астрофизика. Астрофизика делится на а практическую астрофизику
Скачать 57.37 Kb.
|
В отличие от физики астрономия лишена возможности ставить эксперименты. Практически всю информацию о небесных телах приносит электромагнитное излучение. В XIX веке физические методы исследования проникли в астрономию, и возникла симбиотическая наука – астрофизика, которая изучает физические свойства космических тел. Астрофизика делится на: а) практическую астрофизику, в которой разрабатываются и применяются практические методы астрофизических исследований и соответствующие инструменты и приборы, способные получить максимально полную и объективную информацию о космических телах; б) теоретическую астрофизику, в которой на основании законов физики даются объяснения наблюдаемым физическим явлениям. Изучение Вселенной началось и продолжается в течение нескольких тысячелетий, но вплоть до середины прошлого века исследования были исключительно в оптическом диапазоне электромагнитных волн. Первые астрономические научные наблюдения являлись астрометрическими, изучалось только расположение планет, звёзд и их видимое движение на небесной сфере. Излучение, проходящее сквозь земную атмосферу, изучается непосредственно с поверхности Земли. Для этого созданы астрономические инструменты- телескопы. Телескоп - увеличивает угол зрения, и собирает больше света. Телескопы для наблюдений в световых лучах называются оптическими. Существует два вида оптических телескопов- рефракторы и рефлекторы. У рефракторов объектив, собирающий световые лучи, изготовлен из стеклянных линз, а у рефлекторов объективом служит вогнутое зеркало. Телескопы бывают самыми разными – оптические , радиотелескопы, инфракрасные, нейтринные, рентгеновские. Сначала были изобретены радиотелескопы. Так, радиоволны принесли информацию о наличии крупных молекул в холодных молекулярных облаках, об активных галактиках, о строении ядер галактик, в том числе и нашей Галактики, тогда как оптическое излучение от центра Галактики полностью задерживается космической пылью. Любой радиотелескоп по принципу своего действия похож на оптический. Наша Земля надежно защищена атмосферой от проникающего жесткого электромагнитного излучения, от инфракрасного излучения. Поэтому современные инфракрасные, рентгеновские и гамма обсерватории вынесены за пределы земной атмосферы. Наблюдения в рентгеновском и гамма-диапазонах позволяли исследовать космические объекты на поздних стадиях их жизни, открыть пульсары, черные дыры, столкновения скоплений галактик и т.д. Важнейшим источником информации о большинстве небесных объектов является их излучение. Наиболее ценные и разнообразные сведения о телах позволяет получить спектральный анализ их излучения. Этим методом можно установить качественный и количественный химический состав светила, его температуру, наличие магнитного поля, скорость движения по лучу зрения и многое другое. Как известно, свет распространяется в виде электромагнитных волн. Каждому цвету соответствует определенная длина электромагнитной волны. За фиолетовыми лучами в спектре лежат ультрафиолетовые лучи, не видимые глазом, но действующие на фотопластинку. Еще меньшую длину волны имеют рентгеновские лучи. За красными лучами находится область инфракрасных лучей. Они невидимы, но воспринимаются приемниками инфракрасного излучения, например, специальными фотопластинками. Для получения спектров применяют приборы, называемые спектроскопом и спектрографом. В спектроскоп спектр рассматривают, а спектрографом его фотографируют. Фотография спектра называется спектрограммой. С помощью астрофизических методов можно определять скорости космических объектов, химический состав, массу, оценивать их размеры. Космос является гигантской физической лабораторией, в которой естественным путем создаются физические условия, невозможные на Земле, – экстремальные значения температур, плотностей, светимостей и т. д. Природа космических тел и космического пространства является предметом исследования не только астрономов, но и физиков. |