |