7 апта. Ауытыан кезде оны орнын басатын альтернативті гипотеза
Скачать 67.85 Kb.
|
Статистикалық гипотеза- алынған нәтиженің таңдалған статистикалық модельге қаншалықты сәйкес келетіні (сәйкес келмейтіні) туралы ұйғарым. Мысалы, модель параметрлерінің алынған бағалауы параметрлердің «шын» мәніне қаншалықты сәйкес келеді. Әдетте 2 альтернативті статистикалық гипотезаны қарастырады. Н0- қорытынды гипотеза, оны біз қандай да бір статистикалық критерийдің көмегімен тұжырымдаймыз және тексереміз. Н1- Н1 ауытқыған кезде оның орнын басатын альтернативті гипотеза. Статистикалық критерийді қолдану нәтижесінде нөлдік гипотезаға қатысты келесі шешімдер болуы мүмкін : 1. Н0 гипотезасы бастапқы кезден бастап дұрыс болды, бірақ біз оны қабыл алмаймыз. Осы кездегі біздің жіберген қатеміз-бірінші текті қате деп аталады: р1- бірінші текті қатенің ықтималдығы критерий маңыздылығының деңгейі деп аталады. 2. Н0 гипотеза бастапқы кезден бастап дұрыс және біз оны қайтарған жоқпыз. Біз дұрыс шешім қабылдадық. Осы оқиғаның ықтималдығы р=1-р1. 3. Н0 гипотезасы бастапқы кезден бастап дұрыс емес, бірақ біз оны қабылдамауға негіз таппадық. Біз екінші текті қате жібердік, оның ықтималдығын р2 деп белгілейміз және ол критерий қуаты деп аталады. 4. Н0 гипотезасы бастапқы кезден бастап дұрыс емес және біз оны қабыл алмадық. Осы дұрыс шешімнің ықтималдығы р=1-р2. р1 мен р2 арасындағы өзара байланыс әлі толық бүге-шүгесіне дейін зерттелген жоқ. Бірақ, бірінші текті қате неғұрлым аз болса, соғұрлым екінші текті қате көп және керісінше болатыны белгілі. Маңыздылық деңгейінің мәні 5% болғандағы осы ықтималдықтар арақатынасын оптималды деп санау қабылданған; сонымен психологияда шешімдердің көпшілігінің дұрыстығына 95% ықтималдықпен (100-дің 95 жағдайында)кепілдеме беріледі. Әрбір статистикалық критерий негізінде критерийлік таралу – осы критерий үшін арнайы конструкцияланған кездейсоқ шама ықтималдықтарының таралу заңы жатыр. Бұл таралулар кесте түрінде көрсетіледі. Зерттелетін іріктеме көлемін біле және маңыздылық деңгейі р1-ді таңдай отырып, біз кестеден критерийлік таралудың Кt-квантилін табамыз. Онымен біздің іріктеме бойынша есептелген эмпирикалық мән К-ны салыстырамыз және дұрыстығына р=1-р1 ықтималдықпен сенімді болуға болатындай шешім қабылдаймыз.Осы тәрізді тексеруді жүргізудің кәдімгі тәртібі төмендегідей: 1. Тексерілуге тиісті статистикалық гипотезаны ұсынады. Ол нөлдік Н0 гипотеза деп аталады. Нөлдік Н0 гипотеза жағымды болуы мүмкін: Н0 : «зерттелетін іріктеме болжанған модельге сәйкес келеді » немесе «зерттелетін параметр болжанған мәнге ие болады», жағымсыз болуы мүмкін: Н0 : «зерттелетін іріктеме болжанған модельге сәйкес емес» немесе «зерттелетін параметрдің болжанған мәнге ие болуы мүмкін емес». Нөлдік Н0 гипотеза үшін альтернативті Н1 гипотезаның бар болатынын айтпақшы болады . 2. Зерттелетін іріктеме элементтері бойынша К «эмпирикалық статистиканы» есептейді. Есептеуге арналған формула қолданылған статистикалық критериймен беріледі. 3. К эмпирикалық статистиканы кестелік мән Кt-мен салыстырады.Сәйкес кестені қолданылған статистикалық критерий ұсынады. Кt таңдау іріктеме көлеміне және біздің шешімдеріміздегі сенімділік дәрежесіне тәуелді. Сенімділік дәрежесі жіберілген қате ықтималдығы шамасымен бағаланады. Қате ықтималдығы неғұрлым аз болса, соғұрлым біз шешімімізге сенімдіміз. 4. К мен Кt-ны салыстыру (нақты арақатынас қолданылған критериймен беріледі) нәтижелері бойынша не нөлдік гипотеза сенімділіктің таңдап алынған дәрежесімен қабылданбайды және оның орнын альтернативті гипотеза басады, не біз оның ауытқуы үшін жеткілікті негіз таба алмаймыз және нөлдік гипотезаны жұмысшы деп есептейміз. Загрузка... Келтірілген сызба бойынша статистикалық гипотезаны тексеру критерийлерінің көпшілігі жұмыс істейді. Статистикалық гипотезаларды тексеруден кейінгі барлық мүмкін шешімдер өте ықтимал. Әрқашан да қате мүмкін. Сондықтан статистикалық гипотезаны біз не қабылдаймыз не қатенің мүмкін болуын мойындап, гипотезаны қабылдамаға негіз таба алмаймыз. Гипотезаны қабылдау – тым айқын естіледі, ғылыми зерттеу рухына қайшы келеді. Гипотезаны қабылдау зерттеуді тоқтату дегенді білдіреді: барлығы анық, ары қарай жасайтын ештеңе жоқ. Егер біз нөлдік гипотезаны қабылдамасақ, онда альтернативті мүмкін гипотеза күшіне енеді, ол өз кезегінде тексеруді қажет етеді. Егер біз нөлдік гипотезаны қабылдамауға тиісті негіз таба алмасақ, біз өз қатеміздің мүмкіндігін түсініп, сол гипотезамен жұмыс жасауды жалғастырамыз, яғни ғылыми зерттеудің табиғи процесі жалғасады. Бұл сөз ойыны емес, бұған бізді статистикалық әдіс-амалды қолдану қажеттілігі мәжбүр етеді. Осы ой-қорытулардан мынадай ереже шығады : психологияда нөлдік жағымсыз гипотезаларды тұжырымдау қажет. Статистикалық критерийлерді қолдану қажеттілігі үлкен және кіші іріктемелердің қауіптілігін тудырады. Көлемі шағын, жеткілікті ықтимал іріктемелер кез келген модельге кіргізіледі, яғни статистикалық критерий гипотезаны берілген маңыздылық деңгейінде қабылдамауға негіз таппайды. Көлемі өте үлкен іріктемелер үшін, керісінше, статистикалық критерий кез келген гипотезаны маңыздылықтың кез келген берілген деңгейінде қайтарады. Іріктеме көлемі үлкейген сайын статистикалық критерий талаптарын қанағаттандыруы мүмкін модельдер класы тарылады . Іріктеменің (өлшеудің қажетті мөлшерінің, сыналушылар мөлшерінің) тиімді көлеміне негізделген таңдау –шешімі психологиялық зерттеудің нақты міндетімен анықталатын мәселе. Математикалық және психологиялық гипотезаны ажыратып көрсетеді. Эксперимент психологиялық гипотезаны (психологиялық зерттеудің негізгі гипотезасын) тексеру құралы болып табылады. Психологиялық гипотеза тағдыры туралы шешім эксперимент нәтижелерін интерференциялау негізінде қабылданады. Эксперименттің соңғы нәтижелері берілген психологиялық өлшеулерді (кездейсоқ шамаларды таңдауды) таңдап алынған математикалық модель шеңберінде талдаумен анықталады. Модельді таңдау және одан кейінгі статистикалық анализ шын мәнінде статистикалық гипотезаларды тексеру тізбегі. Мынадай схеманы көрсету пайдалы: психологиялық гипотеза → мәліметтерді жинау және өңдеу→ статистикалық гипотезаларды ұсыну және тексеру → психологиялық интерпретация→ қорытынды. Математикалық статистика әдістерінің психологиялық талдау кезінде тек қосымша құрал болатынын атап көрсетеміз. 1. Себепті тәуелсіздік немесе статистикалық байланыс, «өңделмеген» берілген нәрсені шығару- бұл әр зерттеудің нәтижесі. Статистикалақ гипотезаны бекіту және теріске шығару эксперименталды гипотезаның, айырмашылығының, байланысының мағынасын білдіреді. Зерттеуші бақылау және эксперименталды топтардың айырмашылық гипотезасын бекітуге тырысады Топтардың теңдігі туралы гипотеза-нольдік гипотеза. Статистикалық тұжырым шешімнің әр түрлі варианттары болуы мүмкін. Зерттеуші статистикалық нольдік- гипотезаны бекітіп немесе теріске шығара алады. Оның 4 баламасы болу керек. 1) дұрыс нольдік-гипотезаны қабылдау 2) жасалған нольдік- гипотезаны теріске шығару 3) жасалған нольдік- гипотезаны қабылдау 4) дұрыс нольдік-гипотезаны теріске шығару. Екі нұсқаудың шешімі дұрыс, екеуі-жалған. 1-ші, 2-шісі қате нұсқау болып табылады. Егер нольдік-гипотезаны теріске шығарса, онда 1 нұсқаудың қатесін зерттеуші жібереді. Ал жалған нольдік-гипотезаны қабылдаса 2 нұсқаудың қатесін жібереді. Зерттеу гипотезасын бастапқы стадиясында жоққа шығару зерттеушіге көпке дейін кедергі болады. Бірақ, ғылымға адам еңбегінің сферасы болғандықтан максималды толық шынайы білім алған қажет. Психологиялық ғылымның зерттеу стратегиясы мынадай ізденіс эксперименттен дәлелдейтін экспериментке өту, төмен шындықтан-жоғарыға, аз зерттеулерден-үлкен зерттеулерге өтуден тұрады. Статистикалық гипотезаны теріске шығару немесе бекіту экспериментті гипотезаны қабылдау, бекіту шарты болмайды. Егер статистикалық гипотеза жоққа шығарылса, зерттеуші әр түрлі іске асырады. Ол экспериментті аяқтап, жаңа гипотеза шығаруға тырысады. Жеке жағдайды экспериментке дайындау өте қызықты іс. Мысалы, эксперименталды гипотеза қолданды дейік, қорытындылау қажет. Зерттеушілерді қандай топқа бөлеміз, қандай сыртқы жағдайда нәтижелеу болады деген сұрақ туындайды. Экспериментальды нәтиже психологиялық объектілер, басқа да жағдайларға өзгермейді. 1. Объектілер сәйкес жалпылау. Популяцияның психологиядан тыс мінездемесі екі түрге бөлінеді. 1) биологиялық 2) социомәдени Негізгі биологиялық мінездемеге адамның жынысы,жас шамасы,нәсілі, денсаулығы жатады. Дифференциальды психологиялық зерттеуге екі ауыспалы өзгерістер көрінеді. Социомәдени ерекшеліктер екінші нәтиженің жалпылауы болып табылады. Басқа ұлттарға және мәдениетіне зерттеу жүргізіледі. Эксперименттің нәтижесіне білім деңгейі, кіріс, нәсілділігі әсер етеді. Проблеманың шешілуі зерттеудің жоспарынан, талаптың репрезентантығына байланысты. 2. Зерттеу жағдайы. Психологиялық зерттеуде зерттеушінің іс әрекет жағдайы, тапсырманың ерекшеліктері маңызды орын алады. Эксперимент нәтижесі болып зерттелушінің психофизикалық зерттелуі әсер етеді. 3. Зерттеуші. Психология басқа ғылымдарға қарағанда зерттеушінің мінезін, білімділігін шығарып тастай алмайды. «Екінші жасырын тәжірибе» зерттеушінің зерттеуінің нәтижесін бақылауға рұқсат етеді. Ал толық бақылау зерттеушінің жеке ерекшеліктерне мына факторлы жоспарға қосымша ретінде зерттеушінің жынысы, ұлтына, жасына, жеке-психологиялық ерекшелігіне байланысты. Қорытындылай келе, зерттеуші гипотезаға байланысты 2 қате жіберуі мүмкін: 1) жасалған эксперименталды гипотезаны қабылдау 2) дұрыс гипотезаны теріске шығару. Зерттеушіні зерттеу нәтижесін қорытындылаған кезде қауіп тосып тұрады. 1) Таңдау ерекшіліктері 2) Эксперименттің маңызы 3) Зерттеушінің жеке тұлғасы Зерттеудің екі стратегиясы болуы мүмкін: 1) генерализацияның шеңберін азайту 2) индуктивті жол таңдау Эксперимент-сын мен идеяларды жинақтауда жақсы әдіс. 2. Әр зерттеу жұмысы болып ғылым қоғам қабылданған нәтиже есептеледі. Өңдеу формаларының нәтижесін негізі екі формаға бөлуге болады: квалификациялық және ғылыми-зерттеу. Квалификациялық жұмыс- курстық, дипломдық жұмыс, диссертация т.б. -өз жұмысын көрсеткен зерттеушінің алған құжатты еңбегінің жемісі. Ғылыми- нәтиже беретін жұмыстарды 3 түрге бөлуге болады. 1) Ауызша мазмұндама 2) Публикация 3) Компьютерлік нұсқаулар. Бұлардың барлығы мәтіндік, символикалық және графикалық ақпаратқа жатады. Сондықтан ғылыми жұмыстардың нәтижесін көрсету үшін, берілген жазудың әдістемелік мінездемесін бастау керек. Ақпараттың мына түрлерін белгілеуге болады: вербалды түрі (мәтін, сөйлеу); символикалық (белгілер, формалар); графикалық (схемалар, графиктер); зат-бейнелік (макеттер,модельдер, фильмдер т.б.). Адамдар қоғамында ақпарат берудің негізгі құрамы сөз болып табылады. Сондықтан кез-келген ғылыми хабарлама-бұл белгілі бір ереже бойынша ұйымдастырылған мәтін. Мәтін түрлерін екіге бөледі: табиғи, және ғылыми тіл. Бірақ, бұл тілдерді бір-бірінен айыруға болмайды, ғылыми тіл күнделікті тілмен, ал табиғи тіл ғылыми тілмен араласып тұрады. Табиғи тілге қарағанда ғылыми тіл біржақты маңызы болады. Психологияда ғылыми терминдер мен күнделікті терминология арасында жіңішке бөлек болады. Ғылыми мәтінге қойылатын талап;ол мазмұндалудың логикалық ойы және мағыналығы. Ғылыми мәтін әдебиет мәтінінен тұрақты құрылым және сөзтәркестерінен қолданылады. Айтылудың негізігі логикалық формалары болады: 1) Индуктивті- эмпирикалық материалды жинақтайды; 2) дедуктивті-жалпыдан жекеге логикалық қорытынды немесе алгоритмді жазу. 3) аналогия-«трансдукция» 4) түсіндірме немесе комментарий- «аударма», бір мәтіннің мазмұнын басқа мәтін құру арқылы ашу. Келесі қорытындыны суреттеу формасы-геометриялық. Геометриялық жазу-көрнекі, ол мәтінді толықтырып, түсіндіреді. Психологияда ғылыми ақпараттың бірнеше негізгі графикалық формалары қолданылады: топологиялық және метрикалық мінездемелерге сүйенеді. Ақпаратты таратудағы негізгі әдісте топологиялық мінездеме қолданылады-бұл графалар. Графа көптеген нүктелерден тұрады, бұл нүктелер бір-бірімен сызықты қосылады. Графалар психологиялық зерттеулерде нәтижені жазғанда кездеседі. Ориенталды графалар жүйелерді жазған уақытта кездеседі. Ориенталды емес графалар коррекциялық байланыста қолданылады. Графалармен қоса графикалық жазулар да кездеседі, диаграмма, гистограмма, әртүрлі графикалар. Гистограмма-«бағанды» диаграмма, координата жүйесі. Бұл психологияда зерттеуші әр түрлі сапалы ерекшеліктерімен бар зерттеушілерді алуға болады. Шартты түрде графиктер мазмұнына қарай екі түрге бөлінеді. 1) параметрдің өзгеруі 2) тәуелді және тәуелсіз байланысы График салудағы бірнеше кеңестер бар. Л.В. Куликов жаңадан зерттеу бастағандарға мынадай кеңестер береді: 1. График және мәтін бір-бірімен толықтырылуы керек. 2. График түсінікті болуы қажет 3. Бір графикте төрт қисықтан көбірек салу рұқсат етілмейді. 4. Параметрдің мағыналығын графиканың сызығында көрсете білу, маңыздысын санмен белгілеу керек. 5. Осьтағы жазуды жоғарыда және сол жақта жазу керек. 6. Сызықтағы нүктелерді дөңгелектермен, квадрат, үшбұрыштармен белгілеу керек. Ғылыми жұмыстың нәтижесі болып сан мағынасы келеді: 1) орталық тенденцияның көрсеткіші 2) абсолюттік жиілік 3) жан-жаққа шашу көрсеткіші 4) критерий мағынасы 5) линейлік байланыстың коэффициенті. Алғашқы нәтижелер кестенің суреті жазу жолы-зерттелетін бағана- параметрлердің өлшеуіш мағынасы. Математикалық статистикалық нәтижесі кестеде көрінеді. Стьюдент критериясы Қарастырып отырған деректер жұптасқан болғандықтан екі таңдама көлемі бірдей және n-ге тең. Жұптасқан көрсеткіштер арасындағы айырманы d арқылы белгілейміз. Статистикалық талдауды жүргізу барысы: 1. Зерттеудің әр жұбы үшін көрсеткіштердің айырмаларын есептеу; 2. Алынған dі мәндерінің орта мәнін, стандарттық ауытқуын және орта мәннің стандарттық қатесін төменгі формулалар бойынша есептеу; Орта мән: d = Стандарттық ауытқу:σ= Орта мәннің стандарттық қатесі: = 3.Критерий статистикасының шамасын есептеу:t= 4. Еркіндік дәрежесінің санын есептеу;df=n-1. 5. Арнайы статистикалық кестеден а мәнділік деңгейіне сәйкес сыни нүктені табу.; 6. Критерий статистикасының шамасын сыни мәнмен салыстырып Но нөлдік жорамалға қатысты шешім қабылдау:Егер tбақ>tсыни болса,Н0 жорамалы жоққа шығарылады. Егер tбақ 7. Статистикалық талдау нәтижелеріне қорытынды жасау; 26. Екі топты салыстыру: тәуелсіз таңдамалар үшін Стьюдент критериясы. Тәуелсіз таңдамалар деп әрқайсысында әртүрлі нысандар бақыланатын тандамаларды айтады. Мысалы, бірінші бақылау тобы(сау адамдар) және екінші тәжірибелік топ (қандай да бір белгілі емдеу түрін алып жатқан ауру адамдар) болуы мүмкін.Айталық Х1 және Х2 тәуелсіз бас жиынтықтары бар болсын. Олардан алынған репрезентативті екі тәуелсіз таңдамалар деректері негізінде орта мәндерді салыстыру қажет делік. Мұндай есеп қандай да бір белгілі әсерге душар болған (мысалы, әр түрлі емдеу әдістері бойынша емдеу курсын алып жатқан пациенттер, аурулардың бір тобы белгілі дәрілік препаратты, ал екінші топ – плацебоны қабылдайды) екі аурулар тобын салыстырғанда туады. Бұл жағдайда орта мәндерді салыстыру - емдеу түрінің ықпал ету дәрежесі жөнінде,ықпалдың мүмкін мәнділігі жөнінде немесе, керісінше, олардың болмауы жөнінде пікір айтуға мүмкіндік береді.Стьюденттің жұптаспаған 1-критерийі екі тәуелсіз таңдамалар бойынша бас жиынтықтың орта мәндерінің бағалары арасындағы айырмашылықты статистикалық мәнділікке тексеруге мүмкіндік береді. Стьюдент критерийін қолдануға қойылатын талаптар: 1.Салыстырылатын таңдамалардың екеуі де қалыпты таралған бас жиынтықтардан алынған. 2.Тек қана екі топты салыстыруға болады 3. Бас жиынтықтардың дисперсияларының теңдігін[D(x 1)=D(x 2)] (біртектілігін) ескеру қажет. Дисперсиялардың теңдігін анықтау үшін Фишердің Ғ-критерийін қолдану қажет. 4.Стьюденттің t- критерийін тәуелді топтар үшін есептеуге айырмалар әдісіне негізделген басқа тәсіл қолданылады. Тәуелсіз 2таңдама үшін жұптаспаған tкрит қолдану әдісі: 1.Н0 және Н1 анықтаймыз.Н0 2 популяцияның орта мәндері тең,салыстырып отырған жиынтықтардың көрсеткіштері арасында айырмашылық жоқ.Н1 2топ орта мәндері тең емес,айырмашылық жоқ. 2.х1,х2,стандарттық ауытқу,дисперсия есептейміз. 3.Дисперсияның біртектілігін бағалаймыз. 4.tстат есептейміз. 5.tкрит есептейміз.(таблица) 6.Н0 жорамалға қатысты шешім қабылдау:tcr>tst=H0.tcr 27.Еркіндік дәрежесінің саны(df) - бұл таңдама құрамындағы немесе бақылаулар саны минус еркін түрленетін бірліктер саны бағаланатын статистикалық параметрлер саны.Мысалы, үй қояндарының салмақтары бойынша қандай-да бір вариациялық қатар бар болсын: Х1, Х2,… Бұл қатардың жалпылама сипаттамасы - орта мән. Егер бізде орта мәннен басқа сандық деректер жоқ болса, онда қатардың әрбір жеке мәнін қалай анықтауға болады? Бұл жиынтықтағы бір мәнді анықтау қалған басқа мәндерге байланысты екені белгілі. Мысалы, 2 қоянның салмағы бірге алғанда 6 кг, ал олардың біреуінің салмағы 2,5 кг. Екінші қоянның салмағы н бірінші қоянның салмағы арқылы білуге болады, яғни оның салмағы біріншінің салмағымен дәл анықталған. Сонымен, тек бір ғана еркіндік дәрежесі бар (2-1=1). Егер үш қоянның салмағы бірге алғанда 5 кг болса, онда бір қоянның салмағы қалған екі қоянның салмақтары арқылы дәл анықталған. Яғни, бұл жағдайда 2 еркіндік дәрежелері (3-1=2) бар және тағы с. с. 28. Критерияның критикалық (сыни нүктесі) мәні. Статистикалық жорамал деп - бас жиынтықтың белгісіз таралу түрі немесе белгілі таралудың параметрлерінің шамасы жөніндегі ұйғарымды айтады.Статистикалық жорамалдарды тексеру медициналық зерттеулерде қолданылатын ең маңызды статистикалық әдістердің бірі болып саналады,статистикалық тексеруге салыстыру арқылы тексеру және әртүрлі үрдістерді бағалау жатады. Нөлдік жорамал -таңдама деректерін салыстырғанда олардың арасындағы айырмашылықтың жоқтығы немесе ұқсастығы жөніндегі ұйғарымды айтады.(ерлер мен әйелдердің шылым шегу көрсеткіші бірдей) Балама жорамал-нөлдік жорамалға қарама-қарсы жорамал.(ерлер мен әйелдердің шылым шегу көрсеткіші әртүрлі) Ітекті қателік - дұрыс нөлдік жорамалды жоққа шығару, яғни шындығында жоқ әсерді бар деп қорытынды жасау.Ітекті қатені жіберу ықтималдылығы а мәнділік деңгейі арқылы белгілейміз. II текті қателік - дұрыс емес нөлдік жорамалды қабылдау, яғни шындығында бар әсерді жоқ деп қорытынды жасау.ІІтекті қатені жіберу ықтималдылығы Вмәнділік деңгейі арқылы белгіленеді. Стат.критерий-нөлдік жорамалды қабылдауға н/е жоққа шығаруға мүмкіндік беретін ереже.Стат.критерийді таңдау: 1.Талдау; 2.Деректердің түрлері; 3.Деректердің таралу түрі; 4.Жұптасқан деректер; 5.Тәуелсіз деректер; 6.Салыстыралатын түрлері; Сәйкес критерийді таңдағаннан кейін К қабылдайтын барлық мәндер жиынын 2 қиылыспайтын ішкі жиындарға бөлеміз: 1.Сыни аймақ-нөлдік жорамалды қабылдайтын критерий мәндерінің жиынтығы. 2.Жорамалды қабылдау аймағы-нөлдік жорамалды қабылдайтын критерий мәнднрінің жиынтығы. Нөлдік жорамалды жоққа шығару басталатын критерийдің мәні-сыни мән деп аталады.Сыни нүктелерді әрбір критерий үшін оның таралу түріне сәйкес келетін арнайы кестеден табады. 29. Критикалық аймақ және жорамалды қабылдау аймағы.Стат.критерий-нөлдік жорамалды қабылдауға н/е жоққа шығаруға мүмкіндік беретін ереже.Стат.критерийді таңдау: 1.Талдау; 2.Деректердің түрлері; 3.Деректердің таралу түрі; 4.Жұптасқан деректер; 5.Тәуелсіз деректер; 6.Салыстыралатын түрлері; Сәйкес критерийді таңдағаннан кейін К қабылдайтын барлық мәндер жиынын 2 қиылыспайтын ішкі жиындарға бөлеміз: 1.Сыни аймақ-нөлдік жорамалды қабылдайтын критерий мәндерінің жиынтығы. 2.Жорамалды қабылдау аймағы-нөлдік жорамалды қабылдайтын критерий мәндерінің жиынтығы. Нөлдік жорамалды жоққа шығару басталатын критерийдің мәні-сыни мән деп аталады.Сыни нүктелерді әрбір критерий үшін оның таралу түріне сәйкес келетін арнайы кестеден табады. 30. Жорамалдарды тексерудің параметрлік емес критерийлері (тәуелді таңдамалар үшін). Параметрлік емес критерий-бас жиынтықтағы зерттелетін белгілердің қалыпты таралуына негізделмеген және олардың негізгі параметрлерін есептеуді талап етпейтін деректерді өңдеудің стат.әдістерін айтады.Тәуелді таңдама-2әртүрлі жағдайда 1таңдамада бақыланған 2айнымалыдан тұратын таңдаманы айтады. Вилкоксонның Ттаңбалы рангілер критерийі: Жұптасқан деректердің +,- таңбалы айырмаларына рангілер беруге негізделген ж/е бас жиынтықтағы жұптасқан бақылаулар арасында айырмашылықтың жоқтығы,яғни жұптасқан деректер үшін медианалардың айырмасының 0ге теңдігі жөніндегі Н0ді тексеру үшін қолданылады. Статистикалық талдауды жүргізу барысы: 1. Нөлдік және балама жорамалдар ұйғарылады және мәнділік деңгейі тағайындалады. 2. Жұп мәндердің әрқайсысы _ үшін олардын арасындағы айырмалар есептеледі және оларға сәйкес «плюс» және «минус»таңбалары беріледі. 3. Айырмалары нөлге тең жұптар (нөлдік өзгерістер) әрі қарай талдаудан шығарылып тасталады және n мәні сәйкес азаяды. 4. Айырмалар мәндердің өсу ретіне қарай таңбаны есепке алмай реттеліп жазылады(абсолюттік шамалары бойынша вариациялық қатар құру). 5. Айырмалардың вариациялық қатары ранжирленеді, бірдей айырмаларға сәйкес рангілердің орта мәндері беріледі. 6. Оң таңбалы айырмалардың рангілерінің қосындысын (Т+)және теріс таңбалы айырмалардың рангілерінің қосындысын (Т-)табу. 7. Т критерийінің статистикасы қосындылардың кішісіне тең. 8. Т критерийінің есептелген мәнін кестелік сыни мәнмен салыстыру және Но нөлдік жорамалға қатысты шешім қабылдау.Егер Тбақ>Тсыни болса,Но жорамалы қабылданады. Zтаңбалар критерийі-қолдану схемасы:жұптасқан бақылауларды бағалағанда қолданылатын критерий. 1. Салыстырылып отырған жұптасқан бақылаулар дағы өзгерістердің бағыттары анықталады және бақылаудың әр жұбы үшін «+»немесе «-» таңбаларымен, ал өзгерістер жоқ болған жағдайда 0-мен белгіленеді. 2. Айырмашылығы бар жұп бақылаулардың жалпы саны саналады. 3. Салыстырудың бірдей нәтижелерінің аз саны есептеледі де Z әрпімен белгіленеді. 4. Алынған Z саны берілген жұп бақылаулар саны үшін арнайы кестедегі сыни мәндермен салыстырылады. 5. Егер Z саны Z 0,05 (5% мәнділік деңгейіне сәйкес келетін) сыни кестелік мәнге тең немесе одан үлкен болса, онда орын алған өзгерістер кездейсоқ, статистикалық мәнді емес деген қорытынды жасалады (нөлдік жорамал қабылданады) 31. Жорамалдарды тексерудің параметрлік емес критерийлері (тәуелсіз таңдамалар үшін) Параметрлік емес критерий-бас жиынтықтағы зерттелетін белгілердің қалыпты таралуына негізделмеген және олардың негізгі параметрлерін есептеуді талап етпейтін деректерді өңдеудің стат.әдістерін айтады. Манн-Уитнидің U критерийі:ең кең қолданылатын критерий.2тәуелсіз таңдамалар арасындағы айырмашылықты қандай да бір белгінің деңгейі б/ша бағалау үшін қолданылады.Таңдама арасындағы айырмашылықты айқындайтын бұл әдісті 1945ж Уилкоксын ұсынған.1947ж Манн ж/е Уитни қайта өңдеп ұсынды.Таңдама 3сан болу керек.Манн-Уитни крит қолдану әдісі: 1. Нөлдік және балама жорамалдар анықталады: •Но: екі тандама бірдей бас жиынтықтардан алынған,Н1екі тандама әртүрлі бас жиынтықтардан алынған. 2. Бақылаудың екі тобын бір топқа біріктіреміз де оны варианталардың өсу реті бойынша жазу арқылы вариациялық қатар құрамыз және топтың әрбір элементіне сәйкес рангісін береміз. 3.1,2 таңдама үшін рангілердің қосындысын табам; 4.2топтың рангілер қосындысының үлкенін анықтау. . Пирсонның Xu-квадрат және Колмогоров-Смирновтың сәйкестік критерийлері. Н0 тексеру үшін Пирсонның Хи2 крит.қолданылады.Пирсон Хи2крит алғаш рет 1900ж жиіліктердің келісім дәрежесін тексеру үшін қолданылады.Хи2 критерийін есептеу бақыланған жиіліктермен күтілетін жиіліктер арасындағы айырмашылықты айқындауға негізделген. Хи2крит қолдануға қойылатын талаптар: 1.Деректер өзара жоққа шығарылатын категориялардан әрқайсысы үшін саналған бүтін сандармен өрнектелген жиіліктер түрінде берілу тиіс. 2.Бақылау жалпы саны 20дан көп болуы тиіс. 3.Н0 жорамалға сәйкес күтілетін жиіліктер саны әр торда 5тен кем болмауы тиіс. 4.Деректердің таралу түріне қатысты ешқандай шектеу шектеу болмауы тиіс. 5.Салыстырылатын топтар өлшемі шамамен бірдей болуы тиіс. 6.Егер 2*2 орайластық кестесінің қандай да бір торына күт.жиілік 5тен аз болса,онда Фишердің дәл крит қолданылады. Колмогоров- Смирновтың келісім критерийі- деректерді өңдеу реті: 1. Бақылаудың салыстырылатын топтарында кездесетін варианталардың барлығы бір қатарға өсу ретімен біріктіріледі. 2. Бірінші және екінші топтар үшін варианталардың жиіліктері жазылады. 3. Жиіліктер жинақталған тәртіппен қойылады. 4. Жинақталған жиіліктер сәйкес топтардағы бақылаулар санына бөлінеді. 5. Топтар бойынша жинақталған жиіліктердің айырымы есептеледі және бұл кезде таңба есепке алынбайды. 6. D ең жоғарғы айырма табылады. 7. 2 критерийі есептеледі. 8. 2 алынған мәні мен салыстырылады. 33. Жорамалдарды тексерудің негізгі кезеңдері. Стат жорамал-бас жиынтықтың белгісіз таралу түрі н/е белгілі таралудың параметрлік жөніндегі ұйғарым.Стат жорамал-мед.зерт.қолданылатын ең маңызды стат.әдістің бірі.Стат жорамалды тексеруге-салыстыру арқылы тексеру ж/е әртүрлі үрдісті бағалау жатады. Стат жорамалды тексеру кезеңдері: 1.Н0 ж/е балама жорамал ұйғарамыз. 2.Н0 тексеру үшін сәйкес крит аламыз. 3.Крит. бақылау мәнін есептейміз. 4.Альфа мәнділік деңгейін есептейміз. 5.Арнайы кестеден альфа мәндері деңгейі арқылы сыни аймақты анықтаймыз. 6.Есептелген мәнмен сыни мәнмен салыстырамыз. 7.Қорытынды жасау:егер стат.есептелген мәні сыни аймақта жатса Н0 жорамал жоққа шығарылады ж/е балама жорамал қабылданады.Егер стат.есептелген мәні сыни аймақта жатса Н1 жоққа шығарылады ж/е нолдік жорамал қабылданады. 34. Дисперсиялық талдаудың негізгі ұғымдары. Дисп.талдау-бұл екіден артық топтардың орта мәндерін салыстыру үшін,яғни бірнеше тәуелсіз топтардың бір бас жиынтыққа жататындығын н/жатпайтындығын анықтау үшін қолданылады.Дисперсиялық талдау негізіне зерттеліп отырған жиынтықтың барлық элементтерінің орта мәннен ауытқуын талдау жатады.Ауытқу өлшемі ретінде ауытқулардың орта квадраты-дисперсия алынады.Топаралық дисп-фактордың таңдама орта мәндердің өзгергіштігіне ықпал етуінен туған дисп,факторлық дисп деп атайды.Топішілік дисп-кездейсоқ себептерден туған және орта мәндердің өзгергіштігіне ықпал етпейтін дисп,қалдық дисп деп атайды. 1.Нөлдік ж/е балама жорамалды анықтаймыз. 2.Қажетті деректерді К таңдамалардан алу.М.факт мен MS есептеу, егер М.Факт Mқалдық болса,онда Fкритерийін есептейміз. 3.Критерий статистикасын есептеу: Fбақ 4. а.мәнділік деңгейіне сәйкес (а=0,05немесе а=0,01) Фишер таралуының сыни мәнін арнайы кестеден табу. 5.F критерийінің статистикасын сыни нүктемен салыстыру 6.Но жорамалға қатысты шешім қабылдау: Егер F бак Сыни деңгейінде нөлдік жорамал болса,онда берілген мәнділік қабылданады.Егер F бак > Сыни болса, онда нөлдік жорамал жоққа шығарылады және фактордың ықпалы маңызды болып табылады. Дисперсиялық талдауды қолдануға қойылатын шарттар: 1. Әрбір таңдама басқа таңдамалардан тәуелсіз. 2. Әрбір таңдама зерттелетін бас жиынздейсоқ түрде алынған. 3. Бас жиынтық қалыпты таралған. 4. Топтардың бас дисперсиялары бірдей. 35.Бірфакторлы дисперсиялық талдау. Бір факторлы дисп-топта 1 фактор деңгейі арқылы анықталады.Бас жиынтықтағы айнымалы әр топта қалыпты таралған.Барлық топтардың дисп.бірдей. 1. Нөлдік және балама жорамалдарды анықтаймыз: Но: Бас жиынтықтың барлық топтық орта мәндері тең: Н1: Бас жиынтықтың барлық топтық орта мәндері тең емес. 2. Қажетті деректерді К тандамалардан алу. МSфакт мен МS қалд есептеу, егер Мsфакт Мsфакт>МSқалl болса,онда F критерийін есептейміз. 3. Критерий статистикасын есептеу:Fбақ 4. мәнділік деңгейіне сәйкес (а = 0,05 немесе а= 0,01) Фишер таралуының сыни мәнін арнайы кестеден табу. 5. F критерийінің статистикасын сыни нүктемен салыстыру 6. Но жорамалға қатысты шешім қабылдау: Егер Fбақ қабылданады.Егер Fбақ >Fсыни болса, онда нөлдік жорамал жоққа шығарылады және фактордың ықпалы маңызды болып табылады. 36. Екіфакторлы дисперсиялық талдау. 37. Жалпы, факторлық және қалдық дисперсиялар.Фишер критерийі. Топаралық дисп-фактордың таңдама орта мәндердің өзгергіштігіне ықпал етуінен туған дисп,факторлық дисп деп атайды.Топішілік дисп-кездейсоқ себептерден туған және орта мәндердің өзгергіштігіне ықпал етпейтін дисп,қалдық дисп деп атайды. MSфактф=r*S2; MSқалд=+ Екі бас жиынтықтың дисперсияларының теңдігі жөніндегі жорамалды тексеру үшін Фишердің Fкрит қолданылады.Бұл крит дисперсияларды дұрыс бағалау үшін,екі таңдама қалыпты таралған бас жиынтықтардан алынуы тиіс және тәуелсіз болулары қажет. 1.Нөлдік және балама жорамалдарды ұйғарамыз 2.Фишердің Fкрит мәнін есептейміз: 3.Еркіндік дәрежесінің санын анықтаймыз; 4.Кестелік Fсыни мәнін табамыз; 5.Fбақ 38. Көптік салыстырулар.Бонферрон түзетуі 39. Сапалы белгілер.Орайластық кестесі. Xu-квадрат критериясы көмегімен орайластық кестесі арқылы сапалы белгілерді талдау. Деректерді статистикалық талдау әдісін таңдау үшін әр түрлІ таңдамалардағы салыстырылатын айнымалының қандай шкалада өлшенгенін білу маңызды. Номинальды және ординальды шкалаларда өлшенген деректер сапалы деректерге жататынын білеміз, яғни мәндері санмен емес атаумен берілетін деректер. ОлаР медицинада өте жиі кездеседі.Сапалы деректерді талдау үшін айнымалы ретінде зерттеліп отырған белгінің әртүрлі мәндерінің жиіліктері алынады. Бақылау жиіліктері орайластық енгізіледі.Орайластық кестесі- бірге қарастырылатын екі бергінің әрқайсысының тандамадағы деңгейлері бойынша қабылдайтын әртүрлі мәндер жиілігін бейнелейтін сандар кестесі.Орайластық кестесі екі категориальды белгілер арасындағы статистикалық өзара байланысты растау үшін қолданылады. Кестеде олардың барлық мүмкін үйлестірулері көрсетілген, сондықтан мұндай кесте орайластық кестесі деп аталады. Орайластық кестесінде бір белгінің барлық деңгейлері қатарлар ретінде, ал екінші белгінің барлық деңгейлері бағандар ретінде анықталады. Кестенің әр торына орайласқан белгілерде орын алған жағдайлар саны жазылады.Барлық торлардағы барлық жиіліктердің қосындасы таңдама көлеміне тең. Н0 тексеру үшін Пирсонның Хи2 крит.қолданылады.Пирсон Хи2крит алғаш рет 1900ж жиіліктердің келісім дәрежесін тексеру үшін қолданылады.Хи2 критерийін есептеу бақыланған жиіліктермен күтілетін жиіліктер арасындағы айырмашылықты айқындауға негізделген. Хи2крит қолдануға қойылатын талаптар: 1.Деректер өзара жоққа шығарылатын категориялардан әрқайсысы үшін саналған бүтін сандармен өрнектелген жиіліктер түрінде берілу тиіс. 2.Бақылау жалпы саны 20дан көп болуы тиіс. 3.Н0 жорамалға сәйкес күтілетін жиіліктер саны әр торда 5тен кем болмауы тиіс. 4.Деректердің таралу түріне қатысты ешқандай шектеу шектеу болмауы тиіс. 5.Салыстырылатын топтар өлшемі шамамен бірдей болуы тиіс. 6.Егер 2*2 орайластық кестесінің қандай да бір торына күт.жиілік 5тен аз болса,онда Фишердің дәл крит қолданылады. 40. Өміршеңдікті талдау. Каплан Майер әдісі. Өміршеңдікті талдау әдістерінің ерекшелігі-олар толық емес деректерге қолд.Толық емес ақпараттардан тұратын бақылау цензурленген бақылау деп аталады.Цензурленген алғаш рет 1949ж қолд.Бұл әдістерде өмір уақыты,өміршеңдік функ,өмір уақытының кестесі,өміршеңдік қисығы ұғым қолд.Өмір уақыты-бұл қандай да бір оқиға пайда болғанға дейінгі уақыт.Оқиға-ауру симптомының дамуы,ауру ағзаның емге реакциясы,аурудың қайталануы н/е өлім.Өмір уақыты кестесі-бақылаудың барлық уақыты белгілі уақыт аралықтарына бөлінеді,бөлек өмір уақыттары осы аралықта топталады,үлкен көлемді таңдамаға ыңғайлы.Өміршеңдік функ-бұл нысанның бақылаудың басталу мезетінен бастап tдан үлкен уақыт өмір сүру ықтималдығы. Өміршеңдік бойынша деректерді талдауға арналған бірнеше статистикалық әдістер бар. Алайда ең кең тараған, көп қолданылатын төмендегі әдістер болып саналады: • Каплан Мейер әдісі (Kaplan-Meier method) - әрбір жеке адам үшін дәл өмір уақыты қолданылады. Бұл әдіс үлкен тандамалар үшінде, кіші таңдамалар үшін де жарамды. • Өмір уақыты кестесі әдісі (table life) (сақтандыру әдісі, сол сияқты Катлер-Эдерер немесе Берксон-Гейдж әдісі ретінде белгілі) бақылаудың барлық уақыты белгіленген уақыт аралықтарына(мысалы, әр айда немесе әр жылда) бөлінеді және бөлек өмір уақыттары осы аралықтарға топталады,мысалы,популяцияларға таңдамалармен жұмыс істегенде,эпидемиологиялық зерттеулер жүргізгенде қолданаан ыңғайлы. Каплан - Мейер әдісі дәлірек нәтиже беретін болғандықтан клиникалық зерттеулерде кең қолданылады.Өміршендікті талдаудың маңызды міндеттерінің бірі-өміршендік функциясын бағалау, сол сияқты күтілетін орта өмір уақытын бағалау. 41. Корреляциялық талдаудың негізгі ұғымдары мен міндеттері. Эпидемиологияның ең маңызды міндеттерінің бірі қауіп қатер факторы болып табылады.Мед. қауіп қатер факторы бұл аурудың пайда болуына мүмкіндік туғызатын фактор.Ауру асқынуындағы қауіп қатер факторын сандық жағынан бағалау үшін коррециялық талдау әдісі қолданылады.Корреляциялық талдау-бұл 2н/е одан көп кездейсоқ шамалардың арасындағы байл.тығыздығын ж/е бағытын анықтайтын әдіс.Корреляция-терм.алғаш рет француз палеонтологы Ж.Кювье енгізді,ал статистикада оны Ф.Гальтон енгізді.Корреляция коэф-байланыстың күшін ж/е оның бағытын сипаттайтын аралығындағы мәндерін қабылдайтын көрсеткіш.Байланыстың күшін бағалау үшін Чеддоктың шкаласы қолданылады. 0,1-0,3-Әлсәз 0,3-0,5-Қалыпты 0,5-0,7-Айқын 0,7-0,9-Жоғары 0,9-1-Күшті Тура корреляциялық байланыс-бір айнымалының кемуі басқа айнымалының артуына байланысты болатын байланыс.(семірген сайын,қан айнымалы көтеріледі).Корреляция коэф. 0ден +1ге дейін болады. Кері корреляциялық байланыс-бір айнымалының кемуі басқа айнымалының артуына байланысты болатын байланыс.(бой өседі,салмақ азаяды).-1ден 0ге дейін.0ге тең болса байланыс болмайды.+1 н/е -1-байланыс функционалдық болады. Шашырау диаграммасы-екі айнымалы арасындағы коррециялық тәуелділікті көрсететін көрнекі әдіс. Сызықты корреляция(жұптасқан Пирсонның) коэффиценті байланыстың күшін ж/е бағытын сипат.көрсеткіш. Жұптасқан корреляция коэф. параметрлік коэф. болып табылады. Корреляция коэф.сенімділігі оны есептелетін орташа қателікті салыстыру арқылы анықталады. 42. Пирсонның корреляция коэффициенті және оның қасиеттері. Егер бір белгінің бір қалыпты өзгерулеріне екінші бір қалыпты өзгерулері сәйкес келсе,онда байланыстың түрі сызықты деп аталады.Пирсонның корреляция коэф. сандық белгілердің сызықтық байланысын сипаттауға арналған ж/е белгілердің қалыпты таралуын талап етеді,r арқалы белгіленеді.r=0 болғанда сызықты корреляция жоқ.r=-+1 корреляциялық байланыс сызықты функционалдық тәуелділікті көрсетеді. |