Главная страница
Навигация по странице:

  • Рабочий слой диска

  • Самыми распространенными являются следующие типы рабочего слоя

  • конспект лекций. Конспект лекций по МДК 02.02 Установка и конфигурирование перифе. 3 содержание тема ведение 5


    Скачать 4.73 Mb.
    Название3 содержание тема ведение 5
    Анкорконспект лекций
    Дата13.05.2022
    Размер4.73 Mb.
    Формат файлаpdf
    Имя файлаКонспект лекций по МДК 02.02 Установка и конфигурирование перифе.pdf
    ТипДокументы
    #527621
    страница8 из 14
    1   ...   4   5   6   7   8   9   10   11   ...   14
    Форматирование дисков
    Различают два вида форматирования диска:

    физическое, или форматирование низкого уровня;

    логическое, или форматирование высокого уровня.
    При форматировании гибких дисков с помощью программы Проводник
    ( Windows Explorer ) или команды DOS FORMAT выполняются обе операции.
    Однако для жестких дисков эти операции следует выполнять отдельно.
    Более того, для жесткого диска существует и третий этап, выполняемый между двумя указанными операциями форматирования, - разбивка диска на разделы. Создание разделов абсолютно необходимо в том случае, если вы предполагаете использовать на одном компьютере несколько операционных систем. Физическое форматирование всегда выполняется одинаково, независимо от свойств операционной системы и параметров форматирования высокого уровня Тому, или логическому диску, система присваивает буквенное обозначение.
    Таким образом, форматирование жесткого диска выполняется в три
    этапа.

    Форматирование низкого уровня.

    Организация разделов на диске.

    127

    Форматирование высокого уровня.
    Форматирование низкого уровня
    В процессе форматирования низкого уровня дорожки диска разбиваются на секторы. При этом записываются заголовки и заключения секторов (префиксы и суффиксы), а также формируются интервалы между секторами и дорожками. Область данных каждого сектора заполняется фиктивными значениями или специальными тестовыми наборами данных.
    В первых контроллерах ST-506/412 при записи по методу MFM дорожки разбивались на 17 секторов, а в контроллерах этого же типа, но с RLL -кодированием количество секторов увеличилось до 26. В накопителях ESDI на дорожке содержится 32 и более секторов. В накопителях IDE контроллеры встроенные, и, в зависимости от их типа, количество секторов колеблется в пределах
    17-700 и более.
    Накопители SCSI - это накопители IDE со встроенным адаптером шины SCSI (контроллер тоже встроенный), поэтому количество секторов на дорожке может быть совершенно произвольным и зависит только от типа установленного контроллера.
    Практически во всех накопителях IDE и SCSI используется так называемая зонная запись с переменным количеством секторов на дорожке.
    Дорожки, более удаленные от центра, а значит, и более длинные содержат большее число секторов, чем близкие к центру. Один из способов повышения емкости жесткого диска - разделение внешних цилиндров на большее количество секторов по сравнению с внутренними цилиндрами.
    Теоретически внешние цилиндры могут содержать больше данных, так как имеют большую длину окружности.

    128
    В накопителях, не использующих метод зонной записи, в каждом цилиндре содержится одинаковое количество данных, несмотря на то что длина дорожки внешних цилиндров может быть вдвое больше, чем внутренних. Это приводит к нерациональному использованию емкости запоминающего устройства, так как носитель должен обеспечивать надежное хранение данных, записанных с той же плотностью, что и во внутренних цилиндрах. В том случае, если количество секторов, приходящихся на каждую дорожку, фиксировано, как это бывает при использовании контроллеров ранних версий, емкость накопителя определяется плотностью записи внутренней (наиболее короткой) дорожки.
    При зонной записи цилиндры разбиваются на группы, которые называются зонами, причем по мере продвижения к внешнему краю диска дорожки разбиваются на все большее число секторов. Во всех цилиндрах, относящихся к одной зоне, количество секторов на дорожках одинаковое.
    Возможное количество зон зависит от типа накопителя; в большинстве устройств их бывает 10 и более. Скорость обмена данными с накопителем может изменяться и зависит от зоны, в которой в конкретный момент располагаются головки. Происходит это потому, что секторов во внешних зонах больше, а угловая скорость вращения диска постоянна (т.е. линейная скорость перемещения секторов относительно головки при считывании и записи данных на внешних дорожках оказывается выше, чем на внутренних).
    При использовании метода зонной записи каждая поверхность диска уже содержит 545,63 сектора на дорожку. Если не использовать метод зонной записи, то каждая дорожка будет ограничена 360 секторами. Выигрыш при использовании метода зонной записи составляет около 52%.
    Обратите внимание на различия в скорости передачи данных для каждой зоны. Поскольку частота вращения шпинделя 7 200 об/мин, один оборот совершается за 1/120 секунды или же 8,33 миллисекунды. Дорожки во внешней зоне (нулевой) имеют скорость передачи данных 44,24 Мбайт/с, а во

    129 внутренней зоне (15) - всего 22,12 Мбайт/с. Средняя скорость передачи данных составляет 33,52 Мбайт/с.
    Организация разделов на диске
    Разделы, создаваемые на жестком диске, обеспечивают поддержку различных файловых систем, каждая из которых располагается на определенном разделе диска.
    В каждой файловой системе используется определенный метод, позволяющий распределить пространство, занимаемое файлом, по логическим элементам, которые называются кластерами или единичными блоками памяти. На жестком диске может быть от одного до четырех разделов, каждый из которых поддерживает файловую систему какого- нибудь одного или нескольких типов. В настоящее время PC-совместимые операционные системы используют файловые системы трех типов.
    FAT (File Allocation Table - таблица размещения файлов). Это стандартная файловая система для DOS, Windows 9х и Windows NT. В разделах FAT под DOS допустимая длина имен файлов - 11 символов (8 символов собственно имени и 3 символа расширения), а объем тома
    (логического диска) - до 2 Гбайт. Под Windows 9х/Windows NT 4.0 и выше допустимая длина имен файлов - 255 символов.
    С помощью программы FDISK можно создать только два физических раздела FAT на жестком диске - основной и дополнительный, а в дополнительном разделе можно создать до 25 логических томов.
    Программа Partition Magic может создавать четыре основных раздела или три основных и один дополнительный.
    FAT32 (File Allocation Table, 32-bit - 32-разрядная таблица размещения
    файлов). Используется с Windows 95 OSR2 (OEM Service Release 2), Windows
    98 и Windows 2000. В таблицах FAT 32 ячейкам размещения соответствуют
    32-разрядные числа. При такой файловой структуре объем тома (логического диска) может достигать 2 Тбайт (2 048 Гбайт).

    130
    NTFS (Windows NT File System - файловая система Windows NT).
    Доступна тольков Windows NT/2000/XP/2003. Длина имен файлов может достигать 256 символов, размер раздела (теоретически) - 16 Эбайт (16^1018 байт). NTFS обеспечивает дополнительные возможности, не предоставляемые другими файловыми системами, например средства безопасности.
    После создания разделов необходимо выполнить форматирование высокого уровня с помощью средств операционной системы.
    Форматирование высокого уровня
    При форматировании высокого уровня операционная система создает структуры для работы с файлами и данными. В каждый раздел (логический диск) заносится загрузочный сектор тома ( Volume Boot Sector - VBS ), две копии таблицы размещения файлов ( FAT ) и корневой каталог ( Root
    Directory ). С помощью этих структур данных операционная система распределяет дисковое пространство, отслеживает расположение файлов и даже "обходит", во избежание проблем, дефектные участки на диске. В сущности, форматирование высокого уровня - это не столько форматирование, сколько создание оглавления диска и таблицы размещения файлов.
    Основные компоненты накопителей на жестких дисках

    131
    HDA (Head Disk Assembly - блок
    головок и дисков)
    Съемные детали

    диски;

    головки чтения/записи;

    механизм привода головок;

    двигатель привода дисков;

    печатная плата со схемами управления;

    кабели и разъемы;

    элементы конфигурации
    (перемычки и переключатели).
    Адаптер накопителей на жестких магнитных дисках
    Используются два вида электронных схем: один для управления магнитными головками, двигателем и дисками; и другой для управления данными. Все они размещаются на плате. Типичный адаптер НЖМД выполняет следующие функции по командам ЦП: поддерживает требуемый формат данных, размещаемых на дисках; передает данные в режиме ПДП или программного ввода-вывода; осуществляет поиск и проверку требуемых цилиндров; производит переключение головок; обнаруживает и корректирует ошибки в считанных данных; организует последовательность считываемых секторов в соответствии с коэффициентом чередования; генерирует прерывание. Если адаптер использует RLL-метод кодирования, то требуется специальный накопитель, рассчитанный на данный способ кодирования.
    Программы управления микропроцессором записываются в ПЗУ.
    Адаптер НЖМД имеет собственную локальную оперативную память, которая разделяется на рабочую область для микропроцессора и буфер данных для хранения одного сектора. Регистры ввода-вывода предназначены для ввода-вывода данных, сброса и выбора адаптера, записи состояния и типа накопителя, разрешения ПДП и прерывания. Контроллер ПДП управляет обменом данными между адаптером и НЖМД, между адаптером и ОЗУ
    ПЭВМ.
    Команды ЦП
    Основными командами являются команды чтения, записи, форматирования и позиционирования. Для проверки состояния НЖМД и

    132 адаптера служат диагностические команды. Командный блок записывается в локальную память адаптера.
    Данные с системной шины при записи поступают в регистры ввода- вывода побайтно и преобразуются в вид для записи в секторный буфер. Под управлением контроллера ПДП или программного режима ввода-вывода данные поступают на сериализатор, преобразующий байты в последовательный код. Кодер кодирует данные по методу МЧМ.
    Одновременно с преобразованием данные поступают на блок контроля и коррекции. Затем данные и контрольные байты записываются в НЖМД.
    При чтении данных сепаратор отделяет синхроимпульсы, данные декодируются и преобразуются десериализатором в параллельный код. Под управлением контроллера ПДП байты данных помещаются в ОЗУ и через регистры ввода-вывода выдаются на системную шину. Адаптер выдает ЦП параметры выполнения команды.
    Недостатком такой структуры адаптера является то, что параметры диска записаны в его ПЗУ, поэтому адаптер может работать только с определенной моделью диска. В других конструкциях НЖМД дисковые параметры хранятся на самом диске и загружаются в адаптер при работе.

    133
    Диски
    Обычно в накопителе содержится один или несколько магнитных дисков. За прошедшие годы установлен ряд стандартных размеров накопителей, которые определяются в основном размерами дисков, а именно:

    5,25 дюйма (на самом деле - 130 мм, или 5,12 дюйма);

    3,5 дюйма (на самом деле - 95 мм, или 3,74 дюйма);

    2,5 дюйма (на самом деле - 65 мм, или 2,56 дюйма);

    1,8 дюйма (на самом деле - 48 мм или 1,89 дюйма);

    1 дюйм (на самом деле - 34 мм, или 1,33 дюйма).
    Сейчас в настольных и некоторых портативных моделях чаще всего устанавливаются накопители формата 3,5 дюйма, а малогабаритные устройства (формата 2,5 дюйма и меньше) - в портативных системах.
    Количество дисков ограничивается физическими размерами накопителя, а именно высотой его корпуса.

    134
    Раньше почти все диски производились из алюминиевого сплава, довольно прочного и легкого. Но со временем возникла потребность в накопителях, сочетающих малые размеры и большую емкость. Поэтому в качестве основного материала для дисков стало использоваться стекло, а точнее, композитный материал на основе стекла и керамики. Один из таких материалов называется MemCor и производится компанией Dow Corning. Он значительно прочнее, чем каждый из его компонентов в отдельности.
    Стеклянные диски отличаются большей прочностью и жесткостью, поэтому их можно сделать в два раза тоньше алюминиевых (а иногда еще тоньше).
    Кроме того, они менее восприимчивы к перепадам температур, т.е. их размеры при нагреве и охлаждении изменяются весьма незначительно. В настоящее время в накопителях, выпускаемых такими компаниями, как IBM,
    Seagate, Toshiba, Areal Technology, Western Digital и Maxtor, используются стеклянные или стеклокерамические диски.
    Рабочий слой диска
    Независимо от того, какой материал используется в качестве основы диска, он покрывается тонким слоем вещества, способного сохранять остаточную намагниченность после воздействия внешнего магнитного поля.
    Этот слой называется рабочим или магнитным, и именно в нем сохраняется записанная информация. Самыми
    распространенными
    являются
    следующие типы рабочего слоя:

    оксидный;

    тонкопленочный;

    двойной антиферромагнитный (antiferromagnetically coupled -
    AFC).
    Оксидный слой
    Оксидный слой представляет собой полимерное покрытие с наполнителем из окиси железа. Наносят его следующим образом. Сначала на поверхность быстро вращающегося алюминиевого диска разбрызгивается суспензия порошка оксида железа в растворе полимера. За счет действия

    135 центробежных сил она равномерно растекается по поверхности диска от его центра к внешнему краю. После полимеризации раствора поверхность шлифуется. Затем на нее наносится еще один слой чистого полимера, обладающего достаточной прочностью и низким коэффициентом трения, и диск окончательно полируется. Накопители с такими дисками коричневого или желтого цвета.
    Чем выше емкость накопителя, тем более тонким и гладким должен быть рабочий слой дисков. Но добиться качества покрытия, необходимого для накопителей большой емкости, в рамках традиционной технологии оказалось невозможным.
    Поскольку оксидный слой довольно мягкий, он крошится при "столкновениях" с головками (например, при случайных сотрясениях накопителя). Диски с таким рабочим слоем использовались с 1955 года, и продержались они так долго благодаря простоте технологии и низкой стоимости. Однако в современных моделях накопителей они полностью уступили место тонкопленочным дискам.
    Тонкопленочный слой
    Тонкопленочный рабочий слой имеет меньшую толщину, он прочнее, и качество его покрытия гораздо выше. Эта технология легла в основу производства накопителей нового поколения, в которых удалось существенно уменьшить величину зазора между головками и поверхностями дисков, что позволило повысить плотность записи. Сначала тонкопленочные диски использовались только в высококачественных накопителях большой емкости, но сейчас они применяются практически во всех накопителях.
    Термин тонкопленочный рабочий слой очень удачен, так как это покрытие гораздо тоньше, чем оксидное. Тонкопленочный рабочий слой называют также гальванизированным или напыленным, поскольку наносить тонкую пленку на поверхность дисков можно по-разному.
    Тонкопленочный гальванизированный рабочий слой получают путем электролиза. Это происходит почти так же, как при хромировании бампера

    136 автомобиля. Алюминиевую подложку диска последовательно погружают в ванны с различными растворами, в результате чего она покрывается несколькими слоями металлической пленки. Рабочим слоем служит слой из сплава кобальта толщиной всего около 1 микродюйма (приблизительно 0,025 мкм).
    Метод напыления рабочего слоя заимствован из полупроводниковой технологии. Суть его сводится к тому, что в специальных вакуумных камерах вещества и сплавы вначале переводятся в газообразное состояние, а затем осаждаются на подложку. На алюминиевый диск сначала наносится слой фосфорита никеля, а затем магнитный кобальтовый сплав. Его толщина при этом всего 1-2 микродюйма (0,025-0,05 мкм). Аналогично поверх магнитного слоя на диск наносится очень тонкое (порядка 0,025 мкм) углеродное защитное покрытие, обладающее исключительной прочностью. Это самый дорогостоящий процесс из всех описанных выше, так как для его проведения необходимы условия, приближенные к полному вакууму.
    При гальваническом осаждении, и при напылении рабочий слой получается очень тонким и прочным. Поэтому вероятность "выживания" головок и дисков в случае их контакта друг с другом на большой скорости существенно повышается. И действительно, современные накопители с дисками, имеющими тонкопленочные рабочие слои, практически не выходят из строя при вибрациях и сотрясениях. Оксидные покрытия в этом отношении гораздо менее надежны. Тонкопленочные покрытия дисков напоминают серебристую поверхность зеркал.
    Двойной антиферромагнитный слой
    Последним достижением в технологии изготовления носителей жестких дисков является использование антиферромагнитных двойных слоев
    ( antiferromagnetically coupled - AFC ), позволяющих существенно увеличить плотность рабочего слоя, превысив наложенные ранее ограничения.
    Увеличение плотности материала дает возможность уменьшить толщину магнитного слоя диска.

    137
    Плотность записи жестких дисков (которая выражается в количестве дорожек на дюйм или в числе бит на дюйм) достигла той точки, в которой кристаллы магнитного слоя, используемые для хранения данных, становятся настолько малы, что это приводит к их нестабильности и, как следствие, к низкой надежности запоминающего устройства. Границы плотности, получившие название суперпарамагнитного ограничения, должны находиться в пределах от 30 до 50 Гбит/дюйм2. В настоящее время плотность записи данных уже достигла 35 Гбит/дюйм2, т.е. суперпарамагнитное ограничение становится довольно существенным фактором, определяющим свойства создаваемых накопителей.
    Носители AFC состоят из двух магнитных слоев, разделенных довольно тонкой пленкой металлического рутения, толщина которой 3 атома
    (6 ангстрем). Для описания этого сверхтонкого слоя рутения использовался термин "пыльца эльфов" ( pixie dust ), придуманный в IBM. Подобная многослойная конструкция образует антиферромагнитное соединение, состоящее из верхнего и нижнего магнитных слоев, что позволяет различать эти слои по всей видимой высоте жесткого диска. Такая конструкция дает возможность использовать физически более толстые магнитные слои, имеющие более устойчивые кристаллы большого размера, благодаря чему носители могут функционировать как одинарный слой, отличающийся гораздо меньшей общей толщиной.
    Использование рабочего слоя AFC позволит, как ожидается, повысить плотность записи данных до 1000 Гбит/дюйм2 и более.

    138
    Головки чтения/записи
    В накопителях на жестких дисках для каждой из сторон каждого диска предусмотрена собственная головка чтения/записи.
    Все головки смонтированы на общем подвижном каркасе и перемещаются одновременно.
    Конструкция каркаса с головками довольно проста. Каждая головка установлена на конце рычага, закрепленного на пружине и слегка прижимающего ее к диску.
    Когда накопитель выключен, головки касаются дисков под действием пружин. При раскручивании дисков аэродинамическое давление под головками повышается и они отрываются от рабочих поверхностей
    ("взлетают"). Когда диск вращается на полной скорости, зазор между ним и головками может составлять 0,5-5 микродюймов и даже больше.
    Конструкции головок чтения/записи
    По мере развития технологии производства дисковых накопителей совершенствовались и конструкции головок чтения/записи. Первые головки представляли собой сердечники с обмоткой (электромагниты).
    Механизмы привода головок
    Механизм, который устанавливает их в нужное положение и называется приводом головок. Именно с его помощью головки перемещаются от центра к краям диска и устанавливаются на заданный

    139 цилиндр. Существует много конструкций механизмов привода головок, но их можно разделить на два основных типа:
    Зависимость характеристик накопителей от типа привода
    1   ...   4   5   6   7   8   9   10   11   ...   14


    написать администратору сайта