Алгебра логики (1). Алгебра логики. Логическое умножение, сложение и отрицание. Алгебра Буля Алгебра высказываний
Скачать 265 Kb.
|
Алгебра логики.Логическое умножение, сложение и отрицание. Алгебра Буля Алгебра высказыванийАлгебра высказываний была разработана для того, чтобы можно было определять истинность или ложность составных высказываний, не вникая в их содержание. В алгебре высказываний суждениям (простым высказываниям) ставятся в соответствие логические переменные, обозначаемые прописными буквами латинского алфавита. Рассмотрим два простых высказывания: А = «Два умножить на два равно четырем». В = «Два умножить на два равно пяти». В нашем случае первое высказывание истинно (А = 1), а второе ложно (В = 0). В алгебре высказываний над высказываниями можно производить определенные логические операции, в результате которых получаются новые, составные высказывания. Для образования новых высказываний используются базовые логические операции, выражаемые с помощью логических связок «и», «или», «не». Логические связки Конъюнкция («и») Дизъюнкция («или») Инверсия («не») Логическое умножение (конъюнкция).Объединение двух (или нескольких) высказываний в одно с помощью союза «и» называется операцией логического умножения или конъюнкцией. Составное высказывание, образованное в результате операции логического умножения (конъюнкции), истинно тогда и только тогда, когда истинны все входящие в него простые высказывания. Пример(1) «2 * 2 = 5 и 3 * 3 = 10», (2) «2 * 2 = 5 и 3 * 3 = 9», (3) «2 *2 = 4 и 3 * 3 = 10», (4) «2 * 2 = 4 и 3 * 3 = 9». Из этих высказываний истинно только (4) Р = А & В.Р = А & В. С точки зрения алгебры высказываний мы записали формулу функции логического умножения, аргументами которой являются логические переменные А и В, которые могут принимать значения «истина» (1) и «ложь» (0). Сама функция логического умножения Р также может принимать лишь два значения «истина» (1) и «ложь» (0). Таблица истинности функции логического умноженияЗначение логической функции можно определить с помощью таблицы истинности данной функции
Логическое сложение (дизъюнкция)Объединение двух (или нескольких) высказываний с помощью союза «или» называется операцией логического сложения или дизъюнкцией. Составное высказывание, образованное в результате логического сложения (дизъюнкции), истинно тогда, когда истинно хотя бы одно из входящих в него простых высказываний. Пример(1) «2 * 2 = 5 или 3 * 3 = 10», (2) «2 * 2 = 5 или 3 * 3 = 9», (3) «2 * 2 = 4 или 3 * 3 = 10», (4) «2 * 2 = 4 или 3 * 3 = 9». F = A B Таблица истинности функции логического сложения.
Логическое отрицание (инверсия)Присоединение частицы «не» к высказыванию называется операцией логического отрицания или инверсией Логическое отрицание (инверсия) делает истинное высказывание ложным и, наоборот, ложное — истинным. ПримерПусть А = «Два умножить на два равно четырем» — истинное высказывание, тогда высказывание Р = «Два умножить на два не равно четырем», образованное с помощью операции логического отрицания, — ложно. Обозначается «¬А», или F = A Таблица истинности функции логического отрицания
F = A |