Главная страница

Актуальность


Скачать 56.52 Kb.
НазваниеАктуальность
Дата12.05.2018
Размер56.52 Kb.
Формат файлаdocx
Имя файлаEmbriologia.docx
ТипДокументы
#43439
страница2 из 3
1   2   3

Период дробления следует за оплодотворением. Образовавшийся в результате оплодотворения одноклеточный зародыш в течение суток находится в маточной трубе во взвешенном состоянии. После чего начинается период дробления. Дробление зародыша человека, как и у всех плацентарных млекопитающих, носит характер полного и ассинхронного и характеризуется резкой неправильностью чередования борозд дробления. Первоначально дробление происходит в меридиональной плоскости, в результате чего образуется два бластомера: один более крупный и темный, а другой – более мелкий и светлый. Затем образуется экваториальная борозда, в результате чего светлый бластомер делится, что приводит к образованию 3-х клеточного зародыша. После чего происходит чередование широтных (экваториальных) и меридиональных борозд, что обусловливает образование многоклеточного зародыша. Неодновременное по времени деление обусловливает образование нечетного числа бластомеров. Несмотря на увеличение числа клеток, зародыш практически не увеличивается в размерах, так как образующиеся клетки не расходятся, а плотно прилежат друг к другу. Первоначально дробление протекает очень медленно, в среднем по одному делению в сутки, в силу чего к концу 3-х суток зародыш состоит из 8-9 бластомеров. В последующие дни дробление протекает с большей скоростью и, в конечном итоге, приводит к образованию многоклеточного организма, состоящего из 107 бластомеров. В отличие от деления дробление протекает с рядом особенностей. Так, при дроблении интерфаза резко укорочена и представляет собой период, в котором протекает репликация ДНК, а также транскрипция (синтез) только РНК. В результате такого деления образуются клетки, которые не растут, а с каждым очередным делением размеры их уменьшаются вдвое, чем материнские.

Таким образом, биологическая сущность дробления заключается в том, что с помощью этого процесса происходит переход к многоклеточной форме организации зародыша. Вместе с тем происходит увеличение общего содержания и синтеза ДНК, некоторых РНК, общей суммарной поверхности клеток зародыша и ядерно-цитоплазменного отношения.

По мере деления свелые бластомеры начинают обрастать медленно делящиеся крупные темные бластомеры, в результате образуется зародыш округлой формы, который с поверхности окружен мелкими светлыми клетками, в совокупности образующими первый внезародышевый орган – трофобласт. Темные крупные клетки, лежащие в центре зародышевого пузырька, в совокупности образуют эмбриобласт, за счет которого развиваются все остальные внезародышевые органы и тело зародыша.

На этой стадии зародыш человека ни чем не отличается от зародышей других млекопитающих. В процессе дробления в зародышевом пузырьке постепенно формируется полость, заполняющаяся жидкостью, под влиянием которой эмбриобласт оттесняется к одному из участков внутренней поверхности трофобласта. Зародыш на этой стадии называется бластоцистой или бластодермическим пузырьком. Дробление продолжается 5-6 дней. В процессе дробления зародыш постепенно продвигается в сторону полости матки, вследствие тока жидкости, перистальтического сокращения мускулатуры, мерцания ресничек эпителия маточной трубы. Питание зародыша в период дробления происходит за счет секрета железистых эпителиальных клеток маточной трубы. На 6-ой день бластодермический пузырек проходит через расслабленный истмикальный сфинктер и попадает в полость матки, где в течение одних суток находится во взвешенном (свободном) состоянии в маточной жидкости. Затем зародыш своей клейкой поверхностью прикрепляется к одному из участков (чаше в области дна) слизистой оболочки матки.

Рядом исследователей установлено, что активное деление зиготы индуцируется, прежде всего, специфическими физико-химическими условиями трубной среды: оптимальное осмотическое давление, определенная концентрация кислорода, аминокислот, витаминов, высокие концентрации ионов калия и обязательное присутствие человеческой сыворотки, которая строго необходима для преодоления стадии 8 бластомеров. После прикрепления к слизистой оболочке матки зародыш начинает погружаться в нее, то есть имплантироваться.

Имплантация представляет собой процесс погружения зародыш на стадии бластодермического пузырька в толщу слизистой оболочки матки. Имплантация предполагает комплексное взаимодействие бластодермического пузырька и слизистой оболочки матки. С физиологической точки зрения имплантация осуществляется в период секреторной фазы полового цикла, которая обеспечивает наиболее благоприятные условия.

Слизистая оболочка в это время утолщается, становится отечной, Маточные железы разрастаются, приобретают извилистый характер, их просвет расширяется и заполняется слизистым секретом. Увеличивается содержание видоизмененных соединительнотканных клеток, содержащих большое количество гликогена, гликопртеинов, гликозаминогликанов, микроэлементов, необходимых для питания зародыша. Сосуды эндометрия разрастаются и гипертрофируются, увеличивается число нервных элементов.

К началу имплантации на поверхности зародыша появляется дополнительный слой, образующий многочисленные выросты – первичные ворсинки, что существенно увеличивает общую поверхность зародыша, а, следовательно поверхность соприкосновения его со слизистой оболочкой матки. Этот слой получил название хориального симпласта (синцитиотрофобласта). Хориальный симпласт вырабатывает многочисленные гистолитические, протеолитические и гликолитические ферменты, обеспечивающие разрушение эпителия, соединительной ткани и стенки сосудов, что, с одной стороны способствует имплантации зародыша, а с другой – постепенному установлению вместо гистотрофного типа питания гемотрофного. С этого времени трофобласт получает название клеточного трофобласта или цитотрофобласта. Имплантация зародыша проходит на 6-7 сутки и продолжается около 40 часов. Образовавшийся хориальный симпласт вырабатывает активаторы и ингибиторы Т- и В-лимфоцитов. При физиологической беременности преобладают ингибиторы, а при токсикозах, напротив, активаторы, что обусловливает в ряде случаев прерывание беременности.

Слизистая оболочка матки вокруг имплантировавшегося зародыша преобразуется и получает название «децидуальная оболочка», в составе которой выделяют базальную (decidua basalis), капсулярную (decidua capsularis) и париетальную (decidua parietalis) части.

Децидуальная оболочка обеспечивает защиту зародыша от механических и химических воздействий. В будущем за счет децидуальной оболочки будет развиваться материнская часть плаценты. При многоплодии эта оболочка выполняет разграничительную функцию, препятствуя сращению плодов. В децидуальной оболочке вырабатывается тромбопластин, обеспечивающий расплавление тромбов и способствующих снижению свертывания крови, излившейся в полость матки между ворсинками трофобласта. Децидуальная оболочка выполняет трофическую и выделительную функции. Кроме того, она ограничивает инвазию трофобласта в глубинные слои матки. Наконец, она выполняет эндокринную функцию, вырабатывая прогестерон и зонализин, растворяющий блестящую оболочку.

После завершения дробления начинается третий период эмбрионального развития человека – гаструляция.

Гаструляция у человека протекает в два этапа: ранняя (с 7 по 14 день) и поздняя ( с 15 по 18 день) гаструляция.

Ранняя гаструляция протекает первоначально по типу деламинации, в результате чего эмбриобласт расщепляется на два узелка: эктобласт и эндобласт. Впоследствии в результате накопления жидкости в этих узелках формируются полости, что приводит к формированию амниотического и желточного пузырька. Прилегающие друг к другу стенки этих пузырьков образуют зародышевый щиток, представляющий собой материал, из которого в дальнейшем формируется тело зародыша. При этом, утолщение дна амниотического пузырька представляет собой эктодерму зародыша, а клеточный материал крыши желточного пузырька образует внутренний зародышевый листок – энтодерму.

С 9-го дня эмбриогенеза из зародышевого щитка в полость зародышевого пузырька начинают выселяться отросчатые клетки, которые составляют внезародышевую мезенхиму. Постепенно клетки внезародышевой мезенхимы обрастают амниотический и желточный пузырьки, а также цитотрофобласт, в результате чего оба пузырька приобретают двуслойное строение и превращаются в истинные внезародышевые органы: амнион и желточный мешок. В то же время стенка зародышевого пузырька также приобретает трехслойное строение и включает в себя хориальный симпласт, цитотрофобласт и внезародышевую мезенхиму. Такая наружная трехслойная оболочка зародышевого пузырька называется хорионом и представляет собой ворсинчатую оболочку зародыша. Между этими ворсинками находятся продукты тканевого распада и излившаяся из разрушенных сосудов кровь, откуда к зародышу поступают питательные вещества. В будущем за счет ветвистого хориона будет формироваться плодная часть плаценты. В одном из участков тяжи внезародышевой мезенхимы располагаются очень плотно и образуют амниотическую ножку, за счет которой будет формироваться пупочный канатик. К 14-ому дню заканчивается выселение клеток внезародышевой мезенхимы.

Таким образом, к 14-ому дню эмбрионального развития зародыш человека имеет мощный комплекс внезародышевых органов: хорион, амнион, желточный мешок, амниотическую ножку и внезародышевую мезенхиму. Сам зародыш к этому времени имеет двуслойное строение, то есть состоит из эктодермы и энтодермы. Благодаря многочисленным внезародышевым органам, создаются благоприятные и необходимые условия для последующего развития зародыша. Хорион обеспечивает питание зародыша, внезародышевая мезенхима и жидкость полости зародышевого пузырька участвуют в процессах обмена и создают жидкую среду и механическую защиту. К 14-ому дню зародыш человека имеет длину всего 2-2,5мм.

После образования мощного комплекса внезародышевых органов в период ранней гаструляции начинается бурное развитие зародыша в периоде поздней гаструляции. Поздняя гаструляция протекает в период с 15 до 18 дня внутриутробного развития. Поздняя гаструляция связана с формированием осевых органов. Она становится возможной только после возникновения внезародышевых органов и протекает также как у птиц и плацентарных млекопитающих. Прежде всего, в эктодерме зародышевого щитка начинается активное перемещение (гаструляция по типу миграции) клеточных элементов по направлению от переднего конца к его заднему концу. Клеточные потоки особенно интенсивно перемещаются по краям зародышевого щитка. Встретившись, оба клеточных потока поворачивают по средней линии щитка кпереди, в результате формируется первичная полоска, представляющая собой утолщение зародышевого щитка, на конце которого возникает плотный узелок – гензеновский узелок. В области гензеновского узелка эктодерма и энтодерма соединены между собой. Затем в результате слабо выраженной инвагинации в центре первичной полоски возникает желобок – первичная бороздка, а в центре гензеновского узелка – первичная (центральная) ямка, благодаря которой возникает сообщение между полостями амниотического и желточного пузырьков, имеющее вид короткого и узкого канала, соответствующего нервно-кишечному каналу. Таким образом, первичный узелок представляет собой дорзальную губу бластопора, а обе половинки первичной полоски – боковые губы первичного рта (бластопора) зародыша. Таким образом, первичный рот имеет щелевидную форму и представлен первичной ямкой и первичной бороздкой.

Расположение клеточного материала будущих осевых зачатков (презумптивного материала) у человека примерно такое же, как в бластодиске птиц и плацентарных млекопитающих. Так, кпереди от гензеновского узелка располагается материал будущей хорды, а еще далее спереди ее окружает материал будущей нервной системы (нервной трубки). Первичная полоска представляет собой закладку будущей мезодермы.

После образования бластопора начинается миграция клеточных элементов под эктодерму, в результате чего клеточный материал эктодермы, расположенный кпереди от первичного узелка, перемещается через дорзальную губу в пространство между эктодермой и энтодермой и располагается там в виде узкого тяжа впереди от гензеновского узелка, образуя хордальный отросток. Одновременно с этим, клеточный материл первичной полоски также начинает погружаться (мигрировать) в пространство между эктодермой и энтодермой и смещается вперед и в стороны по бокам хордального отростка – это закладка мезодермы. В результате этого зародыш человека приобретает трехслойное строение и почти не отличается от зародыша птицы на соответствующей стадии. Кроме того, произошло формирование характерного для хордовых комплекса осевых зачатков.

С 20 дня внутриутробного развития начинается новый этап формирования зародыша, который, прежде всего, заключается в обособлении тела зародыша от внезародышевых органов. Обособление тела зародыша начинается с формирования перехвата (туловищной складки), в образовании которого участвуют все зародышевые листки.

В результате смыкания зародышевых листков под телом зародыша происходит ущемление части зародышевой энтодермы, что обусловливает формирование кишечной трубки, представляющей собой зачаток кишки.

Образование туловищной складки сопровождается приподниманием формирующегося тела зародыша над дном амниотической полости. В результате этого тело зародыша из распластанного в виде зародышевого щитка становится объемным. При этом образуется слепой вырост заднего отдела кишки в амниотическую ножку, что приводит к формированию еще одного внезародышевого органа – аллантоиса, который у человека существенной роли не играет и остается недоразвитым. Основная роль аллантоиса у человека сводится к проведению кровеносных сосудов. Врастающие из тела зародыша сосуды подрастают по амниотической ножке к хориону и разветвляются в нем. При этом амниотическая ножка превращается в пупочный канатик. С этого момента создаются благоприятные условия для интенсивного и весьма эффективного обмена веществ между зародышем и организмом матери.

Одновременно с обособлением тела зародыша начинается образование нервной трубки. При этом края нервной пластинки утолщаются и несколько приподнимаются над эктодермой, образуя нервные валики, которые ограничивают нервный желобок. Постепенно края нервного желобка сближаются и смыкаются, образуя нервную трубку. Причем процесс замыкания нервного желобка начинается на головном конце тела зародыша и постепенно распространяется в каудальном направлении. Материал нервных валиков в состав нервной трубки не входит. Из этого материала формируется ганглиозная пластинка, располагающаяся между наружным зародышевым щитком и нервной трубкой. За счет ганглиозной пластинки в последующем формируются нервные узлы соматической и вегетативной нервной системы, а также мозговое вещество надпочечника. Расширенный пердний конец нервной трубки называется первичным мозговым пузырем, из которого формируются в конечном итоге 5 мозговых пузырей. За счет переднего мозгового пузыря формируется конечный мозг с правым и левым полущариями. За счет второго мозгового пузыря возникает промежуточный мозг. За счет третьего – средний мозг. Наконец, за счет четвертого и пятого формируются соответственно мозжечок и варолиев мост и продолговатый мозг.

Образовавшаяся нервная трубка первоначально состоит из одного слоя клеток. Однако, вскоре, благодаря делению клеток, формируются три слоя: эпендимный слой, плащевой слой и краевая вуаль. Клетки эпендимного слоя интенсивно делятся и выселяются в следующий мантийный слой, клетки которого дифференцируются в двух направлениях: нейробласты и спонгиобласты. Из нейробластов формируются нервные клкетки, а за счет спонгиобластов – клетки макроглии. Зародыш на стадии образования нервной трубки называется нейрулой.

В результате прогибания и смыкания краев хордального отростка у зародыша формируются ткани спинной струны или хорды, имеющей вид плотного клеточного тяжа и выполняющей на самых ранних стадиях развития функцию эмбрионального позвоночника. На более поздних стадиях хорда рассасывается.

Нервная трубка и хорда располагаются друг под другом и образуют физиологическую ось зародыша, поэтому они называются осевыми органами.

Наряду с этим, с 20 дня эмбрионального развития начинается дифференцировка мезодермы, лежащей по бокам от хорды. При этом дорзальные участки мезодермы разделяются на плотные сегменты – сомиты и более рыхлые периферические участки – спланхнотомы. Процесс сегментации мезодермы начинается на головном конце зародыша и постепенно распространяется в каудальном направлении. Сегментация мезодермы протекает со скоростью 2-3 пары сомитов в сутки и у 5-ти недельного зародыша насчитывается 42-44 пары сомитов. В составе каждого сомита условно выделяют три участка: дерматом, склеротом и миотом. В процессе дифференцировки мезодермы из дерматома образуется соединительная ткань кожи, а из склеротома – костная и хрящевая ткань. Миотомы сомитов являются источником образования скелетной мышечной ткани.

Небольшой участок мезодермы, связывающий сомит со спланхнотомом, называется сегментарной ножкой (нефротомом), за счет которой развивается эпителий почечных канальцев и семявыносящих путей.

Вентральные отделы мезодермы не сегментируются, а расщепляются на два листка- висцеральный и париетальный, за счет которых в будущем развиваются сердечная мышечная ткань, многочисленные сосуды, эпителий серозных оболочек, корковое вещество надпочечников.

Амнион. По мере обособления тела зародыша происходит постепенное расширение амниотической полости, в результате чего стенка амниона, покрытая с поверхности внезародышевой мезенхимой, приближается к хориону, внутренняя поверхность которого тоже выстлана слоем внезародышевой мезенхимы и сливается с ней. При этом, стенка амниона покрывает с поверхности пупочный канатик, который оказывается со всех сторон покрыт амниотической оболочкой и является единственной магистралью, связывающей тело зародыша с плацентой.

Таким образом, по мере развития амниона происходит постепенное сокращение хориальной полости вплоть до полного ее исчезновения на 3 месяце внутриутробного развития, а разрастающаяся полость амниона оттесняет внутреннее содержимое полости плодного пузыря в область амниотической ножки. Стенка амниона представлена тонкой прослойкой рыхлой неоформленной соединительной ткани, которая с поверхности покрыта однослойным кубическим или цилиндрическим эпителием. Этот эпителий является секреторным и участвует в образовании околоплодных вод, заполняющих полость амниона. В амниотической жидкости свободно располагается плод. Часть околоплодных вод образуется за счет пропотевания жидкости из кровеносных сосудов матери. При физиологической беременности образуется, как правило, 1-2 литра амниотической жидкости. Объем этой жидкости регулируется, прежде всего, секреторной и реабсорбционной способностью амниотического эпителия. Процессы секреции и реабсорбции сопутствуют друг другу, благодаря чему происходит постоянное обновление околоплодных вод и регулируется их состав. Нарушение равновесия между этими процессами может приводить как к маловодию, так и многоводию. Маловодие оказывает неблагоприятное влияние на развитие плода, так как при этом нарушается его двигательная активность, что обусловливает ограничение или невозможность адаптационных компенсаторно-приспособительных реакций, деформацию скелета, сжатие пуповины, что может привести к внутриутробной смерти плода. В околоплодных водах содержатся аминокислоты, сахар, жиры, электролиты (калий, натрий, кальций), мочевина, ферменты, а также гормоны, в том числе эстрогены и окситоцин. Кроме того, в амниотической жидкости выявлены биологически активные соединения – трефоны, которые индуцируют анаболические процессы плода. Кроме того, здесь содержатся антигены, соответствующие группе крови плода.

Химический, цитологический, энзимологический, цитогенетический состав околоплодных вод постоянно меняется при физиологической беременности и при нарушении развития плода. Поэтому, по изменению состава амниотической жидкости можно судить о состоянии плода, степени его зрелости, а в ряде случаев даже диагностировать ряд наследственных заболеваний, связанных с нарушением обмена веществ. В целом околоплодные воды создают благоприятную среду для развития плода, так как позволяют ему проявлять двигательную активность, лежащую в основе компенсаторно-приспособительных реакций и формообразования. Кроме того, околоплодные воды выполняют функцию амортизатора, предохраняющего плод от возможных механических воздействий. Водная среда обитания предохраняет его от высыхания. Околоплодные воды являются посредником в обмене веществ между организмом матери и плода: на ранних стадиях они проникают к плоду через кожу, а на более поздних стадиях – через бронхи и желудочно-кишечный тракт, так как плод периодически делает глотательные движения и заглатывает часть околоплодных вод.

Желточный мешок по мере увеличения и разрастания амниона постепенно атрофируется. Желточный мешок активно функционирует только в период с конца 2-ой недели до 5-ой недели включительно. У человека он не достигает большой степени развития. У человека желточный мешок желтка не содержит, а заполнен жидкостью, содержащей белки и соли. Жеточный мешок выполняет в незначительной степени трофическую функцию. Кроме того он является кроветворным органом: здесь образуются стволовые клетки крови и многочисленные кровеносные сосуды. Наконец, в желточном мешке происходит образование стволовых половых клеток, которые затем мигрируют в половые валики.

Пупочный канатик представляет собой длинный тяж, соединяющий плод с плацентой. Длина пуповины может колебаться от 10 до 30 см. Пупочный канатик с поверхности покрыт амниотической оболочкой. Он содержит в своем составе две артерии и одну вену. Пупочный канатик построен из студенистой (слизистой) ткани, которая состоит из воды, немногочисленных фибробластов, коллагеновых волокон, число которых увеличивается по мере развития плода. Кроме того, в составе студенистой ткани содержится очень большое количество гликозаминогликанов, в том числе гиалуроновой кислоты. Эта ткань получила название «вартонов студень». Она обеспечивает тургор и упругость пупочного канатика. Студенистая ткань предохраняет пупочные сосуды от сжатия, обеспечивая тем самым непрерывное снабжение эмбриона питательными веществами и кислородом.

Во время беременности между материнским организмом и плодом устанавливаются сложные взаимоотношения, которые представляют собой функциональную систему мать – плацента – плод. По мнению Ю.И. Савченкова, данная функциональная система представляет собой особое биологическое содружество двух и более организмов, в котором гомологичные исполнительные механизмы одноименных гомеостатических систем матери и плода специфически интегрируются, обеспечивая достижение одного и того же полезного результата. Центральным звеном этой системы является плацента, формирование которой происходит у человека и млекопитающих животных, обладающих внутриутробным типом развития зародыша и плода.
1   2   3


написать администратору сайта