Главная страница
Навигация по странице:

  • Режимы работы транзистора

  • Схемы включения биполярного транзистора

  • В схеме с общим эмиттером

  • В схеме с общим коллектором

  • Биполярные транзисторы. 3. Биполярные транзисторы и тиристоры 1 Общие сведения о биполярном транзисторе Основные определения Биполярным транзистором


    Скачать 364.5 Kb.
    Название3. Биполярные транзисторы и тиристоры 1 Общие сведения о биполярном транзисторе Основные определения Биполярным транзистором
    АнкорБиполярные транзисторы.doc
    Дата17.01.2018
    Размер364.5 Kb.
    Формат файлаdoc
    Имя файлаБиполярные транзисторы.doc
    ТипДокументы
    #14340
    КатегорияЭлектротехника. Связь. Автоматика
    страница1 из 4
      1   2   3   4

    3. Биполярные транзисторы и тиристоры

    3.1 Общие сведения о биполярном транзисторе

    Основные определения

    Биполярным транзистором называется электропреобразовательный полупроводниковый прибор, имеющий в своей структуре два взаимодействующих p-n-перехода и три внешних вывода, и предназначенный, в частности, для усиления электрических сигналов. Термин “биполярный” подчеркивает тот факт, что принцип работы прибора основан на взаимодействии с электрическим полем частиц, имеющих как положительный, так и отрицательный заряд, - дырок и электронов. В дальнейшем для краткости будем его называть просто - транзистором.

      Структура транзистора, изготовленного по диффузионной технологии, приведена на рис . 3.1. Как видно из рисунка, транзистор имеет три области полупроводника, называемые его электродами, причем две крайние области имеют одинаковый тип проводимости, а средняя область - противоположный. Структура транзистора, приведенная на рис. 3.1, называется n-p-n-структурой. Электроды транзистора имеют внешние выводы, с помощью которых транзистор включается в электрическую схему. Одна из крайних областей транзистора, имеющая наименьшие размеры, называется эмиттером (Э). Она предназначена для создания сильного потока основных носителей заряда (в данном случае электронов), пронизывающего всю структуру прибора (см. рис 3.1). Поэтому эмиттер характеризуется очень высокой степенью легирования (N = 10 19 - 10 20 см -3 ). Другая крайняя область транзистора, называемая коллектором (К), предназначена для собирания потока носителей, эмиттируемых эмиттером. Поэтому коллектор имеет наибольшие размеры среди областей транзистора. Легируется коллектор значительно слабее эмиттера (подробнее вопрос о выборе концентрации атомов примеси в коллекторе рассмотрен ниже). Средняя область транзистора называется базой (Б). Она предназначена для управления потоком носителей, движущихся из эмиттера в коллектор. Для уменьшения потерь электронов на рекомбинацию с дырками в базе ее ширина WБ делается очень маленькой ( WБ<< Ln), а степень легирования - очень низкой - на 3...4 порядка ниже , чем у эмиттера (N АБ<DЭ). Между электродами транзистора образуются p-n-переходы. Переход, разделяющий эмиттер и базу, называется эмиттерным переходом (ЭП), а переход, разделяющий базу и коллектор, - коллекторным переходом (КП). С учетом резкой асимметрии эмиттерного перехода (N >>N АБ) он характеризуется односторонней инжекцией: поток электронов, инжектируемых из эмиттера в базу, значительно превосходит встречный поток дырок, инжектируемых из базы в эмиттер.

    Режимы работы транзистора

    В зависимости от того, в каких состояниях находятся переходы транзистора, различают режимы его работы. Поскольку в транзисторе имеется два перехода (эмиттерный и коллекторный), и каждый из них может находиться в двух состояниях (открытом и закрытом), различают четыре режима работы транзистора. Основным режимом является активный режим, при котором эмиттерный переход находится в открытом состоянии, а коллекторный - в закрытом. Транзисторы, работающие в активном режиме, используются в усилительных схемах. Помимо активного , выделяют инверсный режим, при котором эмиттерный переход закрыт, а коллекторный - открыт, режим насыщения, при котором оба перехода открыты, и режим отсечки, при котором оба перехода закрыты.

    Наряду с транзисторами n-p-n- структуры, существуют транзисторы с симметричной ей p-n-p-структурой, в которых используется поток дырок. Условные обозначения n-p-n- и p-n-p-транзисторов, используемые в электрических схемах, приведены на рис.3.2. Стрелка на выводе эмиттера показывает направление эмиттерного тока в активном режиме. Кружок, обозначающий корпус дискретного транзистора, в изображении бескорпусных транзисторов, входящих в состав интегральных микросхем, не используется. Принцип работы n-p-n- и p-n-p-транзисторов одинаков, а полярности напряжений между их электродами и направления токов в цепях электродов противоположны. В современной электронике наибольшее распространение получили транзисторы n-p-n-структуры, которые, благодаря более высоким значениям подвижности и коэффициента диффузии электронов по сравнению с дырками (  n>  p; Dn>Dp) , обладают большим усилением и меньшей инерционностью, чем транзисторы p-n-p- структуры. Поэтому ниже рассматриваются именно n-p-n- транзисторы.

    Схемы включения биполярного транзистора

    В большинстве электрических схем транзистор используется в качестве четырехполюсника, то есть устройства, имеющего два входных и два выходных вывода. Очевидно, что, поскольку транзистор имеет только три вывода, для его использования в качестве четырехполюсника необходимо один из выводов транзистора сделать общим для входной и выходной цепей. Соответственно различают три схемы включения транзистора: схемы с общей базой (ОБ), общим эмиттером (ОЭ) и общим коллектором(ОК). На рис. 3.3 показаны полярности напряжений между электродами и направления токов, соответствующие активному режиму в указанных схемах включения транзистора. Следует отметить, что токи транзистора обозначаются одним индексом, соответствующим названию электрода, во внешней цепи которого протекает данный ток, а напряжения между электродами обозначаются двумя индексами, причем вторым указывается индекс, соответствующий названию общего электрода (см. рис. 3.3). В схеме с общей базой (см. рис. 3.3,а)



    входной цепью является цепь эмиттера, а выходной - цепь коллектора. Схема ОБ наиболее проста для анализа, поскольку в ней каждое из внешних напряжений прикладывается к конкретному переходу: напряжение uЭБ прикладывается к эмиттерному переходу, а напряжение uКБ - к коллекторному. Следует заметить, что падениями напряжений на областях эмиттера, базы и коллектора можно в первом приближении пренебречь, поскольку сопротивления этих областей значительно меньше сопротивлений переходов. Нетрудно убедиться, что приведенные на рисунке полярности напряжений (uЭБ<0; uКБ>0) обеспечивают открытое состояние эмиттерного перехода и закрытое состояние коллекторного перехода, что соответствует активному режиму работы транзистора.
    В схеме с общим эмиттером (см. рис. 3.3,б) входной цепью является цепь базы, а выходной - цепь коллектора. В схеме ОЭ напряжение uБЭ>0 прикладывается непосредственно к эмиттерному переходу и отпирает его. Напряжение uКЭ распределяется между обоими переходами:
    uКЭ = uКБ + uБЭ . Для того, чтобы коллекторный переход был закрыт, необходимо uКБ = uКЭ – uБЭ > 0 , что обеспечивается при uКЭ > uБЭ > 0.
    В схеме с общим коллектором (см. рис.3.3,в) входной цепью является цепь базы, а выходной - цепь эмиттера.

    Принцип работы биполярного транзистора

    Рассмотрим в первом приближении физические процессы, протекающие в транзисторе в активном режиме, и постараемся оценить, каким образом эти процессы позволяют усиливать электрические сигналы.

    Для простоты анализа будем использовать плоскую одномерную модель транзистора, представленную на рис. 3.4. Эта модель предполагает, что p-n- переходы транзистора являются плоскими, и все физические величины в структуре, в частности, концентрации носителей заряда, зависят только от одной продольной координаты x , что соответствует бесконечным поперечным размерам структуры. С учетом того, что в реальной структуре транзистора (см. рис. 3.1) ширина базы значительно меньше поперечных размеров переходов, плоская одномерная модель достаточно хорошо отражает процессы, протекающие в транзисторе. Рассмотрим вначале статическую ситуацию, при которой на переходы транзистора от внешних источников питания подаются постоянные напряжения uЭБ и uКБ - см. рис. 3.4. Заметим, что приведенный на рисунке транзистор включен по схеме с общей базой. Напряжения uЭБ <0 и uКБ >0 обеспечивают открытое состояние эмиттерного перехода и закрытое состояние коллекторного перехода, что соответствует активному режиму работы транзистора. Через открытый эмиттерный переход протекают основные носители заряда. Как уже отмечалось в п. 3.1, из-за резкой асимметрии эмиттерного перехода инжекцию через него можно считать односторонней, то есть достаточно рассматривать только поток электронов, инжектируемых из эмиттера в базу - см. рис. 3.4. Этот поток очень сильно зависит от напряжения на эмиттерном переходе uЭБ, экспоненциально возрастая с увеличением  uЭБ . Инжектированные в базу электроны оказываются в ней избыточными (неравновесными) неосновными носителями заряда. Вследствие диффузии они движутся через базу к коллекторному переходу, частично рекомбинируя с основными носителями - дырками. Достигнувшие коллекторного перехода электроны экстрагируются полем закрытого коллекторного перехода в коллектор. В связи с тем, что в коллекторном переходе отсутствует потенциальный барьер для электронов, движущихся из базы в коллектор, этот поток в первом приближении не зависит от напряжения на коллекторном переходе uКБ. Таким образом, в активном режиме всю структуру транзистора от эмиттера до коллектора пронизывает сквозной поток электронов, создающий во внешних цепях эмиттера и коллектора токи iЭ и iК , направленные навстречу движению электронов. Важно подчеркнуть, что этот поток электронов и, соответственно, ток коллектора iК, являющийся выходным током транзистора, очень эффективно управляются входным напряжением uЭБ и не зависят от выходного напряжения uКБ. Эффективное управление выходным током с помощью входного напряжения составляет основу принципа работы биполярного транзистора и позволяет использовать транзистор для усиления электрических сигналов.

      Схема простейшего усилительного каскада на транзисторе, включенном по схеме ОБ, приведена на рис. 3.5. По сравнению со схемой, приведенной на рис. 3.4, в эмиттерную цепь введен источник переменного напряжения uЭБ- , а в коллекторную цепь включен нагрузочный резистор RК. Переменное напряжение uЭБ- наряду с напряжением, подаваемым от источника питания, воздействует на сквозной поток электронов, движущихся из эмиттера в коллектор. В результате этого воздействия коллекторный ток приобретает переменную составляющую iК– , которая благодаря очень высокой эффективности управления может быть значительной даже при очень маленькой величине uЭБ- . При протекании тока коллектора через нагрузочный резистор на нем выделяется напряжение, также имеющее переменную составляющую uКБ- = iК– RК. Это выходное переменное напряжение при достаточно большом сопротивлении RК может значительно превосходить величину входного переменного напряжения uЭБ- (uКБ- >>uЭБ- ). Таким образом, транзистор, включенный по схеме ОБ, усиливает электрические сигналы по напряжению. Что касается усиления по току, то рассмотренная схема его не обеспечивает, поскольку входной и выходной токи примерно равны друг другу ( iЭ iК ).

    3.2. Физические процессы в биполярном транзисторе

    Сущность физических процессов, протекающих в транзисторе, таких, как инжекция, экстракция, диффузия, рекомбинация, рассмотрена выше (см. разд. 1 и 2 ). Вместе с тем, в транзисторе проявления этих эффектов имеют определенную специфику, связанную, в первую очередь, с взаимодействием переходов. В этой связи рассмотрим процессы, протекающие в транзисторе применительно к каждому из режимов его работы.

    Активному режиму работы транзистора, иногда называемому также нормальным активным режимом, соответствуют открытое состояние эмиттерного перехода и закрытое состояние коллекторного перехода. На рис. 3.6 приведена структура транзистора и показаны потоки носителей заряда в активном режиме. Поскольку основные физические процессы, определяющие протекание в структуре сквозного потока электронов, достаточно подробно описаны в п. 3.1, остановимся лишь на тех моментах, которые были опущены при рассмотрении работы транзистора в первом приближении. Прежде всего, отметим тот факт, что в активном режиме переходы транзистора имеют различную ширину: запертый коллекторный переход значительно шире открытого эмиттерного перехода. На рис. 3.6, наряду с показанным на рис. 3.4 сквозным потоком электронов, показаны и другие потоки носителей, протекающие в структуре в активном режиме. В частности, показан встречный поток дырок, инжектируемых из базы в эмиттер. Два направленных навстречу друг другу потока (электронов и дырок) отражают эффект рекомбинации в базе. Электронный поток создается электронами, которые инжектируются из эмиттера, но не доходят до коллекторного перехода (как электроны, создающие сквозной поток), а рекомбинируют с дырками в базе. Дырочный поток создается дырками, поступающими из внешней цепи в базу для восполнения потери дырок из-за их рекомбинации с электронами. Указанные потоки создают во внешних цепях эмиттера и базы дополнительные составляющие токов. На рис. 3.6 также показаны потоки неосновных носителей заряда, создающие собственный тепловой ток обратносмещенного коллекторного перехода (поток электронов, движущихся из базы в коллектор, и поток дырок, движущихся из коллектора в базу). Каждый из рассмотренных на рис. 3.6 потоков вносит свой вклад в токи, протекающие во внешних цепях эмиттера, коллектора и базы. При этом следует подчеркнуть, что сквозной поток электронов является единственным полезным потоком носителей в транзисторе, поскольку определяет возможность усиления электрических сигналов. Все остальные потоки в усилении сигнала не участвуют, и поэтому являются побочными. Для того, чтобы транзистор имел высокие усилительные свойства, необходимо, чтобы побочные потоки были как можно слабее по сравнению с сильным полезным сквозным потоком. Завершая рассмотрение активного режима, отметим, что основной вклад в ток базы вносит рекомбинационная составляющая. Равная ей рекомбинационная составляющая тока эмиттера определяет его отличие от тока коллектора, создаваемого практически исключительно сквозным потоком электронов. С учетом того, что база транзистора делается очень узкой и слабо легируется, потери электронов на рекомбинацию в базе очень невелики, и iБ<< iЭ, а iЭ iК.
    Инверсный режим (инверсный активный режим) работы транзистора аналогичен активному режиму с той лишь разницей, что в этом режиме в открытом состоянии находится коллекторный переход, а в закрытом - эмиттерный переход. В связи с тем, что усилительные свойства транзистора в инверсном режиме оказываются значительно хуже, чем в активном режиме, транзистор в инверсном режиме практически не используется.
    В режиме насыщения оба перехода транзистора находятся в открытом состоянии. На рис. 3.7 приведена структура транзистора и показаны потоки носителей, протекающие в режиме насыщения. Как видно из рисунка, в этом режиме и эмиттер, и коллектор инжектируют электроны в базу, в результате чего в структуре протекают два встречных сквозных потока электронов (нормальный и инверсный). От соотношения этих потоков зависит направление токов, протекающих в цепях эмиттера и коллектора. Вследствие двойной инжекции база транзистора очень сильно насыщается избыточными электронами, из-за чего усиливается их рекомбинация с дырками, и рекомбинационный ток базы оказывается значительно выше, чем в активном или инверсном режимах.



    Следует также отметить, что в связи с насыщением базы транзистора и его переходов избыточными носителями заряда, их сопротивления становятся очень маленькими. Поэтому цепи, содержащие транзистор, находящийся в режиме насыщения, можно считать короткозамкнутыми. Учитывая то, что в режиме насыщения напряжение между электродами транзистора составляет всего несколько десятых долей вольта, часто считают, что в этом режиме транзистор представляет собой эквипотенциальную точку.



    В режиме отсечки оба перехода транзистора находятся в закрытом состоянии. Структура транзистора и потоки носителей в режиме отсечки приведены на рис. 3.8. Как видно из рисунка, сквозные потоки электронов в режиме отсечки отсутствуют. Через переходы транзистора протекают потоки неосновных носителей заряда, создающие малые и неуправляемые тепловые токи переходов. База и переходы транзистора в режиме отсечки обеднены подвижными носителями заряда, в результате чего их сопротивления оказываются очень высокими. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи. Режимы насыщения и отсечки используются при работе транзисторов в импульсных (ключевых) схемах.

     
      1   2   3   4


    написать администратору сайта