Главная страница
Навигация по странице:

  • Оперативная память

  • Магистрально-модульный принцип построения компьютера

  • Пропускная способность шины

  • Увеличение производительности процессора

  • Основные характеристики ПК Производительность (быстродействие) ПК

  • Производительность (быстродействие) процессора

  • Объем памяти (ёмкость)

  • Скорость обмена информации

  • Задание 2.

  • Тема. Тема 3.1. Архитектура компьютера. Архитектура компьютера


    Скачать 102.68 Kb.
    НазваниеАрхитектура компьютера
    Дата19.05.2021
    Размер102.68 Kb.
    Формат файлаdocx
    Имя файлаТема 3.1. Архитектура компьютера.docx
    ТипПрограмма
    #206833

    АРХИТЕКТУРА КОМПЬЮТЕРА

    Успешное применение языка ассемблера невозможно без знания и понимания архитектуры компьютера и знания архитектуры конкретного процессора, для которого будет создаваться программа.

    Архитектура компьютера – это логическая организация, структура и ресурсы компьютера, которые может использовать программист.

    Архитектура компьютера включает в себя архитектуры отдельных устройств, входящих в компьютер. Хотя компьютер состоит из многих внешних и внутренних устройств, но реально программисту на ассемблере приходится работать только с тремя устройствами компьютерной системы: процессором, памятью и портами ввода-вывода. В сущности, эти три устройства определяют работу всего компьютера и работу всех внешних устройств подключенных к нему. Все эти три устройства соединены между собой при помощи трех основных шин: шиной данных (ШД), шиной адреса (ША) и шиной управления (ШУ) (рис. 1).


    Рис. 1.

    Процессор — электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера.

    Оперативная память предназначена для загрузки программ и для временного хранения различных данных, необходимых для работы программ.

    Порты ввода-вывода предназначены для взаимодействия с пользователем и другими устройствами.

    Шина (bus) – это группа параллельных проводников, с помощью которых данные передаются от одного устройства к другому:

    • Шина данных (data bus) используется для обмена команд и данных между процессором и оперативной памятью, а также между устройствами ввода-вывода и ОЗУ.

    • Шина управления (control bus) используется для передачи специальных сигналов, которые синхронизируют работу всех устройств, подключенных к системной шине. Например, процессор должен знать, когда можно читать информацию с шины данных. Для этого используется специальный сигнал готовности шины данных.

    • Шина адреса (address bus) используется для указания адреса ячейки памяти в ОЗУ, к которой в текущий момент происходит обращение со стороны процессора или устройства ввода-вывода (чтение или запись).

    Все три шины вместе образуют системную шину или ее еще называют магистраль.

    Магистрально-модульный принцип построения компьютера. В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульность позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами.

    К магистрали, которая представляет собой три различные шины, подключаются процессор и оперативная память, а также периферийные устройства ввода, вывода и хранения информации, которые обмениваются информацией в форме последовательностей нулей и единиц, реализованных электрическими импульсами.

    Многие необходимые дополнительные устройства интегрированы в современные материнские (системные) платы: сетевая карта, внутренний модем, сетевой адаптер беспроводной связи Wi-Fi, контроллер IЕЕЕ 1394 для подключения цифровой видеокамеры, звуковая плата и др. Раньше эти устройства подключались к материнской плате с помощью слотов расширения и разъемов.
    Чипсет. Важнейшей частью материнской платы является чипсет, который во многом определяет архитектуру современного персонального компьютера. Современные компьютеры содержат две основные большие микросхемы чипсета (рис. 2):

    • контроллер-концентратор памяти, или Северный мост (англ. North Bridge), который обеспечивает работу процессора с оперативной памятью и с видеоподсистемой;

    • контроллер-концентратор ввода/вывода, или Южный мост (англ. South Bridge), обеспечивающий работу с внешними устройствами.


    Пропускная способность шины. Быстродействие процессора, оперативной памяти и периферийных устройств существенно различается. Быстродействие устройства зависит от тактовой Частоты обработки данных (обычно измеряется в мегагерцах — МГц) и разрядности, т. е. количества битов данных, обрабатываемых за один такт. (Такт — это промежуток времени между подачами электрических импульсов, синхронизирующих работу устройств компьютера.)

    Соответственно, скорость передачи данных (пропускная способность) соединяющих эти устройства шин также должна различаться. Пропускная способность шины (измеряется в бит/с) равна произведению разрядности шины (измеряется в битах) и частоты шины (измеряется в горцах — Гц, 1 Гц = 1 такт в секунду):

    пропускная способность шины = разрядность шины х частота шины.
    Системная шина (см. рис. 2). Между Северным мостом и процессором данные передаются по системной шине (FSB от англ. FrontSide Bus). В наиболее быстрых компьютерах (2008 год} частота системной шины составляет 400 МГц. Однако между Северным мостом и процессором эффективная частота передачи данных в 4 раза выше. Таким образом, процессор может получать и передавать данные с частотой 400 МГц · 4 = 1600 МГц. Так как разрядкость системной шины равна разрядности процессора и составляет 64 бита, то пропускная способность системной шины равна:

    64 бита · 1600 МГц = 102 400 Мбит/с = 100 Гбит/с = 12,5 Гбайт/с.
    Частота процессора. В процессоре используется внутреннее умножение частоты, поэтому частота процессора в несколько раз больше, чем частота системной шины. Например, в современных процессорах используется коэффициент умножения частоты 8. Это означает, что процессор за один такт шины способен генерировать 8 своих внутренних тактов и, следовательно, частота процессора составляет 400 МГц · 8 = 3,2 ГГц.
    Шина памяти (см. рис. 2). Обмен данными между северным мостом и оперативной памятью производится по шине памяти, частота которой может быть больше (например, в 4 раза), чем частота системной шины. У современных модулей памяти (DDRS от англ. double-data-rate) ‘Частота шины памяти может составлять 400 МГц · 4 = 1600 МГЦ, т. е. оперативная память получает данные с такой же частотой, что и процессор. Так как разрядность шины памяти равна разрядности процессора и составляет 64 бита, то пропускная способность шины памяти также равна:

    64 бита · 1600 МГц = 102 400 Мбит/с = 100 Гбит/с = 12,5 Гбайт/с = 12 800 Мбайт/с.
    Модули памяти маркируются своей пропускной способностью, выраженной в Мбайт/с: РС4200, РС8500, РС12800 и др.
    ШинаРСI Express (см. рис. 2). По мере усложнения графики приложений требования к быстродействию шины, связывающей видеопамять с процессором и оперативной памятью, возрастают.

    В настоящее время для подключения видеоплаты к северному мосту все большее распространение получает шина РСI Express (Peripherial Component Interconnect bus Express — ускоренная шина взаимодействия периферийных устройств). Пропускная способность этой шины может достигать 32 Гбайт/с.

    К видеоплате с помощью аналогового разъема VGA (Video Graphics Array — графический видеоадаптер) или цифрового разъема DVI (Digital Visual Interface – цифровой видеоинтерфейс) подключается электронно-лучевой или жидкокристаллический монитор или проектор.

    Шина SАТА (см. рис. 2]. Устройства внешней памяти (жесткие диски, СD- и DVD-дисководы) подключаются к южному мосту по шине SАТА (англ. Serial Advanced Technology Attachment — последовательная шина подключения накопителей), скорость передачи данных по которой может достигать 300 Мбайт/с.

    Шина USВ (см. рис. 2.). Для подключения принтеров, сканеров, цифровых камер и других периферийных устройств обычно используется шина USВ (Universal Serial Bus — универсальная последовательная шина). Эта шина обладает пропускной способностью до 60 Мбайт/с и обеспечивает подключение к компьютеру одновременно до 127 периферийных устройств (принтер, сканер, цифровая камера, Web-камера, модем и др.).

    Увеличение производительности процессора. Увеличение производительности процессоров за счет увеличения частоты имеет свой предел из-за тепловыделения. Выделение процессором теплоты Q пропорционально потребляемой мощности Р, которая, в свою очередь, пропорциональна квадрату частоты v2:

    Q – Р – v2.



    Рис. 2. Архитектура персонального компьютера
    Уже в настоящее время для отвода тепла от процессора используются массивные воздушные кулеры, состоящие из вентилятора и металлических теплоотводящих ребер.

    Увеличение производительности процессора, а значит и компьютера, достигается за счет увеличения количества ядер процессора (арифметических логических устройств). Вместо одного ядра процессора используются два или четыре ядра, что позволяет распараллелить вычисления и повысить производительность процессора.
    Основные характеристики ПК

    Производительность (быстродействие) ПК – возможность компьютера обрабатывать большие объёмы информации. Определяется быстродействием процессора, объёмом ОП и скоростью доступа к ней (например, Pentium III обрабатывает информацию со скоростью в сотни миллионов операций в секунду).

    Производительность (быстродействие) процессора – количество элементарных операций выполняемых за 1 секунду.

    Тактовая частота процессора (частота синхронизации) - число тактов процессора в секунду, а такт – промежуток времени (микросекунды) за который выполняется элементарная операция (например, сложение). Таким образом, тактовая частота- это число вырабатываемых за секунду импульсов, синхронизирующих работу узлов компьютера. Именно ТЧ определяет быстродействие компьютера.

    Разрядность процессора – max длина (кол-во разрядов) двоичного кода, который может обрабатываться и передаваться процессором целиком.

    Разрядность связана с размером специальных ячеек памяти – регистрами. Регистр в 1 байт (8бит) называют восьмиразрядным, в 2 байта – 16-разрядным и т.д.  Высокопроизводительные компьютеры имеют 8-байтовые регистры (64 разряда).

    Время доступа - быстродействие модулей ОП, это период времени, необходимый для считывания min порции информации из ячеек памяти или записи в память. Современные модули обладают скоростью доступа свыше 10нс (1нс=10-9с).

    Объем памяти (ёмкость) –  max объем информации, который может храниться в ней.

    Плотность записи – объем информации, записанной на единице длины дорожки (бит/мм).

    Скорость обмена информации – скорость записи/считывания на носитель, которая определяется скоростью вращения и перемещения этого носителя в устройстве.
    Задания по теме «Архитектура компьютеров. Основные характеристики компьютеров»
    Задание 1. Ответьте на вопросы

    1. Какой принцип положен в основу архитектуры современных ПК? Опишите его.

    2. Что является важнейшей частью материнской платы?

    3. Какие две основные большие микросхемы чипсета содержат современные компьютеры?

    4. Как узнать пропускную способность шины?

    5. По какой шине данные передаются между Северным мостом и процессором?

    6. По какой шине производится обмен данными между северным мостом и оперативной памятью?

    7. Какую шину используют для подключения видеоплаты к северному мосту?

    8. По какой шине устройства внешней памяти подключаются к южному мосту?

    9. Какую шину используют для подключения принтеров, сканеров, цифровых камер и других периферийных устройств?

    Задание 2. Зарисуйте схему архитектуры ПК

    Задание 3. Запишите основные характеристики ПК


    написать администратору сайта